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Abstract: Terbium is a rare-earth element with critical importance for industry. Two adsorbents of
different origin, In2O3 nanoparticles and the biological sorbent Arthrospira platensis, were applied for
terbium removal from aqueous solutions. Several analytical techniques, including X-ray diffraction,
Fourier-transform infrared spectroscopy, and scanning electron microscopy, were employed to
characterize the adsorbents. The effect of time, pH, and terbium concentration on the adsorption
efficiency was evaluated. For both adsorbents, adsorption efficiency was shown to be dependent
on the time of interaction and the pH of the solution. Maximum removal of terbium by Arthrospira
platensis was attained at pH 3.0 and by In2O3 at pH 4.0–7.0, both after 3 min of interaction. Several
equilibrium (Langmuir, Freundlich, and Temkin) and kinetics (pseudo-first order, pseudo-second
order, and Elovich) models were applied to describe the adsorption. The maximum adsorption
capacity was calculated from the Langmuir model as 212 mg/g for Arthrospira platensis and 94.7 mg/g
for the In2O3 nanoadsorbent. The studied adsorbents can be regarded as potential candidates for
terbium recovery from wastewater.

Keywords: green synthesis; In2O3 ; adsorption; terbium (Tb); Arthospira platensis; extraction;
isotherm; kinetics

1. Introduction

The rare-earth elements (REEs) are a group of 15 elements of the lanthanide series
as well as scandium and yttrium. REEs possess very similar chemical properties, while
distinctive electromagnetic, catalytic, and optical capabilities make them crucial resources
for the production and development of high-technology products [1,2]. The unique prop-
erties of REEs allow them to be considered “industrial vitamins”. Terbium (Tb), along
with dysprosium, europium, neodymium, and yttrium, amount for approximately 85%
of the total use of REEs in final products [3–5]. Terbium is a soft REE widely applied in
the production of components for smartphones, laptops, sensors, and televisions, and it
is also an important constituent of magnets, microphones, etc. Moreover, terbium is a
key component in fluorescent lamps [6,7]. Terbium, together with ZrO2, is employed as a
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crystal stabilizer in fuel cells used at high temperatures, as well as a dopant for solid-state
materials such as calcium fluoride, calcium tungstate, and strontium molybdate [8,9].

Concomitant with the growing demand for terbium by industrial enterprises, the
amount of electronic waste containing this element has significantly increased. Moreover,
mining, unregulated waste disposal, and the absence of proper recycling processes con-
tribute to rather high level of REEs in water effluents, ranging from 1 to 200 mg/L [5,10]. It
has been reported that the concentration of terbium in sediments from the Baram River
in Malaysia was between 0.68 and 0.8 mg/kg [11]. Other reports quantifying the concen-
tration of this metal showed a maximum of 1.8 mg/L in the water of the Atibaia River in
Brazil [12], 1.13 mg/kg in the sediments of the Ipojuca River in Brazil [13], and a maximum
of 2.6 mg/kg in the Lubumbashi River near an old closed mine in the Democratic Republic
of the Congo [14].

The toxicity of terbium is a concern, although data related to its harmful effects are
still scarce. Nevertheless, several papers have mentioned its negative impact on humans,
plants, animals, aquaculture, and the wider ecosystem. Shimida et al. [15] reported that
single parenteral injections of 20 or 200 µmol TbCl3/kg in mice caused increased pul-
monary weight, rapid lipid peroxidation, and an elevated protein content. Also, juvenile
rainbow trout exposed to terbium or praseodymium for 96 h showed LC50 of 5.8 and
11 mg/L, respectively. In addition to acute toxicity, terbium also exhibited DNA repair
activity, inflammation, protein denaturation, calcium binding, and oxidative stress [16].
Ecotoxicological responses to terbium were reported to involve loss of redox balance and
neurotoxicity, as well as metabolic impairment, upon exposure to Tb in clams, which are
considered a common seafood in many countries [17]. Studies have also shown phytotoxic
effects of terbium in horseradish roots and leaves [18,19].

Consequently, it is crucial to find effective, eco-friendly, and cheap techniques for the
recovery of terbium ions. Well-established technologies used to remove REEs from solu-
tions include chemical precipitation, filtration, solvent extraction, ion exchange, membrane
technology, and adsorption [20–22]. However, traditional methods applied for wastewater
treatment are considered inefficient in cases of diluted effluents, which require energy,
chemicals, and significant costs, while some may even produce secondary toxic pollu-
tants [3,23,24]. Adsorption is one of the most popular techniques applied for metal removal
due to its simplicity, low cost, ability to treat diluted metal solutions and/or unclarified so-
lutions, high adsorption capacity, and adsorbents regeneration [25–27]. Moreover, materials
produced from agricultural or biotechnological waste can be used as sorbents [3,21,22,24],
along with commercial adsorbents. The question of which adsorbents (biological or spe-
cially synthesized) are more suitable for large-scale industrial application often arises.

