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Abstract: The continuous advancement of Artificial Intelligence (AI) technology depends on the
efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial
computing systems based on the von Neumann architecture, employed in information and communi-
cation technology development for decades, are not suitable for the concurrent processing of massive
unstructured data tasks with relatively low-level operations. As a result, there arises a pressing
need to develop novel parallel computing systems. Recently, there has been a burgeoning interest
among developers in emulating the intricate operations of the human brain, which efficiently pro-
cesses vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic
computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the
information processing mechanisms of biological neural networks, are subjects of intense research
activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes
and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insuf-
ficiently explored. In this study, we systematically explore various input spike types to optimize
the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices.
Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity
and symmetry, and a wide range of weight values could be realized depending on the offset of the
RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of
synaptic connections, representing the strength of the signals.

Keywords: FTJ; synaptic devices; SNN; STDP; neuromorphic computing

1. Introduction

Traditional computing systems based on the von Neumann architecture, utilized for
information processing over decades, face limitations in handling large-scale unstructured
data computations due to their high-power consumption and relatively slow data process-
ing speed in serial operations. To overcome these challenges, recent attention has shifted
towards artificial neural networks emulating the functions of the human brain. Particularly,
Spike Neural Networks (SNNs) offer advantages in power efficiency and speed by execut-
ing operations in parallel through synapses with varying connection strengths, i.e., different
weights [1]. Among various learning methods for SNNs, the Spike-Timing-Dependent
Plasticity (STDP) learning rule efficiently mimics the information processing mechanisms of
biological neural networks by updating synaptic weights based on the temporal correlation
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of pre- and post-spikes, the electrical signals applied to synapses [2]. Alongside STDP
research, there has been a growing interest in small artificial synapse devices to emulate
the intricate neural network architecture of the human brain, which typically contains
thousands of synapses per neuron. Notably, the idea of using a 2-terminal nanoscale
resistive switching device, akin to a memristor, to mimic synapses was introduced by G.
S. Snider in 2007 [3]. Subsequently, a variety of 2-terminal memristor devices based on
magnetic materials, phase change materials, ferroelectric materials, and transition metals
have been extensively studied for synapse application [4–8]. Ferroelectrics, in particular,
have been studied for a long time in materials based on perovskite structures, but due
to their incompatibility with CMOS processes and the critical limit of losing ferroelectric-
ity at a thickness of a few nanometers, many efforts have been made to overcome them.
Then, in 2011, ferroelectricity was reported in 10 nm-thick doped HfO2, and the study of
devices based on hafnia-based ferroelectric tunnel junctions (FTJs) emerged as a promis-
ing alternative in the field of non-volatile memory devices [9–11]. FTJ devices utilize the
phenomenon of tunneling electrical resistance, which depends on the alignment of the
internal polarization of the ferroelectric layer, to realize the memory states. In particular,
FTJ devices based on polycrystalline HfO2 thin films can determine multiple resistance
states because the modulation of the asymmetric tunneling barrier by ferroelectric partial
polarization is possible [12,13]. The tunneling current can be extracted in a non-destructive
method by applying a read voltage sufficiently small enough not to modulate the tunneling
barrier [14]. It is promising for artificial synapse devices applied to SNNs because it has
energy-efficient characteristics due to the small amount of current driven by tunneling [15].
However, compared to research on STDP learning with FTJ, there is a scarcity of studies
exploring the spike conditions, a critical aspect of STDP.

In this study, we evaluated STDP learning under different spike conditions based on a
6 nm thick HZO FTJ device. To identify effective spike shapes, we performed STDP mea-
surements using spikes of various shapes, and the number of weights, linearity of weight
update, and symmetry parameters, which are evaluation criteria for synaptic characteristics,
were extracted to suggest efficient spike shapes. Additionally, optimized spike conditions
were determined by manipulating the pulse offset and width. The optimized spike was
applied to 20 repeated STDP measurements, and the repeated data were applied to neural
network simulation based on a CrossSim simulator. The neural network is evaluated
through the accuracy of pattern recognition, and the handwritten digit dataset provided by
the University of California at Irvine (UCI) and the Mixed National Institute of Standards
and Technology (MNIST) was used. The high level of accuracy of pattern recognition
demonstrated through simulation highlights the importance of spike optimization.

