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Abstract: Micro- and nanoplastics are emerging pollutants with a concerning persistence in the
environment. Research into their environmental impact requires addressing challenges related to
sensitively and selectively detecting them in complex ecological media. One solution with great
potential for alleviating these issues is using radiolabeling strategies. Here, we report the successful
introduction of a 64Cu radiotracer into common microplastics, namely polyethylene, polyethylene
terephthalate, polystyrene, polyamide, and polyvinylidene dichloride, which allows the sensitive
detection of mere nanograms of substance. Utilizing a Hansen Solubility Parameter screening, we
developed a swelling and in-diffusion process for tetraphenylporphyrin-complexed 64Cu, which
permits one-pot labeling of polymer particles.
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1. Introduction

Micro- and nanoplastics, i.e., plastic particles with a diameter of below 5 mm, are
emerging pollutants caused by the anthropogenic use of synthetic polymer-based materi-
als [1]. Since the 1970s, they have been found in marine environments, such as water and
beaches. Today, they are common pollutants in water and soils worldwide [2–4]. Anthro-
pogenic microplastic emissions originate from their intentional use in plastic products or
result from the fragmentation of macroplastics during their use phase or in the environment.
In Germany, microplastic emissions have been estimated at 330,000 tonnes per year or
4000 g per year per capita, with an expected increase due to rising production [5,6].

Research into the environmental fate of micro-/nanoplastics must overcome signifi-
cant challenges in detecting their presence in complex ecological compartments, including
water, soil, and organisms [7–9]. Techniques such as Raman and IR spectroscopy [10,11],
mass spectrometry [12], and various spectroscopic microscopy techniques [13–15] are uti-
lized for these plastics’ detection and analysis. However, the process of detecting particles
often demands intensive preparation, including sampling, extraction, size separation, and
purification, before analysis and quantification are viable [15,16]. Additionally, natural
carbon backgrounds and artificial plastic contamination introduced during sample han-
dling create further obstacles to their analysis [17,18]. Labeling the particles of interest
for laboratory experiments is an approach that has proven useful in overcoming these
setbacks. Fluorescence labeling offers a straightforward approach to detecting micro- and
nanoplastics in organisms and cells [19]. This technique provides valuable insights into
the potential toxic mechanisms and fates of micro- and nanoplastics in organisms [20,21].
Fluorescence-labeled plastic particles are commercially available and can be produced us-
ing appropriate staining methods [22–25]. Other labeling methods include tracking metals
or nanoparticles introduced into the plastics during synthesis or substances adsorbed onto
the plastic materials [26–30]. An additional powerful labeling technique is the use of radio-
tracers, which offer distinct detection and quantification possibilities [31]. For inorganic
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nanoparticles, radiotracers have been utilized to demonstrate and quantify particle uptake
into plants, investigate the uptake mechanisms of nanoparticles into organisms, etc. [32,33].
Here, the radiotracer can be introduced easily during particle synthesis or via activation
and in-diffusion techniques [34]. The radiolabel produces a radiation signal that can be
readily detected outside of the sample, allowing sensitive, selective detection independent
of the matrix and elemental or particle backgrounds. Excessive sample preparation is
not necessary. For plastic particles, satisfactory radiotracing is difficult due to the lack
of appropriate radiotracers for organic materials (the default radiotracers for organics,
such as 3H and 14C, often provide little benefit over other labeling techniques, since the
sample largely absorbs their low energy radiation) and more complicated organic synthesis
strategies [35]. Routines exist to bind complexed radiometals to the particle surface [36].
However, this process may affect the properties of the particle surface. Here, we propose a
facile in-diffusion route for radiolabeling plastics adapted from fluorescent dye labeling [37].
This technique enables the introduction of complexed radiometals into various different
types of common plastic particles. Fluorescent dyes can be introduced into plastics via
a swelling and in-diffusion mechanism comprising four fundamental steps (see Figure 1
I–IV) [38]. Firstly, the microplastics are brought into a mixture of water, a suitable solvent,
and the dye (I). Secondly, the plastics swell based on the affinity of the solvent with the
plastics, and the dye adsorbs onto the particle surface based on its affinity with the hy-
drophobic plastic matrix (II). Thirdly, the dye molecules diffuse into the particles governed
by the sorption/desorption equilibrium and the affinity of the dye with the solvent-swollen
plastic matrix, as opposed to the aqueous surrounding (III). The size of the dye molecules
and the flexibility of the polymer matrix control the diffusive transport process. The matrix
effects are determined by the mesh size/entanglement of the polymer strands and the
glass transition temperature of the plastic particles. Finally, the dye will be trapped in
the de-swollen particles after removing the solvent in a straightforward one-pot labeling
routine (IV).
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Figure 1. Principal steps in the labeling process of plastic particles (grey) with fluorescent dye/radio-
metal carrier (red) in a water (blue)/solvent (green) mixture: (I) a particle in water/solvent/dye
mixture, (II) a particle swelling with solvent and the sorption of the dyes/carriers onto the particle
surface, (III) the diffusion of the dye/carrier molecules into the solvent-swollen polymer matrix, and
(IV) the entrapment of dye/carrier molecules in the particles upon the removal of the solvent.