In the present study, the adsorption capacity of two adsorbents, the cyanobacterium
Arthrospira platensis and In2O3 nanoparticles (NPs), toward terbium ions was assessed
under different experimental conditions.

Arthrospira platensis (spirulina) is a well-known cyanobacterium with high adaptability
to high alkalinity, temperature, salt concentration, and different pollutants in culture
media [28,29]. Other advantages of spirulina include ease of handling, high biomass
productivity, and a high metal biosorption capacity [28,30–33]. Indium oxide (In2O3) is
widely applied as a semiconductor in photocatalytic degradation, solar cells, and gas
sensing [34–38]. The high surface area and low coordination number of In2O3 may make it
a good adsorbent for inorganic and organic pollutants [39–41].

2. Materials and Methods

All chemicals were used in the experiments without further purification: indium
acetate, (≥99%, Oxford, UK), crystalline anhydrous citric acid (C6H8O7) (≥99.5%, Fisher
Chemical, Loughborough, UK), HCl, NaOH, and deionized (DI) Mille-Q water
(COD ≤5 ppb). Artrhospira platensis CNMN-CB-02 (A. platensis, spirulina), used as biosor-
bent, was obtained from the collection of non-pathogenic microorganisms (IMB TU, Chisinau,
Moldova). The process of biomass growth is described in detail in the literature [29]. After
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cultivation for six days, the biomass was separated from the medium, dried, and homoge-
nized for 10 min in a planetary ball mill (PULVERISETTE 6, Fritsch Laboratory Instruments
GmbH, Idar-Oberstein, Germany) at 400 rpm.

2.1. Synthesis of Precursor of In2O3 NPs

The precursor for In2O3-NPs synthesis was prepared via a green solvothermal method.
Indium acetate powder was mixed with citric acid in equimolar amounts in mortar to obtain
a very fine powder, and then 1 mL of Mille-Q-water was added under continuous grinding
until the appearance of an acetic acid odor, a change in form (paste), and a yellowish color.
The obtained paste was solvated in 100 mL of Mille-Q-water and stirred for 2 h at 400 rpm,
then irradiated for 30 min via probe sonication (20 kHz) in pulsed mode, and finally dried
under vacuum at 100 ◦C overnight. The resulting transparent sheets are the precursor.
In the next stage, the obtained precursor powder was calcinated at 700 ◦C for 2 h under
inert conditions (nitrogen flow) with a temperature gradient rate of 5 ◦C per minute. The
obtained powder was characterized as In2O3-nanoparticels (In2O3-NPs) as described in the
schematic synthesis diagram Figure S1.

2.2. Adsorption Experiments

To prepare the terbium solutions, Tb(NO3)3·6H2O (Sigma Aldrich, Darmstadt, Ger-
many) was dissolved in distillated water. Experiments were carried out in Erlenmeyer
flasks of 50 mL volume, where 20 mL of terbium solution with a Tb concentration of
10 mg/L was mixed with 0.1 g of In2O3-NPs or spirulina biomass. To assess the effect of
the activity on terbium removal, the solutions with different pHs ranging from 2.0 to 7.0
were prepared using 0.1 M HCl or NaOH. Kinetics experiments were performed, varying
the time of reaction from 1 to 120 min, while maintaining other parameters constant. Ad-
sorption equilibrium was investigated at terbium concentrations of 10–100 mg/L, while
other experimental conditions were constant. All experiments were performed in triplicate.

The adsorption capacity (q) and terbium removal efficiency (E) were computed from
Equations (1) and (2):

q =
V(Ci − Cf)

m
(1)

E =
Ci − Cf

Ci
·100% (2)

where q is the content of terbium adsorbed, mg/g; V is the volume of solution, mL; Ci
and Cf are initial and final terbium concentrations in the solution, mg/L; and m is sorbent
dosage, g.