2. Results and Discussion

In STDP learning of an artificial synapse device, the synaptic weight can be regulated by
the overlap of voltage signals applied to both ends of the synapse devices (Figure 1a) [16–18].
When the spike is applied to the sample, the post-spike applied to the bottom electrode takes
on an inverted version of the pre-spike shape. Since the synaptic weight changes according to
the temporal correlation of the signals applied to the synapse device, i.e., pre- and post-spike,
the condition of the spike applied to the synapse device has a major impact on the STDP
learning result [19]. In this case, the pre- and post-spike are signals of the same condition,
and the spike used for STDP learning usually has the form of two voltage signals of different
polarities in succession, as shown in Figure 1b [20–22]. Assuming that a voltage signal of
positive polarity is likely to induce depression, a negative voltage signal of opposite polarity is
likely to induce potentiation. Since pre- and post-spikes are the same shape but are applied to
both ends of the synapse device, the polarity of the pre- and post-spike applied to the synapse
is opposite to each other. Assuming that Figure 1b is the voltage signal of the pre-spike,
the post-spike is applied in the opposite order to the pre-spike in a signal sequence that is
likely to induce potentiation and depression. To facilitate analysis, we define the voltage
signal of a pre-spike as a combination of Vpre_+signal 1 and Vpre_-signal 2, while the voltage
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signal of a post-spike received by the synapse is composed of Vpost_-signal 1 and Vpost_+signal 2.
Since the pre- and post-spikes are identically shaped spikes, Vpre_+signal 1 and Vpost_-signal 1 are
signals of the same condition with only the polarity reversed. In a biological system, a single
spike alone cannot induce a change in synaptic weight. However, when there is a temporal
correlation between pre- and post-spike signals, as depicted in Figure 1c, it becomes possible
to induce synaptic weight changes, such as potentiation and depression [20]. Potentiation
and depression are induced when ∆t > 0 and ∆t < 0, respectively, where ∆t represents the
time difference between the pre-spike and post-spike. ∆t > 0 indicates that the pre-spike is
applied more rapidly than the post-spike, while ∆t < 0 indicates the opposite. The induction
of potentiation and depression can be easily understood from Figure 1c. When ∆t > 0, an
overlap of signals occurs between the pre- and post-spike, enhancing the potential to induce
potentiation (Vpre_-signal 2 and Vpost_-signal 1). Consequently, a signal with a higher amplitude
is applied compared to a single spike, resulting in potentiation. Conversely, when ∆t < 0,
the post-spike is applied more rapidly than the pre-spike, leading to an overlap of signals
that have the potential to induce depression (Vpre_+signal 1 and Vpost_+signal 2); in this case,
depression can be induced. When ∆t has different polarities and the same absolute value,
it can be inferred that all conditions, except for the polarity of the overlapped spike, are the
same. Additionally, when ∆t = 0, the same spike is applied with opposite polarities, resulting
in complete cancellation, making it impossible to induce potentiation or depression.
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Figure 1. STDP learning mechanism in an artificial synapse device, and analysis of the spike used for
STDP. (a) The concept of artificial synaptic device mimicking biological STDP learning: interaction of
pre- and post-spike. (b) The definition of single spike (pre-spike). (c) Induction of potentiation and
depression by difference of temporal correlation of pre- and post-spikes. (d) Schematic representation
of a programming spike with overlapping pre- and post-spikes for arbitrary ∆t < 0. (e) Structure and
TEM cross-section image of the TiN/HZO/TiN (metal-ferroelectric-metal (MFM)) FTJ device. The
arrow inside the HZO thin film means the direction of polarization.
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To achieve excellent learning results in STDP, it is essential to analyze the overlapped
programming spike formed by two single spikes and optimize the conditions of the single
spike. Figure 1d illustrates an arbitrary programming spike when ∆t < 0. The programming
spike consists of three voltage signals with different polarities presented in succession, and
it can be divided into three regions based on the polarity transition, labeled as Region I,
II, and III. In an artificial synapse device, the voltage signal amplitude required to induce
weight changes is referred to as the threshold voltage (Vth). In an ideal artificial synapse
device, the threshold voltage (ideal Vth) is set to be equal to or greater than the maximum
amplitude of a single spike. Consequently, when a single spike is applied to the device,
the weight remains unchanged due to the threshold voltage being higher or equal to the
maximum amplitude of the single spike [20]. To induce weight changes, amplification
of amplitude must occur due to the temporal correlation between pre- and post-spikes.
Consequently, ideally, Region I and Region III, where no amplification of amplitude occurs,
do not significantly influence the weight. Therefore, STDP learning based on artificial
synapse devices has been studied by applying poling signals with the opposite polarity of
Region II before applying the spike, enabling the evaluation of weight change induced by
Region II [23–25]. However, the threshold voltage of memristor devices, which are under
investigation for application as artificial synapse devices, is generally very low [23,26].
Thus, if the threshold voltage of a memristor device is set to the maximum amplitude of a
single spike, the amplitude of the programming spike is not amplified enough to induce a
resistance state change even when the two spikes are overlapped, and the number of weight
states that can be represented is greatly reduced. To address this issue, when pre- and
post-spikes overlap and cause amplification, the amplitude of the single spike must be set
sufficiently high to induce substantial changes in the memristor’s state. However, when the
amplitude is set to a large value, a significant discrepancy arises between the ideal threshold
voltage and the practical threshold voltage, which is set equal to the maximum amplitude
of a single spike. The blue and red dotted lines in Figure 1d schematically represent,
respectively, the ideal and practical threshold voltages. The amplitude of the single spike
exceeds the practical threshold voltage, allowing voltage signals in Regions I and III to
also surpass the memristor’s threshold voltage, thereby potentially inducing changes in its
state. However, as previously mentioned, STDP learning is conducted by applying a poling
signal with the opposite polarity to Region II in advance. Consequently, Region I, which
has the same polarity as the poling signal, does not affect the state of the memristor. On the
other hand, Region III is applied after the memristor’s state has been changed by Region II,
thereby potentially influencing the memristor’s state. As a result, it becomes essential to
consider both Region II and Region III when configuring the spike condition to facilitate
STDP learning effectively. The HZO-based FTJ used in this study is driven by a tunneling
mechanism through a 6 nm-thin ferroelectric HZO layer (Figure 1e), making it a suitable
device for an artificial synapse device capable of high-density and low current operation. It
also has the advantage of having a top-electrode, analog multi-state ferroelectric, bottom-
electrode structure that can easily mimic the pre-spike, synaptic weight, and post-spike of
biological STDP learning. STDP learning is performed by applying the same spike to the
top and bottom electrodes while modulating ∆t, and the programming spike applied to the
HZO varies accordingly, making it possible to express multiple resistance states.