We investigate all of the controlling factors mentioned above. Solvent selection is
guided through a Hansen Solubility Parameter (HSP) screening [39], while dye/carrier
selection is guided through a hydrophobicity screening. The insights are used to achieve
the radiolabeling of common micro- and nanoplastics [40] with 64Cu complexed by the
porphyrin-derivative tetraphenylporphyrin (TPP), for the easy detection of nanograms of
plastics [41].

2. Materials and Methods
2.1. Materials

An assortment of plastics was selected to represent typical micro- and nanoplastic
types, including polyolefins, polyesters, and polyamides, featuring assorted structural
motives (see Figure S1 for structures) [1]. The microplastics polyethylene (PE), polyethy-
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lene terephthalate (PET), polyvinylidene dichloride (PVDC), and polyamide (Nylon 12,
PA) were procured from Goodfellow (Hamburg, Germany) as dry powders. Polystyrene
(PS) nanoplastic particles (100 nm particle size standard) were obtained in the form of an
aqueous suspension from Thermo Scientific (Bremen, Germany). The fluorescent dyes
acridine orange (hydrochloride), rhodamine 6G, rhodamine B, fluorescein (disodium salt),
and eosinY (disodium salt) were purchased from Magnacol Ltd. (Newtown, UK) (see
Figure S2 for structures). The porphyrin derivatives TPP, copper(II), vanadate, and zinc
tetraphenylporhyrins (Cu-TPP, V-TPP, Zn-TPP), along with tetrahydrofuran (THF), ethanol,
1-octanol, pluronic surfactant, and Cu(OAc)2, were acquired from Sigma Aldrich (Darm-
stadt, Germany). All chemicals were used as received. 64Cu was produced at the in-house
cyclotron at the HZDR Research Site Leipzig [42].

2.2. Methods
2.2.1. Characterization Methods

The particles were characterized for size, morphology, and surface texture via light
microscopy using a DM-EP microscope (Leica Microsystems, Wetzlar, Germany) equipped
with a Progres Gryphax camera (Jenoptik AG, Jena, Germany) and via scanning electron
microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) using an ITM200 SEM
(JEOL, Akishima, Japan). Prior to SEM imaging, the particles received an Au/Pd (60/40)
coating using a Quorum Q150TS sputter coater (Quantum-Design, Darmstadt, Germany).
Size distribution data were obtained from the recorded images using the ImageJ software
(version 1.53t). The PS 100 nm size standard particles were characterized via dynamic light
scattering (DLS) using a Malvern Zetasizer nano (Malvern Panalytical, Malvern, UK). The
UV/Vis spectra of the fluorescent dyes and TPP derivatives were recorded using a Lambda
25 UV/Vis spectrometer (Perkin Elmer, Waltham, MA, USA). The fluorescence spectra were
recorded using a FluoTime 300 fluoro-meter (PicoQuant, Berlin, Germany).

2.2.2. Water–Octanol Partition Coefficient Measurements

To determine the water–octanol partition coefficient KOW, 100 µL of an aqueous
solution containing 2 mg/mL of dye was added to a two-phase system composed of 1.9 mL
of deionized (DI) water and 2 mL of octanol. After being agitated for 15 min using a KS
260 basic orbital shaker (IKA-Werke, Staufen, Germany), the absorbance of dye in the
water phase AW was measured at the peak maximum through UV/Vis spectroscopy and
compared to the absorbance Aref of a 1.9 mL single-phase aqueous reference sample with
the addition of 100 µL of dye solution. The water–octanol partition coefficient was then
calculated as follows:

KOW =
CO
CW

=
Are f − AW

AW
(1)

2.2.3. Swelling/De-Swelling Test

The swelling behavior of the different plastics and its reversibility was tested by
dispersing 1 mg of particles (PE, PA, PVDC, PET) or 10 µL of particle dispersion (100 µg
of particles, PS) in water containing 2 wt% pluronic surfactant via sonication using a
Sonoplus HD3200 ultrasonic homogenizer equipped with a BR30 resonance cup (2 min,
90% amplitude; Bandelin, Berlin, Germany). A settling step of 5 min was then used
to remove the largest particles of the polydisperse samples from the suspension. Size
measurements were conducted in quartz cuvettes using DLS to characterize the pristine
particles. Subsequently, THF was added to produce a mixture of THF and DI water
with a proportion of 1:9 (by volume). DLS size measurement was performed after 5 min
of treatment and 5 min of settling to observe the particle swelling. According to the
literature, for the DLS measurements taken at 20 ◦C, the viscosity and refractive index
values for the THF/water mixture were set at 1.242 mPas and 1.3377, respectively (see
Figure S3) [43]. Following this step, vacuum suction was used to remove the THF, and a
final DLS measurement was taken to check if the swelling was reversible. While none of
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the samples were monodisperse (apart from PS), this methodology facilitated reproducible
z-average size measurements.