2.3. Characterization

The UV-Vis absorption spectra of the In2O3-NPs samples were measured using a
double-beam spectrophotometer (Cary 5000 UV-Vis-NIR, Agilent Technologies, Santa
Clara, CA, USA). The FTIR spectra for both adsorbents before and after terbium adsorption
were collected using a FTIR spectrometer (Vertex 70, Bruker, Germany); the spectra were
recorded in a spectral range of 4000–400 cm−1 with a spectral resolution of 3 cm−1. The
X-ray diffraction (XRD) data were obtained using a Malvern Panalytical Empyrean 3
diffractometer to determine the phase composition and crystal structure of precursors
and In2O3-NPs. The morphology and particle size of the samples were characterized
using field-emission scanning electron microscopy (FESEM, Quattro S, Thermo Scientific,
Waltham, MA, USA). An ICP-OES PlasmaQuant PQ 9000 Elite spectrometer (Analytik Jena,
Jena, Germany) was used to determine the initial and final concentrations of terbium in
experimental solutions. Zeta potential results were determined on a Malvern zeta potential
and particle size analyzer (Zeta sizer Ver. 7.12). They are presented as the mean of many
repeated and automated scans (12 cycles). The raw data of measurements are given in
Supplementary File S1.
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2.4. Statistics

All experiments were performed in triplicate, and values are presented as the mean of
three experiments ± standard deviation. To elucidate the difference between experimental
and initial values, Student’s t-test was applied.

3. Results
3.1. Adsorbents Characterization

A detailed characterization of A. platensis is provided in [29]. In Figure 1, the particle
size distribution (Figure 1a) and zeta potential (Figure 1b) of spirulina biomass at different
pH values are presented. At pH 2, the zeta potential was positive at 23.3 mV, suggesting a
positive charge of the spirulina biomass surface. At pH ranges of 3–6, the values of the zeta
potentials were negative, varying from −22.2 to −45.2 mV, indicating the negative charge
of the biomass surface. The size of the main part of the biomass particles was in the range
of 90–300 nm and 3.5–5.5 µm.
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Figure 1. (a) Zeta potential and (b) particle size distribution of spirulina biomass.

The In2O3-NPs characterization is described below. Application of XRD for biological
adsorbents characterization showed that the broad peak around 2θ = 20◦ corresponds to the
amorphous phase of biomass [42]. The XRD pattern of In2O3 (Figure 2) shows that In2O3
NPs have a cubic crystal structure, which typically exhibits diffraction peaks at 2θ values of
approximately 30.6◦, 35.6◦, 51.7◦, 60.7◦, and 83.4◦, corresponding to the (222), (400), (440),
(622), and (662) planes, respectively [36]. Full d-spacing, calculated using the HighScore
Plus software 5.1, is shown in Figure S2 and Table S1. All the diffraction peaks in the sample
(Figure 1) could be attributed to In2O3 (JCPDS No. 06-0416), as shown in Figure S2. It is
worth noting that after calcination, the diffraction peaks became much higher and sharper
compared with the precursor diffraction pattern, while their positions completely changed.
Figure 2b shows the diffraction pattern of the semi-crystalline nature of the precursor
accompanied by featured positions of indium hydroxide, In(OH)3, and remaining unbound
hydrated citric acid correspond to different reference standard cards, such as: JCPDS:
00-004-0182 and many JCPDS, which demonstrate the crystalline nature of precursor salt
(Figure S3). There were no obvious impurity peaks in the XRD pattern of In2O3 NPs, and
thus the obtained yellow powder is high-purity In2O3 of cubic structure. The indium oxide
crystal structure is cubic bixbyite (space group Ia-3), which consists of a face-centered cubic
lattice of oxygen atoms with indium atoms occupying half of the tetrahedral sites. It is
worth mentioning that (222) surface is mainly oxygen-terminated, giving the constituent
indium atoms of In2O3 a low coordination number and this good indication for reactivity
and good adsorption capacity [38,39]. The average crystallite size of the In2O3 NPs was
calculated using the well-known Scherer equation [43] (Equation (3)).where is k is a shape
constant, λ is the wavelength of the X-ray beam, βD is the full width at half maximum in
radians and θ is the angle of diffraction in radians.
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Using Equations (4) and (5), the dislocation density (δ) and micro-strain (ε) were
obtained [44].

D (crystallite size) in nm =

[
(k)× (λ)

(βD)× (Cosθ)

]
(3)

δ =1/D2 (4)

ε = β cos θ\4 (5)

The crystallite size was estimated using the full width at half maximum (FWHM)
of the most intense peaks. The calculated particle size was estimated and found to be
0.743 nm and 28 nm for the In-precursor and In2O3-NPs, respectively. All the estimated
parameters are shown in Table 1. The high values of the dislocation densities were obtained
for semi-crystalline precursors with a remarkable decrease in the case of high-crystalline
In2O3-NPs after calcination. This can be explained by the introduction of a crystallographic
defect in the microstructure related to the particle size and crystallinity of structure. For
In2O3, a dislocation density of 0.00122 indicates that the material has a relatively very
low concentration of dislocations. This can be beneficial for certain applications, as lower
dislocation densities can lead to improved mechanical and electrical properties, such as
higher strength, hardness, and electrical conductivity [45].