To define an appropriate amplitude for the single spike in the HZO-based FTJ
device, polarization-voltage with a PUND (positive-up, negative-down) measurement
and resistance–voltage measurements were conducted. The polarization–voltage curve
(Figure 2a inset) obtained by applying a triangle pulse with an amplitude of ±1.6 V shows
that all polarizations are switched and saturated at 1.6 V. The measured P–V curve includes
only ferroelectric switching contribution that excluded non-ferroelectric switching compo-
nents from the leakage and dielectric contribution. It also shows that remnant polarization
(2Pr) is 12.6 µC/cm2, coercive voltages are −0.22 and 0.56 V, and imprint voltage is 0.17 V.
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Figure 2. Optimization of single spikes for fabricated HZO-based FTJ devices. (a) The resistance state
changes with the amplitude of the applied pulse. Inset is the polarization–voltage curve obtained
with a PUND measurement. (b) Programmed spike of any two combinations of the 6-type pulses,
showing the case of ∆t (−9 µs), when the reinforcement of the pre- and post-spike is maximized.
(c) Measuring resistance state change for the 6-type pulses for Vsignal 1 setup.

Figure 2a illustrates the change in the resistance state with varying amplitudes of the
applied pulse. A poling pulse of negative polarity was applied in advance; the resistance
state was measured by sequentially increasing the programming pulse from 0 V to 1.6 V
in an interval of 0.1 V. The read voltage was set to 1 V DC bias. Based on these findings,
the maximum amplitude capable of inducing transitions from high resistance state (HRS) to
low resistance state (LRS) (and vice versa) was set to ±1.6 V. Therefore, to ensure that the
maximum state change occurs when both spikes are optimally reinforced and to minimize the
range of states that can be modulated by a single spike, the maximum and minimum voltage
amplitudes for the single spike were set at an absolute value of 0.8 V. For instance, in the case
of the pre-spike, Vpre_+signal 1 and Vpre_-signal 2 were set to 0.8 V and −0.8 V, respectively.