2.2.4. Fluorescent Dye Labeling

For fluorescent dye labeling, 150 mg of particles (PE, PA, PVDC, PET) or 200 µL of
particle dispersion (2 mg of particles, PS) were treated with 400 µL of mixtures composed
of THF and DI water with varying THF contents, along with 1 mg/L of dye and 2 wt%
pluronic surfactant. After 20 min of shaking, the samples were left open overnight to allow
the THF to evaporate (see Figure 2). After this process, DI water was added to the samples
to achieve a volume of one milliliter. The samples underwent sonication for 2 min and
were centrifuged using an Eppendorf MiniSpin® centrifuge (15 min, 14,100× g; Eppendorf
SE, Hamburg, Germany). Subsequently, the dye concentration in the supernatant was
measured using UV/Vis spectroscopy to determine the labeling yield via comparison with
a reference sample. Four rounds of washing using fresh DI water were performed in a
similar manner. Successful fluorescence labeling was confirmed through the use of an
Olympus BX-61 fluorescence microscope (Olympus, Hamburg, Germany).

Nanomaterials 2023, 12, x FOR PEER REVIEW 4 of 20 
 

 

were conducted in quartz cuvettes using DLS to characterize the pristine particles. Subse-

quently, THF was added to produce a mixture of THF and DI water with a proportion of 

1:9 (by volume). DLS size measurement was performed after 5 minutes of treatment and 

5 minutes of settling to observe the particle swelling. According to the literature, for the 

DLS measurements taken at 20 °C, the viscosity and refractive index values for the 

THF/water mixture were set at 1.242 mPas and 1.3377, respectively (see Figure S3) [43]. 

Following this step, vacuum suction was used to remove the THF, and a final DLS meas-

urement was taken to check if the swelling was reversible. While none of the samples were 

monodisperse (apart from PS), this methodology facilitated reproducible z-average size 

measurements. 

 

2.2.4. Fluorescent Dye Labeling 

For fluorescent dye labeling, 150 mg of particles (PE, PA, PVDC, PET) or 200 µL of 

particle dispersion (2 mg of particles, PS) were treated with 400 µL of mixtures composed 

of THF and DI water with varying THF contents, along with 1 mg/L of dye and 2 wt% 

pluronic surfactant. After 20 min of shaking, the samples were left open overnight to allow 

the THF to evaporate (see Figure 2). After this process, DI water was added to the samples 

to achieve a volume of one milliliter. The samples underwent sonication for 2 minutes and 

were centrifuged using an Eppendorf MiniSpin®  centrifuge (15 minutes, 14,100 x g; Ep-

pendorf SE, Hamburg, Germany). Subsequently, the dye concentration in the supernatant 

was measured using UV/Vis spectroscopy to determine the labeling yield via comparison 

with a reference sample. Four rounds of washing using fresh DI water were performed in 

a similar manner. Successful fluorescence labeling was confirmed through the use of an 

Olympus BX-61 fluorescence microscope (Olympus, Hamburg, Germany). 

 

Figure 2. Scheme of labeling procedure. A solution of dye (pink) in THF (green) and water (blue) is 

added to plastic particles (grey) with the addition of surfactant as a stabilizer. During an agitation 

step, the particles undergo swelling, and the dye diffuses into the particles. Subsequently, the THF 

is evaporated, leaving the de-swollen labeled particles in an aqueous suspension. 

2.2.5. 64Cu Production 

64Cu was generated via the proton activation of a 64Ni enriched Ni-layer produced via 

electrodeposition at the in-house cyclotron [42, 44]. The Ni was deposited onto a gold disc 

from a 0.22 M (NH4)2SO4 solution at pH 9, using a voltage of 2.60 V and a current of 25 

mA [45]. The target was covered with a 100 µm thick aluminum foil and irradiated with 

12 MeV protons for ~80 μAh using the Leipzig cyclotron Cyclone®  18/9 equipped with a 

COSTIS®  solid target system (IBA Molecular, Louvain-la-Neuve, Belgium) to induce the 
64Ni(p,n)64Cu nuclear reaction. The 64Cu was isolated from the target material via the dis-

solution of the target in 12.5 M HCl. This mixture was then evaporated until dry and re-

dissolved in 6 M HCl. Ion exchange chromatography using AG®  1-X8 resin (Bio-Rad La-

boratories GmbH, Feldkirchen, Germany) was then performed to separate the 64Cu. Sub-

sequently, the 64Cu was eluted from the column using 0.1 M HCl, and the resulting solu-

tion was evaporated in a 1.5 mL glass crimp vial. 