Table 1. The crystal structure parameters of precursors and In2O3-NPs.

Sample Name (hkl) d-Spacing βD (rad) D (Scherrer eq.)
(nm) δ (nm 2) ε%

Precursor 2 2 0 0.4 0.1899 0.743 1.8 24.2

In2O3-NPs 2 2 2 0.29 0.005031 28.5 0.00122 0.4582

The IR spectrum of the precursor (Figure 3) was compared with that of the free citric
acid. Citric acid has three carboxyl groups; two of them are symmetric, and the third exists
in a different electronic environment; hence, the citric acid spectrum contains two bands at
3500 and 3300 cm−1 due to the ν (OH) groups. Because of the free (OH), another shoulder
band appears at 3228 cm−1. In addition to that, two strong bands are observed at 1742
and 1700 cm−1 owing to the νas- (COOH) of the protonated three carboxyl groups [46].
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On the other hand, the spectrum of the precursor exhibits shifts in the bands of ν (OH) of
the two carboxyl groups to 3489 cm−1. The band of the free (OH) group has disappeared
as a result of coordination to In3+. A noticeable change in the intensity of the band of the
protonated carboxyl group ν (COOH) and a shift of the band at 1697 cm−1 attributed to
the ν (COO−) of the deprotonated carboxyl group are observed. The difference between
the asymmetric and symmetric (at 1400 cm−1) carboxylate group is 180 cm−1, indicating
a mono-dentate character of this group. Two new weak bands are noticed at 625 and
522 cm−1 owing to In-O. It is suggested that citric acid chelates In (III) via carboxylate
oxygen and the deprotonated hydroxo oxygen, forming a coordination compound. The
FTIR spectrum of In2O3-NPs shows characteristic absorption bands in the range between
400 and 550 cm–1. The shape, number, and wavenumber position of these bands depend
on the chemical composition, morphology, and crystal structure of the materials [41,47].
The FT-IR spectrum of the nanoadsorbent will be described in Section 3.3.
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Figure 3. FT-IR spectra of citric acid as ligand, precursor, and In2O3-NPs.

Surface and deep insight morphology investigations show the big blocks with smoothed
surfaces of the raw material used as a precursor for In2O3 nanoparticle production. In the
FE-SEM of the precursor, shown in Figure 4a,c, the particles had three-dimensional growth
surrounded by smooth surfaces and sharp edges in continuous interactions, represented as
a connected matrix with the same nature. The FE-SEM indicates that the particles of the
precursor appear to be closely packed or densely arranged, without visible spaces or voids
between them. This suggests a high degree of particle packing or aggregation. Observed
fragments or granules exhibit a cohesive structure, where individual particles or grains
are connected to each other. However, the bonding between these particles or grains is
relatively weak, indicating that they are not tightly bound together. Fragments are coated by or
associated with organic compounds. These organic moieties interact with the focused electron
beam, causing the particles to appear bright in the FESEM image. The brightness can be
attributed to the scattering or emission of electrons from the organic molecules upon electron
beam interaction [48]. After calcination at a high temperature under an inert atmosphere,
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with a low rate of rising temperature, the indium oxide material exhibits a specific growth
pattern characterized by well-ordered and structured growth in addition to the presence of
voids or channels within the material. Figure 4d–f show the observed behavior of the particles
after the calcination process, indicating that the particles of indium oxide remain connected to
each other, forming a continuous structure or network. This connectivity is maintained even
during the gas elaboration process, which suggests that the particles have a strong tendency to
adhere or bond together due to strong interparticle bonding or cohesion with each other. The
calcination created constructed chips of indium oxide as building blocks with large, connected
sponge-like structures with semi-circular gaps like bee hives surrounding the whole body
of agglomerations. The creation of pores and holes between In2O3 NP agglomerations, as
shown in Figure 4g–i, may be a result of gas evolutions during calcination, and they may be
considered as attractive features for adsorption capacity and catalysis capabilities [49].
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Figure 4. SEM images of (a–c) precursor crystallite clusters (d–i) In2O3 NPs at different magnifications.