To optimize the spike condition, we considered various combinations of two voltage
signals, including rectangle, trapezoid, exponential, and three types of triangles (left, center,
and right peak). Each pulse condition was set to have a pulse width of 9 µs, as shown in
Table 1. To ensure the sufficient charging of the ferroelectric capacitor, the width of signal1
was set longer than the RC time. The programming spike shown in Figure 2b represents a
scenario where ∆t is −9 µs, leading to maximal reinforcement of both pre- and post-spike
and inducing the most significant depression among all spike conditions. In all cases,
Regions I, II, and III exhibited negative, positive, and negative polarities, respectively. As
previously mentioned, Region I, which has no influence on state changes, was excluded
from the analysis. To achieve multi-state capabilities, a large memory window and gradual
state changes are required. First, to enlarge the memory window, Region II should be
capable of inducing sufficient resistance state changes while minimizing the resistance state
changes by Region III. Also, to achieve gradual state changes, the applied signal should
be changed gradually. In the case of the STDP learning method, Region II is produced
by overlapping Vpre_+signal 1 and Vpost_+signal 2, which induce depression in the pre- and
post-spike, and Region III is produced by Vpre_signal 2, which induces potentiation in the
pre-spike. Therefore, to achieve an ample memory window and gradual state changes, it
is advantageous to employ a pulse with a stable amplitude sustained for an appropriate
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duration in Vpre_+signal 1. Simultaneously, a pulse with a gradual amplitude change should
be applied to Vpre_-signal 2.

Table 1. Condition of the 6-type pulses.

Pulse Shape Rising/Falling Time Pulse Width/Total Pulse Width

Rectangle 200 ns 8.6 µs/9 µs

Trapezoid 1 µs 7 µs/9 µs

Left peak triangle 200 ns (rising), 8.8 µs (falling) 9 µs

Center peak triangle 4.5 µs (rising), 4.5 µs (falling) 9 µs

Right peak triangle 8.8 µs (rising), 200 ns (falling) 9 µs

Exponential 200 ns (rising), 8.8 µs (falling) 9 µs

Figure 2c shows the resistance state change measurement for 5-type pulses for the
Vsignal 1 setting. Since this is an evaluation of the effect of a single pulse, a pulse under the
same conditions as the pulses in Table 1 used for the spikes in Figure 2b, the amplitude
was set to 1.6 V for all. The results show that the rectangular pulse induced the most
resistance state change from about 280 MΩ to about 220 MΩ, which highlights that the
rectangle pulse shape is the most suitable for Vsignal 1. Upon setting Vsignal 1 as a rectangle
pulse, it is reasonable to anticipate that Vsignal 2 would require a pulse with a gradual
amplitude change, making the triangle pulse a suitable candidate. Consequently, the
suitable pulse shape for Vsignal 2 is expected to be the triangle pulse. With Vsignal 1 fixed as a
rectangle pulse, we proceeded to conduct STDP measurements by applying three types of
triangle pulses (left, center, and right peak) as Vsignal 2. The spike configurations used are
as follows: rectangle—left peak triangle (RTleft); rectangle—center peak triangle (RTcenter);
rectangle—right peak triangle (RTright). The pulse conditions used in this experiment are
identical to those listed in Table 1.