Figure 2. Scheme of labeling procedure. A solution of dye (pink) in THF (green) and water (blue) is
added to plastic particles (grey) with the addition of surfactant as a stabilizer. During an agitation
step, the particles undergo swelling, and the dye diffuses into the particles. Subsequently, the THF is
evaporated, leaving the de-swollen labeled particles in an aqueous suspension.

2.2.5. 64Cu Production
64Cu was generated via the proton activation of a 64Ni enriched Ni-layer produced

via electrodeposition at the in-house cyclotron [42,44]. The Ni was deposited onto a gold
disc from a 0.22 M (NH4)2SO4 solution at pH 9, using a voltage of 2.60 V and a current
of 25 mA [45]. The target was covered with a 100 µm thick aluminum foil and irradiated
with 12 MeV protons for ~80 µAh using the Leipzig cyclotron Cyclone® 18/9 equipped
with a COSTIS® solid target system (IBA Molecular, Louvain-la-Neuve, Belgium) to induce
the 64Ni(p,n)64Cu nuclear reaction. The 64Cu was isolated from the target material via the
dissolution of the target in 12.5 M HCl. This mixture was then evaporated until dry and
re-dissolved in 6 M HCl. Ion exchange chromatography using AG® 1-X8 resin (Bio-Rad
Laboratories GmbH, Feldkirchen, Germany) was then performed to separate the 64Cu.
Subsequently, the 64Cu was eluted from the column using 0.1 M HCl, and the resulting
solution was evaporated in a 1.5 mL glass crimp vial.

2.2.6. Production of Cu-TPP and [64Cu]-TPP

The complexation of copper was performed according to a procedure adapted from
Fagadar-Cosma et al. [46]. In a 1.5 mL glass crimp vial, a blend of Cu(II)acetate and TPP
(0.2 µmol, each) in 1 mL of ethanol underwent reflux at 85 ◦C for six hours using a Heidolph
MR Hei-Standard hot plate (Heidolph Instruments, Kelheim, Germany) equipped with an alu-
minum heating block. Successful complexation was confirmed through UV/Vis spectroscopy
by comparing the spectrum to the spectrum of a reference sample of commercial Cu-TPP.
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The complexation of 64Cu was achieved via an adapted procedure. An amount of
0.4 µmol TPP in 250 µL THF was added to the dry [64Cu]CuCl2 precipitate, obtained as
described above. The activity was 3.25 MBq 64Cu, corresponding to 356 fmol 64Cu. The
mixture was refluxed at 75 ◦C for 3 h in a 1.5 mL glass crimp vial. Successful complexation
was confirmed by adding 10 µL of the reaction mixture to a 250 µL:250 µL two-phase
mixture of octanol and water. After 15 min of mixing, a microliter syringe was used to
sample 100 µL of each phase, and the 64Cu activity was measured with a WIZARD 3′′ 1480
automatic gamma counter (Perkin Elmer, Waltham, MA, USA).

2.2.7. 64Cu Plastics Labeling

To label plastics with 64Cu, 25 mg of particles (PE, PA, PVDC, PET) or 100 µL of
particle dispersion (1 mg of particles, PS) was treated with 300 µL of a 1:1 (PE, PET, PS)
or 1:9 (PA, PVDC) mixture of THF:DI water with 500 kBq [64Cu]-TPP directly added from
the complexation reaction mixture. The samples were agitated for 20 min and left open
overnight for the THF to evaporate. To determine radiolabeling yields, DI water was added
to the samples to achieve a final volume of 1 mL. Afterward, the samples were sonicated for
2 min and centrifuged using an Eppendorf MiniSpin® centrifuge (15 min, 14,100× g). The
activity in the supernatant was checked using an automatic gamma counter. This washing
procedure was performed two times. Similarly, 1 mL of DI water was added to the particle
samples for radiolabel stability tests. The samples were left overnight, and the activity in
the supernatant was checked the following day after centrifugation.

3. Results
3.1. System Component Characterization
3.1.1. Particle Characterization

The size, morphology, and surface texture of the particles were analyzed using light
microscopy and scanning electron microscopy (see Figures S4 and S5). Except for the
PS size standard, the samples had broad size distributions and were slightly to highly
poly-disperse (see Table 1 and Figure S6). However, the surface textures observed in SEM
and EDX spectra were similar between particles of different size fractions, proving the
compositional uniformity of the samples (see Figure S7). PE and PA consist of white
powders containing mostly spherical to slightly oval particles with relatively narrow size
distributions in the tens of micrometers range, displaying a surface texture of rounded
features. PVDC consists of a pale yellow powder containing irregularly shaped particles
with a very wide size distribution. Most particles were approximately 100 µm in size,
with a surface texture characterized by rounded features. PET presents itself as a white
powder composed of unevenly shaped fragments. These fragments vary in size, spanning
hundreds of micrometers. The surface texture contains sharp edges.