For interpretation of the absorption profile and optical characteristics of the NPs,
UV-visible absorbance spectra are necessary. The absorption band edge of In2O3-NPs was
seen in Figure 5a and corresponds to a band gap energy of 3.3 eV (Tauc plot) [50]. The
synthesized In2O3-NPs also showed an indirect band gap energy (Eg) at 1.9 eV (Figure 5b).
There is a remarkable change in the maximum wavelength and a decrease in the band gap
energy (3.3 and 1.9 eV) in comparison to the 3.6 and 2.2 eV for direct and indirect previously
obtained Eg [51], boosting its potential catalytic activity into the visible range and making
synthesized indium oxide nanoparticles suitable for optoelectronic applications with a
narrow gap such as light-emitting diodes (LEDs) and UV photodetectors [52,53].
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Dynamic light scattering (DL), shown in Figure 6a, depicts the zeta potentials of In2O3
at various pH levels. The dispersion stability of particles in colloids is indicated by the
zeta potential. The zeta potentials of the indium oxide were measured at 29.3, 52, −12.6,
−5.4, −5.9, and −17.2 mV at pH values of 2, 3, 4, 5, 6, and 7, respectively. The In2O3 zeta
potential decreased as the pH climbed from 2 to 8. At pH 2, the zeta potential was positive
at 29.3 mV, suggesting that the surface of indium oxide becomes positively charged in acidic
conditions. At pHs 3 and 4, zeta potentials were positive at 52 mV; these values indicate
that the surface charge is still predominantly positive but has increased in magnitude.
The decrease in positive charge at pH 4 might be due to a decrease in the protonation of
surface groups as the pH increases. The positive charge could arise from protonation of
surface hydroxyl groups or other acidic functional groups present during pH optimization
(1M NaOH and 1M HCl) on the surface. At pHs 5 and 6, zeta potentials were negative at
−5.4 mV and −5.9 mV, respectively. This suggests that the surface charge has shifted from
being predominantly positive to slightly negative. At these pH values, the hydroxyl groups
on the surface may undergo deprotonation, resulting in a negatively charged surface. The
zeta potential was more negative at −17.2 mV. This indicates a further increase in the
negative charge on the surface. At neutral pH, the surface hydroxyl groups are most likely
deprotonated, resulting in a greater proportion of negatively charged sites. These findings
indicate that particle aggregation will occur under acidic conditions. Above pH 4, the NPs’
surfaces will be negatively charged, so interaction with positively charged particles will be
more favorable. Nanoparticle aggregation state is a function of zeta potential values: if the
values decrease (approaching zero), the electrostatic repulsion decreases as well [53,54]. As
a result, the In2O3-NPs become more prone to aggregate, as the attractive forces between
them (van der Waals forces, for example) can overcome the weak repulsive forces. The zeta
potential of In2O3-NPs is often influenced by the pH of the surrounding medium. Acidic pH
values can lead to the smallest potential zeta values close to zero. At these pH conditions,
the surface chemistry of the nanoparticles may change, affecting the balance between
attractive and repulsive forces. The altered surface chemistry can contribute to enhanced
aggregation tendencies. In addition, potential zeta values close to zero can promote the
formation of bridges or connections between nanoparticles. Ions [Na+], [OH−], [NO3

−],
and [H+] in the surrounding medium can adsorb onto the nanoparticle surfaces, creating
bridges that bring particles closer together. These bridges can enhance the attractive forces
and facilitate the aggregation process [55].
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Figure 6. Particle size distribution and zeta potential of the In2O3-NPs.

Figure 6b shows the particle size distribution of In2O3-NPs agglomerations and clus-
ters in aqueous media, with an average size around 280 nm.

3.2. Effect of pH, Time, and Terbium Concentration on Adsorbents’ Removal Efficiency

Due to its influence on the chemical speciation of the metal ions in the solution and the
ionization of functional groups on the adsorbent surface, the pH is a crucial factor in the
adsorption process [54]. To assess the effect of the pH on terbium ion removal, experiments
were performed at pH values in the range of 2.0–7.0. At pH 2.0, for both adsorbents, the
efficiency of terbium ions removal was low: 2.8% for In2O3-NPs and 20.5% for spirulina
biomass (Figure 7a). Low adsorption can be explained by the competition of hydrogen
ions with terbium ions for binding sites on the surface of adsorbents [55]. An increase
in the pH facilitated terbium ion removal, and in the case of In2O3-NPs at a pH range of
4.0–7.0, removal efficiency reached 98–99%. The high efficiency of terbium removal at the
mentioned pH values can be associated with its ions binding to OH groups. Following
the addition of OH groups to the solution (in the present study due to use of NaOH),
cationic [Tb(OH)(H2O)7]2+, [Tb(OH)2(H2O)6]+, and neutral [Tb(OH)3(H2O)5] hydroxo
complexes can be formed. Thus, it can be suggested that In2O3-NPs adsorb terbium that
is present in the solution as cationic or neutral hydroxo complexes [56]. It has previously
been reported that hydrolyzed cationic and even neutral complexes of REEs are priority
species for sorption on zeolites and linoptilolites [56]. In the case of spirulina biomass,
a maximum terbium removal of 66% was attained at pH 3.0, when the biomass surface
became negatively charged (Figure 1), leading to an enhanced adsorption. The obtained
results are in line with other research studying the adsorption of REEs onto spirulina
biomass [57]. A further increase in the pH values resulted firstly in the slight decrease in the
terbium removal at pH 4.0 (57%), and then, it was significantly reduced and at pH 6.0–7.0
amounted only to 17%. Terbium, as other REEs, exists in the form Tb3+ at pH < 4.0, while
at higher pH values, their species including Tb(OH)2