Figure 3a illustrates the measurement sequence of STDP learning, with the RTleft spike
used as an example. The sequence remains identical for all three spike types, proceeding
as follows: For cases where ∆t decreases in the negative direction from 0, the order of
events is poling pulse of negative polarity, pre-spike and post-spike, followed by DC read;
the interval of ∆t is −1 µs. For cases where ∆t increases in the positive direction from 0,
the order of events is poling pulse of positive polarity, pre-spike and post-spike, followed
by DC read; the interval of ∆t is +1 µs. The ∆t values are restricted within the range of
−18 µs to +18 µs to ensure temporal correlation between pre- and post-spike. During
each programming spike, the device’s state modified by the spike is measured as current
data under a DC bias of −0.1 V. Regarding the three types of spikes, RTleft, RTcenter, and
RTright, the actual programming spike shapes applied to the HZO layer can be observed
in Figure 3b. Here, Region I is not considered because it does not affect the state and has
the same shape for all three types of spikes. First, for the spike RTleft, it can be observed
that at ∆t = −3 µs and −6 µs, Region II inducing potentiation has the highest amplitude,
and as ∆t increases, the amplitude sequentially decreases. Simultaneously, at ∆t = −3
µs, Region III inducing depression has the lowest amplitude, and as ∆t increases, the
amplitude sequentially increases. Therefore, it is expected that at ∆t = −3 µs, the induction
of potentiation will be the highest, and a linearly smaller amount of potentiation is induced
as ∆t increases. Next, when the spike is RTcenter, it can be observed that as ∆t increases,
the amplitude of Region II is nearly similar to that of RTleft, while the amplitude of Region
III sequentially increases. On the other hand, for the spike RTright, as ∆t increases, the
amplitude of Region II continuously increases, and the amplitude of Region III remains
almost similar. Therefore, it is expected that a larger number of states can be obtained
in the order of RTleft, RTcenter, and RTright. Figure 3c presents the results of the STDP
measurements for each spike condition. The conductance change curve due to potentiation
(long-term potentiation, LTP) is plotted when ∆t > 0, and the conductance change curve due
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to depression (long-term depression, LTD) is plotted when ∆t < 0. For each spike condition,
only data in the region where a linear change in conductance occurs were plotted.

Nanomaterials 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

each spike condition. The conductance change curve due to potentiation (long-term po-
tentiation, LTP) is plotted when Δt > 0, and the conductance change curve due to depres-
sion (long-term depression, LTD) is plotted when Δt < 0. For each spike condition, only 
data in the region where a linear change in conductance occurs were plotted. 

 
Figure 3. Measuring and analyzing STDP learning for spike shape optimization. (a) Measurement 
sequence of STDP learning with RTleft spike. (b) For RTleft, RTcenter, and RTright spikes, the shape of the 
programming spike is applied to the HZO FTJ. Only the cases with Δt = −3, −6, −9, and −12 µs were 
plotted. (c) STDP measurement results for each spike. LTP curve plotted when Δt > 0; LTD curve 
plotted when Δt < 0. (d) Analyzing linearity and symmetry characteristics of LTD and LTP curves. 

LTP and LTD characteristics were analyzed within the same conductance range, and 
it can be seen that RTleft, RTcenter, and RTright exhibited 14, 13, and 6 distinct states, respec-
tively. Notably, the RTleft spike demonstrated the highest number of states, indicating that 
this particular spike condition induced the most significant diversity in conductance lev-
els. The linearity and symmetric characteristics of weight update (LTD and LTP) in the 
artificial synaptic device were analyzed using the Symmetric Nonlinearity model. 

Linearity and symmetric characteristics are required to achieve high learning accu-
racy in pattern recognition simulation to evaluate artificial neural networks and were an-
alyzed by fitting the following equations (Equations (1)–(3)) [27]: 

(b)

(d)

(a)

-1.0

-0.5

0.0

0.5

1.0

1.5

            Δt
  -3 μs
  -6 μs
  -9 μs
  -12 μs

40µ0 20µ

RTright

V
ol

ta
ge

(V
)

Time(s)
40µ20µ0 40µ20µ0

            Δt
  -3 μs
  -6 μs
  -9 μs
  -12 μs

Time(s)

RTcenter

Time(s)

            Δt
  -3 μs
  -6 μs
  -9 μs
  -12 μs

RTleft

DC read :-0.1V
Poling pulse

DC read :-0.1V

(c)

Pre spike

Post spike
Δt<0

Pre spike

Post spike
Δt>0

1.0
1.5
2.0
2.5
3.0

0.40

0.45

0.50

 LTP
 LTD

N
on

lin
ea

ri
ty

(υ
)

Sy
m

m
et

ri
c(

α)

RTcenterRTright

Spike shape
RTleft

4.0n

4.5n

4.9n

5.4n

5.8n

C
on

du
ct

an
ce

(S
)

-15 -10
 Δt(µs)

 RTleft
 RTcenter
 RTright

-5 51015

Poling pulse

Figure 3. Measuring and analyzing STDP learning for spike shape optimization. (a) Measurement
sequence of STDP learning with RTleft spike. (b) For RTleft, RTcenter, and RTright spikes, the shape
of the programming spike is applied to the HZO FTJ. Only the cases with ∆t = −3, −6, −9, and
−12 µs were plotted. (c) STDP measurement results for each spike. LTP curve plotted when ∆t > 0;
LTD curve plotted when ∆t < 0. (d) Analyzing linearity and symmetry characteristics of LTD and
LTP curves.