Table 1. Plastic particle sizes measured via light microscopy and DLS (see also Figure S6) and polymer
glass transition temperatures Tg from [47].

Material Median Size
[µm]

Average Size
[µm]

Std. Dev.
[µm]

Std. Dev.
[%]

Tg
[◦C]

PE
PS

PET
PVDC

PA

42.58
0.1078
197.4
84.10
31.07

41.96
0.1078
208.7
91.97
32.72

14.95
0.0003
89.76
63.18
6.99

35.6
0.3

43.0
68.7
21.4

−130 . . . −100
80 . . . 105
70 . . . 85
−18 . . . 15
40 . . . 50

3.1.2. Dye Characterization

To gain a deeper understanding of the dye incorporation mechanism and labeling
efficiency, we performed experiments using widely used fluorescent dyes, namely acridine
orange, rhodamine 6G, rhodamine B, fluorescein, and eosin Y [48–50]. UV/Vis and fluores-
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cence spectra in water were recorded, and the molar volumes of the dyes were calculated
using the molar mass and density of the substances (see Table 2 and Figure S8).

Table 2. Structural data, UV/Vis/fluorescence spectral data (n.d. = not determined), and octanol–
water partition coefficients of fluorescent dyes used.

Dye Molar Mass
[g/mol]

Density
[g/mL]

Molar Volume
[mL/mol]

Peak Maximum
λA/λE [nm]

Extinction Coefficient
[L/molcm] log KOW

acridine orange
rhodamine 6G
rhodamine B
fluorescein

eosin
TPP

308.81
479.02
479.02
376.28
698.86
614.74

1.001
1.260
1.310
1.601
1.018
1.270

308.5
380.2
365.7
235.0
685.5
485.0

492/530
526/550
555/574
489/514
516/538
440/n.d.

17753
83476
89191
33148
51347
n.d.

−0.38
0

1.6
<−3 *
−0.92
>10 *

* No measurable dye absorbance in the water or octanol phase.

The affinity balance of the dyes interacting with the polymer matrix and the aqueous
solution can be captured using the hydrophobicity of the dyes, which can be considered
a major influencing factor when it comes to the efficiency of the labeling process. Hence,
we first characterized the different dyes according to their hydrophobicity using the water–
octanol partition coefficient KOW [51]. Values for log KOW typically ranged from −3 (very
hydrophilic) to +10 (extremely lipophilic/hydrophobic). Our collection of dyes covers a
range from highly hydrophilic to amphiphilic to hydrophobic compounds (see Table 2). The
hydrophobicity of the dyes increased in the following order: fluorescein < eosin < acridine
orange < rhodamine 6G < rhodamine B (see Figure 3 and Table 2). The TPPs utilized were
entirely hydrophobic.
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Figure 3. Image of octanol–water partitioning with samples ordered in sequence of increasing
hydrophobicity (log KOW).

3.1.3. Plastics Swelling Behavior

The swelling behavior of the plastics to be labeled is the second major influence on the
labeling efficiency. The plastic particles should be inert in water and swell with the solvent.
The solvent should be miscible with water and easily removed via gentle heating, vacuum
suction, or slow evaporation. For an optimum labeling process, a reversible swelling
behavior is recommended. The assessment of any expected swelling can be accomplished
using the Hansen Solubility Parameters [39,52]. They probe the compatibility of the plastic
matrix with a potential solvent based on the cohesion energy of the substances. Three
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contributions to the cohesion energy are considered: the dispersion forces, the dipolar
interaction forces, and hydrogen bonding. The contributions are parameterized using
three parameters, namely δd, δp, and δh, given in units of MPa

1
2 (for a detailed account,

see Hansen, 2000) [39]. The more similar the three parameters are for the polymer and
the solvent, the more likely the solvent will cause significant swelling, as “like dissolves
like”. The similarity is evaluated using the so-called HSP distance Ra, which is calculated
using the Hansen parameters for the solvent and polymer according to the following
formula [53,54]:

Ra =
√

4(δd,S − δd,P)
2 +

(
δp,S − δp,P

)2
+ (δh,S − δh,P)

2 (2)

The formula computes the distance between the interacting substances in the three-
dimensional Hansen space, which is defined by the three parameters δd, δp and δh. The
higher the HSP distance, the less likely the polymer is to dissolve/swell in the solvent.
For further evaluation, a sphere of good solvents in Hansen space can be experimentally
established around a center point defined by the parameters of the polymers. The sphere
has the interaction radius R0 in Hansen space. Good solvents, with Hansen parameters
close to the plastic in question and, consequently, low HSP distances Ra, fall within the
sphere. Bad solvents with high Ra values lie outside of the sphere. Solvents can be classified
using the Relative Energy Difference (RED) [55]:

RED =
Ra

R0
(3)

Good solvents, located inside of the sphere, are characterized by a RED < 1, while bad
solvents, located outside of the sphere, are characterized by a RED > 1.