+ and Tb(OH)3 are formed [58]. The
decrease in terbium removal at pH > 4 can be associated with the increase in the hydroxide
ligands due to the use of NaOH for the adjustment of pH, which resulted in the formation
of terbium species for which spirulina biomass possesses a low adsorption capacity. Thus,
it can be suggested that different mechanisms are involved in terbium adsorption for the
two studied adsorbents.

A pH of 8.5 was found to be optimal for terbium removal via Transcarpathian clinop-
tilolite [56]. Maximum terbium removal using 1-(2-pyridylazo)-2-naphthol (PAN)-doped
hybrid silica was attained at pH 4.0 [59], via Ca(II)-modified garlic peels at pH 3.5 [60], and
via activated carbon at pH 5.0 [61]. Thus, the subsequent adsorption experiments were
carried out at pH 4.0 for In2O3-NPs and pH 3.0 for spirulina biomass.
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The effect of contact time on removal was studied in order to define the equilibrium
point at which the maximum adsorption capacity could be achieved and to explain the
kinetics of the process [62]. The influence of the time on the removal of terbium ions is
illustrated in Figure 7b. For both adsorbents, the removal efficiency sharply increased in the
first 3 min of sorbent interaction with the sorbate, reaching 74% removal for In2O3-NPs and
60% for spirulina biomass. The fast adsorption in the first minute of interaction becomes
almost insignificant in the next 120 min of reaction, and so, equilibrium was attained in a
very short time, a fact that is very important for the industrial applications of adsorbents.
The enhanced sorption of terbium in the rapid phase of interaction can be explained by the
availability of a large number of well-aligned binding sites on the adsorbents surface, and
their saturation leads to the establishment of equilibrium [63].

With the increase in the initial concentration of terbium from 10 to 100 mg/L, the
amount of elements adsorbed increased from 5.7 to 85.8 mg/g for spirulina biomass and
from 9.4 to 60 mg/g for In2O3-NPs (Figure 7c). The increase in terbium adsorption with
the increase in its ion concentration is explained by a more frequent interaction between
metal ions and adsorbents [64].

3.3. Equilibrium and Kinetics of the Terbium Adsorption Process

Langmuir, Freundlich, and Temkin isotherm models were applied to describe the
adsorption equilibrium. The Langmuir model assumes monolayer adsorption onto a
surface with a finite number of identical sites and is expressed by Equation (6) [27]:

qm =
qm bCe

1 + bCe
(6)
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The Freundlich isotherm model, which is empirical in nature, is applied to describe
adsorption on heterogeneous surfaces [65]:

qm = KFCe
1
n (7)

The Temkin isotherm model assumes that during sorbent interaction with sorbate,
the adsorption heat of all molecules in the layer decreases linearly with coverage due
to adsorbent–adsorbate interactions, and that adsorption is characterized by a uniform
distribution of binding energies [25,66], Equation (8):

qe =
RT
bT

ln(aTCe) (8)

B =
RT
b

Langmuir constants qm (mg/g) and b (L/mg) relate to the energy of adsorption and
maximum adsorption capacity, respectively; KF (mg/g) and n are Freundlich constants which
correspond to adsorption capacity and adsorption intensity, respectively; bT (J/mol) is the
Temkin constant related to the heat of adsorption, aT (L/g) is the constant of equilibrium
binding, R is the universal gas constant (8.314 J K−1 mol−1), and T is the temperature (K).

The non-linear equilibrium models’ plots are shown in Figure 8, while the equilibrium
models’ constants and correlation coefficients are presented in Table 2.
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Table 2. The constants and correlation coefficients of the adsorption isotherms, applied to describe
terbium adsorption.