LTP and LTD characteristics were analyzed within the same conductance range, and it
can be seen that RTleft, RTcenter, and RTright exhibited 14, 13, and 6 distinct states, respec-
tively. Notably, the RTleft spike demonstrated the highest number of states, indicating that
this particular spike condition induced the most significant diversity in conductance levels.
The linearity and symmetric characteristics of weight update (LTD and LTP) in the artificial
synaptic device were analyzed using the Symmetric Nonlinearity model.
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Linearity and symmetric characteristics are required to achieve high learning accuracy
in pattern recognition simulation to evaluate artificial neural networks and were analyzed
by fitting the following equations (Equations (1)–(3)) [27]:

G = A × 1
1 + exp[−2v(p − α)]

+ B (1)

where
A = (Gmax − Gmin)×

exp v + 1
exp v − 1

(2)

B = Gmin −
(Gmax − Gmin)

exp v − 1
(3)

The meaning of each term used in Equations (1)–(3) is as follows: Gmax is the maximum
conductance in the LTD and LTP characteristic curves; Gmin is the minimum conductance;
α is a parameter that can evaluate symmetry; and υ is a parameter that can evaluate
nonlinearity. α serves as the symmetric center of the LTD and LTP characteristic curves
and can take values between 0 and 1. A value closer to 0.5 indicates more symmetric
characteristics. On the other hand, υ is used to assess nonlinearity and can take values
between 0 and 10, with a value closer to 0 indicating more linear characteristics. The α and
υ parameters for each spike can be seen in Figure 3d. Among the three spikes, RTleft showed
the most outstanding symmetric characteristics with α values of 0.48 for LTP and 0.49 for
LTD and the best linearity characteristics with υ of 1.1 and 1.4, respectively. Considering
the number of states, symmetric, and linearity characteristics together, it is evident that
RTleft is the most suitable spike shape for the artificial synaptic device.

To optimize the RTleft spike, the STDP learning was conducted by varying the spike’s
offset, R pulse width, and Tleft pulse width. As shown in Figure 4a (first), the conditions of
the reference spike were set with square and triangular waveforms having peak values of
0.75 V and pulse widths of 9 µs each. The spike modulation conditions were as follows:
the offset of the spike was adjusted to −0.2, 0, and +0.2 V (Figure 4a (second)); the R pulse
width was set to 7, 9, and 11 µs (Figure 4a (third)); and the T pulse width was set to 7, 9, and
11 µs (Figure 4a (fourth)). In contrast, the amplitude in Region III undergoes a considerable
variation, extending to a larger range of values. Conversely, when the offset is +0.2 V, the
trends observed are opposite to those seen when the offset is −0.2 V.

In this case, the amplitude in Region I, which does not influence the state, increases,
while the amplitude in Region II shows no significant variation. Additionally, the amplitude
in Region III undergoes a smaller range of change. The offset modulation case showed
the most dramatic applied programming pulse shape change, while the pulse width
modulation case showed no significant amplitude change in each region, as shown in
Figure 4c,d. The measurement results for Figure 4b–d are plotted in Figure 4e–g and Table 2.
As expected, the most dramatic changes were seen when the offset was modulated, with the
offset of −0.2 V having the highest number of states of 18. In addition, when the linearity
and symmetry characteristics were checked in the same way as in Figure 3c, the case with
offset −0.2 V showed the most symmetrical and linear characteristics with α = 0.48 and
υ = 1. Therefore, considering the number of states, symmetry, and linearity characteristics,
the condition with R width of 9 µs, T width of 9 µs, and offset −0.2 V has the best synaptic
characteristics. The performance indicators of synapses are dependent on the shape of the
spike. Linearity and symmetric play a role in the performance of neural networks. When
data exhibits good linearity and symmetry, the computational process reduces distortion
and has a positive impact on accuracy [28]. In Figure 4b, the programming spike shapes for
each spike condition are presented. It is essential to pay attention to the results obtained
when varying the spike’s offset, particularly when the offset is −0.2 V. The amplitude in
Region I, which is known not to influence the device state, decreases, while the amplitude
in Region II remains relatively unaffected.
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Figure 4. Spike RTleft optimization. (a) For Spike RTleft optimization, establish a spike condition
with a modulated offset, as well as the widths of the R pulse and Tleft pulse. The shape of the
programming spike for spike RTleft can be characterized by several parameters, including (b) Spike
shape depending on the level at the offset. +0.2 V offset (left, red line) and −0.2 V offset (right, orange
line). (c) Spike shape as a function of Tleft pulse width of 7 µs and 11 µs. (d) Spike shape as a function
of R pulse width of of 7 µs and 11 µs. Only the cases with ∆t = 3, 6, 9, and 12 µs were plotted. STDP
measurement results for each spike condition: (e) corresponds to (b), (f) corresponds to (c), and
(g) corresponds to (d).