We can identify tetrahydrofuran and dioxane as the most promising candidates using
the extensively tabulated literature HSP values for the used polymers and different common
water-miscible solvents (see Table 3) [39]. Ra ranges from 2.5 to 6.8 for these two solvents,
while the resulting RED is consistently below 1, ranging from 0.45 to 0.94, for all of the
polymers in question (see Table 4).

Table 3. Hansen Solubility Parameters * in MPa
1
2 for plastics and common water-miscible solvents,

as well as for octanol and rhodamine B.

Material δd δp δh R0

PE
PS
PET
PVDC
PA

17.67
19.46
18.43
18.12
17.5

5.27
6.30
6.30
8.08
5.3

3.25
4.12
7.30
5.66
10.1

7.63
7.24
4.93
9.56
5.5

THF
water
acetone
ethanol
DMF
DMSO
1-propanol
acetonitrile
1,4-dioxane
methanol
isopropanol
acetic acid

16.8
15.5
18.4
15.8
17.4
18.4
16

15.3
19

15.1
15.8
14.5

5.7
16

10.4
8.8

13.7
16.4
6.8
18
1.8
12.3
6.1
8

8
42.3

7
19.4
11.3
10.2
17.4
6.1
7.4

22.3
16.4
13.5

-
-
-
-
-
-
-
-
-
-
-
-

1-octanol
rhodamine B

17
17.8

3.3
4.3

11.9
6.2

-
-

* Tabulated values from [39] for plastics (see Figure S9) and solvents, as well as from [56] for rhodamine B; common
water-miscible solvents according to [57].
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Table 4. HSP distance Ra [MPa
1
2 ]/RED of plastics for different common water-miscible solvents and

octanol. RED < 1 defines good solvents, as indicated in bold/underlined.

Material PE PS PET PVDC PA

THF
water
acetone
ethanol
DMF
DMSO
1-propanol
acetonitrile
1,4-dioxane
methanol
isopropanol
acetic acid
1-octanol

5.08/0.67
40.73/5.34
6.52/0.85

16.95/2.22
11.67/1.53
13.20/1.73
14.62/1.92
13.88/1.82
6.03/0.79
20.95/2.75
13.70/1.80
12.36/1.62
8.98/1.18

6.61/0.91
40.18/5.55
5.44/0.75

17.12/2.36
11.10/1.53
11.98/1.65
14.98/2.07
14.49/2.00
5.64/0.78
21.03/2.91
14.29/1.97
13.75/1.90
9.68/1.34

3.39/0.69
36.79/7.46
4.11/0.83

13.43/2.72
8.66/1.76

10.51/2.13
11.22/2.27
13.33/2.70
4.64/0.94
17.48/3.54
10.52/2.13
10.16/1.35
6.19/1.26

2.56/0.46
34.17/6.21
6.23/1.13

10.50/1.91
8.49/1.54

11.25/2.04
8.03/1.46

14.02/2.55
5.34/0.97
14.46/2.70
7.20/1.31
7.41/1.35
2.87/0.52

4.26/0.45
37.85/3.96
2.74/0.29

14.52/1.52
8.09/0.85
9.49/0.99
12.55/1.31
11.42/1.19
6.75/0.71
18.20/1.9
11.87/1.24
10.67/1.12
8.17/1.03

Consequently, a series of swelling experiments were conducted with aqueous mixtures
containing varying levels of THF (in favor of the substance of high concern 1,4 dioxane [58]),
plus 2 wt% of pluronic surfactant, to ensure the dispersion of the particles [21,37]. Sampling
and microscopic size evaluation at the different stages (pristine, THF-swollen, and de-
swollen) showed a successful swelling for all particles. However, it was not feasible
to evaluate the process’s reversibility due to the high polydispersity of most samples.
Therefore, DLS measurements, singling out the nanosized particle fraction via controlled
settling, were used to evaluate the swelling behavior using 1:9 THF:DI water mixtures.
We observed a significant increase in particle diameter for all of our plastics, which was
reversed when removing the THF (see Figure 4). No changes in the morphology or surface
texture of the particles were detectable via SEM (see Figure S10). The relative increase in
diameter d/d0 inversely followed the RED values obtained from the HSP screening, with the
exception of PS. However, given that PS was the sole nanoplastic used and in a pre-made
suspension, a different concentration range and surface-to-volume ratio was used in this
experiment, which accounts for the discrepancy. The size increase due to swelling in THF
progresses in the order of PE < PET < PS < PVDC < PA.
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Figure 4. Swelling behavior of particles in 1:9 THF:DI water and de-swelling after THF removal,
quantified based on the relative particle diameter (d/d0) in relation to the starting diameter d0,
as measured via DLS before the addition of the THF (blue), after the addition of THF (red), and
after the removal of the THF (blue again) (error bars = standard deviation of five consecutive DLS
measurements).
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Further experiments with different THF concentrations revealed that increasing the
THF:DI water ratio to 1:1 was possible for all particles, except for PA and PVDC. PA and
PVDC exhibited irreversible swelling and the coalescence of the polymer particles into
large aggregates when the THF content was raised. This finding is consistent with the HSP
screening results, which identified THF as an effective solvent for these two materials, as
evidenced by the lowest RED values.