Langmuir Freundlich Temkin

qm, mg/g b, L/mg R2 Kf, mg/g n R2 aT, L/g bT, J/mol R2

In2O3-NPs 94.7 ± 13.6 0.01 ± 0.004 0.98 3.69 ± 0.3 1.66 ± 0.24 0.95 0.14 ± 0.02 116.7 ± 8.8 0.97

S. platensis 212 ± 35 0.004 ± 0.008 0.81 0.03 ± 0.003 0.59 ± 0.06 0.97 0.072 ± 0.02 82.1 ± 22.3 0.73

According to the correlation coefficient values, the Langmuir model was the most ap-
plicable for the explanation of the terbium adsorption onto In2O3-NPs. The model suggests
that once a site is occupied, no more sorption can occur there [65]. In the case of spirulina
biomass, terbium adsorption obeys the Freundlich model with R2 = 0.97. That model, which
is applicable to the description of adsorption on heterogeneous surfaces, assumes that once
the sorption centers are saturated, the sorption energy will rapidly decline [67]. The n value
for In2O3-NPs was higher than 1.0, indicating favorable conditions for sorption, while for
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spirulina biomass, the value was lower than 1.0, which implies that the adsorption process
is related to a chemical process [65]. The highest values of qm amounted to 94.7 mg/g for
In2O3-NPs and 212 mg/g for spirulina biomass. For both adsorbents, the experimentally
obtained adsorption capacity was lower than values obtained theoretically, suggesting that
the surface of the adsorbents during terbium ions adsorption was not fully covered [68].
Based on the correlation coefficient values, the Temkin model also fit with the adsorption
of terbium ions into In2O3-NPs. Thus, electrostatic interaction is one of the mechanisms of
terbium adsorption onto nanoadsorbents [69]. The Temkin constant (b) values related to
the heat of adsorption constituted 21 kJ/mol for In2O3-NPs and 30 kJ/mol for spirulina
biomass. The maximum binding energy for In2O3-NPs was two times higher than for the
spirulina biomass (Table 2). It is known that the typical range of bonding energy for an
ion-exchange mechanism is 8–16 kJ/mol [64].

The maximum adsorption capacity computed from the Langmuir model was com-
pared with values reported in the literature for other types of adsorbents (Table 3). Values
obtained in the present study are among the highest.

Table 3. Maximum sorption capacity obtained for analyzed adsorbents compared with data from the
literature.

Sorbent q, mg/g Reference

Spirulina platensis 212 Present work
In2O3-NPs 94.7 Present work

natural clinoptilolite 1.67–3.85 [56]
1-(2-pyridylazo)-2-naphthol (PAN)-doped hybrid silica 123.6 [59]

Ca(II)-modified garlic peels 0.06 µg/g [60]
Activated Carbon 14.9 [61]

In order to explain the adsorption process, Lagergren’s pseudo-first-order and pseudo-
second-order models and the Elovich kinetic model were applied. The pseudo-first-order
model suggests one-site-occupancy adsorption [68]:

qt = qe

(
1 − e−k1t

)
(9)

The pseudo-second-order model is suitable for the description of the chemical adsorp-
tion, which involves a chemical adsorption between the negatively charged surface and
metal ions:

q =
q2

ek2t
1 + qek2t

(10)

The Elovich model is used to describe chemical adsorption on heterogeneous surfaces.
The model assumes that the rate of biosorption decreases exponentially with an increase in
the amount of adsorbate [70]:

qt =
1
β

ln(1 + αβt) (11)

where qt is the amount of adsorbed metal (mg/g) at time t, (mg/g); k1 (1/min) is the rate
constant of the first-order adsorption; k2 (g/mg·min) is the rate constant of the second-order
adsorption; and α (g/mg·min) and β (g/mg) are Elovich model constants representing the
initial reaction rate and desorption energy obtained from the Elovich equation, respectively.

The non-linear fitting of the experimental results is presented in Figure 9. Experimen-
tally calculated adsorption parameters and correlation coefficients are listed in Table 4.
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Figure 9. Adsorption kinetics applied to explain terbium ions adsorption onto In2O3-NPs and
spirulina biomass (Ci,Tb 10 mg/L, temperature 22 ◦C, adsorbent dosage 0.1 g).

Table 4. The constants and correlation coefficients of the kinetic models.

Pseudo-First-Order Pseudo-Second-Order Elovich

qe, mg/g k1, 1/min R2 qe, mg/g k2, g/mg·min R2 α, g/mg·min B, g/mg R2

In2O3 7.27 ± 0.03 0.96 ± 0.07 0.97 7.32 ± 0.05 0.78 ± 0.24 0.99 2.64 × 1038 ± 1.50 × 1034 13.0 ± 8.03 0.99

S. platensis 5.23 ± 0.11 6.5 ± 0.07 0.98 5.23 ± 0.11 0.75±0.17 0.98 2.22 × 1043 ± 1.73 × 1040 20.3 ± 4.8 0.97

According to the correlation coefficient values, the pseudo-second-order and Elovich
models were most applicable to describing terbium adsorption onto In2O3-NPs, suggesting
a chemical sorption [71]. It is suggested that the adsorption of terbium ions may consist
of two phases: first, terbium ions are transferred to the binding sites, and in the next
stage, the interaction via chemical complexation or ion exchange takes place [67]. In the
case of spirulina biomass, the pseudo-first-order and pseudo-second-order models were
adequate for describing terbium removal. A good correlation between experimental and
calculated adsorption capacity was obtained for both models. The applicability of the
pseudo-first-order model shows that, for terbium ions, adsorption onto spirulina biomass
occurs exclusively onto one site per ion, while the pseudo-second-order model indicates
that the sorption is chemical in nature [72].