Table 2. Linearity and symmetry values at various spike conditions.

RTleft RTcenter RTright
RTleft

−0.2 V Offset +0.2 V Offset 7 µs/9 µs 11 µs/9 µs 9 µs/7 µs 9 µs/11 µs

υ 1.12 2.5 3.2 1 1.65 1.91 3.05 1.87 2.7

α 0.48 0.41 0.43 0.48 0.435 0.45 0.41 0.46 0.4

Based on the optimized spike conditions, the obtained data was used to perform
artificial neural network simulations using the CrossSim simulator provided by Sandia
National Laboratories [28–30]. The CrossSim simulator is composed of a neural core that
converts the input measurement data into pixel brightness and a digital core that computes
the weights. The simulation utilized the measurement data obtained from 20 repeated
STDP learning experiments with the optimized spike conditions. (Figure 5a). The results
of the repeated STDP training experiments show that the resistance level according to
the ∆t value of the optimized spike is stable. Figure 5b shows the resistance state at five
different ∆t values (0 µ, 4 µ, 10 µ, 14 µ, and 18 µ) in 20 repeated STDP experiments, and
the same resistance state is implemented in the repeated experiments. This allows pattern
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recognition simulations to be performed on handwritten digit datasets provided by UCI
and MNIST using the CrossSim simulator. However, due to the difference between the
range of weights obtained from measurements and the range of conductance stored in
the crossbar, the measured data needs to be transformed into a format called the Look-up
table to be applied to the CrossSim simulator [31]. The Look-up table represents the ∆G-G
data, which indicates the conductance state change (∆G) that occurs when an additional
signal is applied to the current device’s conductance state. This table takes into account
various non-ideal factors, such as write noise, read noise, and nonlinearity. In Figure 5c, the
cumulative distribution function (CDF) represents the updated characteristics of complex
conductance states, which includes non-ideal features reflected through the Look-up table.
Figure 5d is a schematic of an artificial neural network consisting of an input layer, a
hidden layer, and an output layer, and the circled parts of the network are called neurons
or nodes [32]. Learning in a neural network refers to the process or algorithm of modifying
the weights of neurons that constitute the network [33]. The learning process follows the
following steps:
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Figure 5. Synaptic characteristics using an optimized spike condition of 6 nm HZO FTJ device.
(a) Twenty cycles of LTP and LTD with optimized spike conditions. Each color represents an
individually measured sequence (b) Multi-state reproducibility reproduced by optimized spikes.
(c) Conductance deviation calculated using cumulative distribution function (CDF) in LTD and
LTP. White indicate the probability of each resistance state transitioning to the next resistance state.
(d) Schematic representation of artificial neural network used in the simulation. (e) Pattern recognition
accuracy for small and large image datasets as a function of learning rate. (f) Accuracy dependence
by spike optimization.

1© The pixel brightness values of the UCI and MNIST handwritten digit datasets are
input into input layerl; 2© the pixel brightness is multiplied by the conductance (G) obtained
from the Look-up table, resulting in a summation of values according to Kirchhoff’s current
law, which is then output to the hidden layer; 3© the value input to the hidden layer is
multiplied by the conductance (G), and the summed value is output to the output layer
according to Kirchhoff’s current law; 4© the output value is compared with the known
image label (the correct answer), and the cost (error) between them is calculated; and
5© the internal weights are adjusted in the direction that reduces the cost, aiming to

minimize the error during the learning process.
The handwritten digit datasets used in this study are sourced from UCI and MNIST.

The UCI small dataset consists of 8 × 8-pixel handwritten digits and includes 64 nodes,
3823 training samples, and 1797 test samples. On the other hand, the MNIST large dataset
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consists of 28 × 28-pixel handwritten digits and comprises 784 nodes, 60,000 training
samples, and 10,000 test samples. During the training process, each image in the training
dataset is used for one epoch, which is considered as one complete iteration of learning.