3.2. Fluorescent Dye Labeling of Micro-/Nanoplastics

For fluorescent dye labeling, plastic particles were exposed to dye dissolved in compat-
ible THF:DI water mixtures (1:1 for PE, PET, PS; 1:9 for PA, PVDC) while shaking for 20 min.
Afterward, the THF was allowed to evaporate overnight (see Figure 2). In a screening with
high dye concentration, all plastics were successfully labeled using any of the dyes (see
Figure 5).
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Figure 5. Powder samples of plastics labeled via high-dye-concentration screening tests under
ambient and UV light.

Lower dye concentrations revealed differences. Firstly, it should be noted that the yield
was not decreased due to the leaching of particle-incorporated dyes after four washing steps
following labeling. Dyes incorporated into particles during the labeling process appeared
to be stably bound. The achieved yields resulted from a complex interplay between various
influencing factors. Several trends can be identified from our dataset (see Figure 6).

The particles with the largest observed size expansions during swelling and lowest
RED values, i.e., PVDC and PA, incorporated all of the dyes with a yield close to 100%
(see Figure 6a). A clear hydrophobicity threshold can be identified for the other plastics,
most readily observed for PS. A notable yield increase is visible for dyes with a log KOW
value equal to and above that of acridine orange (see Figure 6c). The more hydrophilic
dyes, namely fluorescein and eosin, are not easily incorporated to a large degree into the
less swelling particles, such as PE, PET, and PS. While hydrophobicity above the above-
mentioned threshold generally results in a higher labeling yield, the trends observed for
increasing hydrophobicity do not align with the measured log KOW values. This result
implies that other mechanisms play a role in the incorporation process. One of these
mechanisms is indicated by the overall good performance of acridine orange. Labeling
yields with acridine orange of nearly 100% are achieved for all plastics tested (see Figure 6a).
Acridine orange is the only dye used that does not belong to the triarylmethine dye family
(see Figure S2). The tricyclic acridine-based structural motif of acridine orange, formed
by conjugated heteroaromatics, allows easy intercalation due to its flattened shape [59,60].
Among the dyes utilized, it has the smallest size in terms molar volume, except for the hy-
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drophilic fluorescein (see Table 2). Ordering the labeling yields in the sequence of increasing
molar volume of the dyes shows a trend of generally decreasing yields with the increasing
molar volume of the respective dye. The notable exception to this trend is fluorescein, the
hydrophilicity of which prohibits high-yield labeling for most plastics, despite its relatively
small molar volume. Only the highly swelling PVDC and PA incorporate it to a large
degree. Excluding the fluorescein exception, the effect of the molar volume is most easily
observed in the PET series. A gradual decline in yields can be seen with an increase in the
dye’s molar volume (see Figure 6d). PE exhibits a similar pattern with a discrepancy in the
arrangement of the two rhodamines. For the highly swelling PVDC and PA, only a subtle
yield decrease can be identified at the highest molar volume (eosin). A similar but more
pronounced yield drop is visible for PS.
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Figure 6. Labeling yields for fluorescent dye incorporation into plastics (measured via the UV/Vis
spectroscopy of the supernatant after four washing steps): (a) labeling yields grouped by dye type,
ordered by the increasing swelling (dTHF/d0) of the plastics; (b) labeling yields grouped by dye
type, ordered by the increasing glass transition temperature Tg of the plastics (room temperature
(RT) indicated by a red line); (c) labeling yields grouped by particle type, ordered by the increasing
hydrophobicity (log KOW) of the dye (hydrophobicity threshold indicated by a red line); (d) labeling
yields grouped by particle type, ordered by the increasing dye molar volume VM.

Ordering the data by increasing glass transition temperature of the plastics (see Table 1)
reveals no apparent trend in yields for plastics with glass transition temperatures either
below or above the experimental temperature (see Figure 6b). Other factors potentially
affecting the final yields are the particle surface area-to-volume ratio and the particle
number concentration, which could not be kept constant throughout the experimental
series due to the polydispersity of our samples.

From the data, three conclusions can be drawn about the labeling process efficiency:

1. The labeling yield increases with more efficient swelling behavior;
2. The labeling yield increases with dye hydrophobicity, with a tentative threshold

identifiable for slightly hydrophilic to amphiphilic log KOW values close to 0;
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3. The labeling yield decreases with dye molar volume, with possible shape effects for
flat molecular structures.