3.4. Mechanism of Terbium Ions Adsorption

FTIR spectra of adsorbents were analyzed before and after the adsorption of terbium
ions in order to reveal the involvement of functional groups in the ions’ removal. In the
spectrum of In2O3-NPs (Figure 10a), peaks positioned at the wavenumbers 601, 562, and
532 cm−1, which correspond to In-coordinated oxygen (In-O), indium-to-indium stretching
(In-In), and the stretching manner of the two atoms of indium when mutually coordinated
with oxygen (In-O-In), respectively, were observed [73]. It can be clearly seen that the
intensity of the bands at 3180−3500 cm−1, which correspond to the stretching vibration of
hydrogen bonds due to the abundance of hydroxyl groups of moisture that are adsorbed at
the In2O3-NPs’ surface, was greatly reduced after terbium adsorption [41,74]. In the case of
the In2O3-NPs’ spectrum after terbium adsorption, a new band at 840 cm−1 can be classified
as a satellite peak that appears on the low wavenumber side of the main In-O stretching
band at 870 cm−1. The band may arise due to the presence of defects, impurities, or other
structural variations in the In2O3 lattice, which can affect the bonding and symmetry of the
In-O units due to adsorption collisions and Tb+3 agglutinations [41,74,75].
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Figure 10. FTIR spectra of (a) In2O3-NPs and (b) spirulina biomass before and after terbium ions
adsorption.

In the spectrum of control for spirulina biomass (Figure 10b), the band at 3280 cm−1 is
assigned to the stretching of O-H groups and the one at 2920 and 2851cm−1 to asymmetric
C-H stretching. The band at 1640 cm−1 could be assigned to C=O, present in the lipids
of A platensis [76]. The strong band at 1541 cm−1 is attributed to the N-H bending of
amide groups that are present in cyanobacteria [77]. The shoulder at 1450 and the band at
1390 cm−1 could be assigned to sulfates groups, while the band at 1236 cm−1 is assigned
to the C-N vibrations. The band at 1022 cm−1 could be assigned to the C-O stretching
of carbohydrates or lipids as well as to the P-O bonds of phosphates groups [78]. In
Tb-loaded spirulina biomass, the intensities of the bands corresponding to all function
groups have been diminished, which can be associated with the terbium ion binding to
functional groups, which results in the occurrence of bond stretching to a lesser degree [79].
Ion-exchange is another possible mechanism of terbium ions adsorption onto spirulina
biomass. Thus, it was shown previously that Dy adsorption onto spirulina biomass was
accompanied by the decrease in content of Mg, Ca, Cl, and Mn in the biomass [80].

4. Conclusions

The nanoadsorbent In2O3 and the biological sorbent Arthrospira platensis showed
high adsorption capacity for terbium ions removal. A maximum terbium removal of
98–99% using In2O3 NPs was attained at pH range 4.0–6.0, while the spirulina biomass
achieved better removal of metal ions at pH 3.0 (66%). For both adsorbents, terbium
removal was a two-step process, with maximum removal in the first 3 min of interaction
and rapid achievement of equilibrium. Terbium adsorption onto In2O3 NPs was best
described applying the Langmuir model, while the Freundlich model was more applicable
for spirulina biomass. The maximum theoretical adsorption capacity of spirulina biomass
(212 mg/g) exceeds the value obtained for In2O3 NPs (94.3 mg/g). The kinetics of terbium
adsorption onto In2O3 NPs fit the pseudo-second-order and Elovich models, while for
spirulina biomass, it fit the pseudo-second-order and pseudo-first-order models. The
applicability of the aforementioned models indicates a significant role of chemisorption in
the removal of terbium ions, and the results of FTIR analysis support this interpretation.
The studied adsorbents have good potential for the recovery of terbium ions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13192698/s1, Figure S1: D-spacing analysis of indium oxide
nanoparticles attached to reference card (01-089-4595); Figure S2: Comparative peak list (2θ) of syn-
thesized In2O3-NPs (orange color) related to standard In2O3 reference card (01-089-4595) (blue color);
Table S1: D-spacing analysis of indium oxide nanoparticles. Figure S3. Comparative peak list (2θ) of
synthesized precursor (orange color) related to standard different references cards. Supplementary
File S1: the raw data of zeta potential measurements.
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