The accuracy of the neural network at a specific epoch is measured using the test
dataset, which is not involved in the learning process and is used solely for evaluation
purposes. Before evaluating the pattern recognition accuracy of the artificial neural network
based on STDP learning with the optimized spike condition for HZO-based FTJ, the learning
rate was optimized. The learning rate plays a crucial role in the learning process, as it
determines the step size of weight updates during training. If the learning rate is too small,
it may lead to slow learning and hinder the network’s performance, or it might get stuck
in local minima without reaching the optimal cost [34]. On the other hand, if the learning
rate is too large, it may cause overshooting, where the cost increases instead of converging
to the minimum. Therefore, to determine a suitable learning rate for both the UCI small
dataset and the MNIST large dataset, we evaluated accuracy by training for up to 10 epochs
with learning rates ranging from 0.01 to 0.5, as shown in Figure 5e. A learning rate of 0.5
for the UCI small dataset and 0.03 for the MNIST large dataset exhibited excellent pattern
recognition accuracy of 95.4% and 96.5%, respectively. The red line in the graph represents
the ideal data accuracy.

These high levels of pattern recognition accuracy can be attributed to the excellent
synaptic characteristics achieved through successful spike condition optimization. This is
also confirmed by the accuracy comparison based on data obtained by applying optimized
and non-optimized spikes, as shown in Figure 5f. At a learning rate of 0.03 on the MNIST
dataset, the RTcenter spike condition demonstrated an accuracy of 94.2%, while the RTleft
−0.2 V offset spike condition showed an accuracy of 96.5%. This suggests that optimized
spikes can further enhance the potential application of synaptic devices in neuromorphic
computing systems.

3. Conclusions

This study focused on optimizing the spike condition, a key element in STDP learning,
using a 6 nm HZO-based FTJ device to improve synaptic characteristics. Through simu-
lations, the research demonstrated the potential application of this device as an artificial
synaptic device for neuromorphic computing. The evaluation of synaptic characteristics
was based on the number of states, linearity, and symmetry criteria, which were analyzed
using STDP learning with various spike conditions. The accuracy of the CrossSim-based
artificial neural network was evaluated by repeating the STDP measurement based on
the RTleft spike with an optimized R width of 9 µs, T width of 9 µs, and offset of −0.2 V
20 times. High pattern recognition accuracy of 95.4% for the UCI dataset and 96.5% for the
MNIST dataset was achieved.

In conclusion, this study highlights the importance of optimizing the driving condi-
tions for various artificial synaptic device candidates to effectively utilize their characteris-
tics for neuromorphic computing. Understanding the driving conditions is essential for
device design and reproducibility in the context of neuromorphic computing research.

4. Experimental

Fabrication: HfZrO2 ferroelectric thin films with a thickness of 6 nm were grown on a
TiN/SiO2/Si substrate by thermal-ALD at 300 ◦C. Cocktail precursors of cyclopentadienyl-
tris(dimethylamino)-hafnium (Hf[Cp(NMe2)3]) and cyclopentadienyl-tris(dimethylamino)-
zirconium (Zr[Cp(NMe2)3]) were employed in a molar ratio of 0.35:0.65, and ozone was
used as reactant gas. The top TiN electrode was deposited by RF magnetron sputtering in
an Ar and N2 atmosphere with a circular-patterned hard mask (r = 100 µm). Subsequently,
the initial amorphous HfZrO2 thin films were crystallized in an N2 atmosphere at 600 ◦C
for 40 s to stabilize the ferroelectric phase.

Electrical Measurements: Electrical measurements were performed using a parameter
analyzer (4200A-SCS, Keithley, USA) with a 4225-PMU. The spike signal was applied to
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the top and bottom electrodes of the FTJ device. The pulse signal was applied to the top
electrode of the FTJ device, and the bottom electrode was grounded. All measurements
were performed at room temperature and were preceded by 20,000 field cycles to rule out
the wake-up effect in the pristine state.

Neural Network Simulations: The performance of an artificial neural network based
on back propagation was simulated using the open-source software CrossSim (Crossbar
Simulator, Version 0.2) written in Python provided by Sandia National Laboratories. In the
weight update model, the possible weight values of the device were determined by referring
to the look-up table created using experimental values rather than virtual simulations.
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