All labeled particles, including those with low yields based on UV/Vis spectroscopy
measurements, are easily identifiable through fluorescence microscopy (see Figure 7).
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Figure 7. Fluorescence microscopy images of labeled plastics: (a) images of labeled PET particles
using all of the different dyes; (b) images of all particle types labeled with rhodamine B. PS images
for aggregate and single particles; (scale bar = 50 µm (PA, PE, PET, PVDC); scale bar = 10 µm (PS)).

3.3. Radiolabeling of Micro-/Nanoplastics

The potential radiolabeling of plastics using the same swelling and in-diffusion mech-
anism utilizes complexed radiometals. Based on the results described above, we used the
hydrophobic porphyrin derivative TPP as a radiometal carrier. It exhibits a relatively flat
porphyrin structure (see Figure S2) and is known to form stable complexes with various
metal ions [61,62]. We use cyclotron-produced 64Cu to introduce a radiolabel into our
plastic samples [42].

3.3.1. 64Cu Complexation

The initial step toward successful radiolabeling involves complexing the radiometal
with the intended carrier molecule. To synthesize metal-derivatized porphyrins, several
approaches are available. They share, as a common feature, the presence of an excess
amount of metal in a suitable solvent and the use of reflux at high temperatures, leading to
the quantitative metalation of porphyrin molecules. To test the complexation of copper by
the TPP, we first performed an experiment with a 1:1 TPP:copper (as acetate) mixture in
ethanol following procedures in the literature [46]. Refluxing the mixture of Cu2+, TPP, and
ethanol for 6 h resulted in quantitative porphyrin metalation, confirmed via a band shift in
the UV/Vis spectrum (see Figure S11).

In the case of the radiolabel, the amount of porphyrin will always exceed the amount
of radiometal ion (provided that there is no non-radioactive carrier present). For example,
the 3.25 MBq of 64Cu used in our experiment corresponds to 356 fmol of substance. Thus,
a quantitative complexation can be expected, even at lower temperatures. To avoid time-
consuming isolation and purification procedures, particularly given the half-life of 64Cu,
our approach was to use TPP to complex radiocopper in THF at reflux (boiling point:
64 ◦C). This approach has the potential for a one-pot radiolabeling methodology, which
involves a complexation step in THF, followed by the addition of plastics dispersed in
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water, without the need for the separation or purification of the [64Cu]-TPP. Consequently,
the complexation procedure was performed with 3.25 MBq of cyclotron-produced 64Cu,
now in massive undersupply of about 1:106, 64Cu:TPP. Due to the low concentration, it was
impossible to detect complexation through UV/Vis spectroscopy. Instead, complexation
was tested through the log KOW of the system after 3 h of reflux. As the TPP quantitatively
accumulates in the octanol phase, any complexed radiometal is also transferred to the
hydrophobic phase. We observed an accumulation of 98.6% radiocopper in the octanol
phase, indicating the successful near-quantitative hydrophobization of the copper, ready
for use in the in-diffusion radiolabeling of plastics (see Figure 8).
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Figure 8. Complexation of radiocopper 64Cu by TPP, proven via octanol–water partitioning.

3.3.2. 64Cu Radiolabeling

As a first test, incorporating TPP-complexed metals into plastics was non-radioactively
attempted using commercially available metalo-TPPs. Specifically, we used copper, vana-
date, and zinc TPPs, reflecting the potential radiolabels 64Cu, 48V, and 65Zn. Employing
the same procedure used for fluorescent dye labeling, we achieved yields very close to
100% for all plastics tested (see Figure S12). The radiolabeling was performed using the
[64Cu]-TPP dissolved in THF, prepared as described above, and directly taken from the
complexation reaction mixture without further processing. As with the fluorescent dyes,
a short agitation period was followed by allowing the THF to evaporate overnight. This
resulted in radiolabeled micro-/nanoplastics with radiolabeling yields at about 90% (see
Table 5). The labeled particles had a specific activity of approximately 15 kBq/mg for PE,
PA, PET, and PVDC and 400 kBq/mg for PS (as the nano-PS size standard was obtained in
colloidal dispersion, 25 times less particle mass was used in this experiment). In particle
fate studies using the labeled plastics, particle masses can be calculated via a simple activity
measurement using the specific activities of the particles set by the labeling process. No
extensive sample preparation is required, since the radiation can be effortlessly detected
outside of the sample. This process allows the detection of tens of nanograms or even single
nanograms (see Table 5). These values are not to be understood as fundamental limits, but
could easily be improved using higher 64Cu activities in the labeling procedure.

Table 5. Radiolabeling yields and detection limits.

Material Radiolabeling Yield [%] Specific Activity [kBq/mg] Detection Limit 1 [ng/µg/L]

[64Cu]TPP
[64Cu]PE
[64Cu]PS
[64Cu]PA

[64Cu]PET
[64Cu]PVDC

98.6
87.7
92.4
97.1
88.4
93.2

12760
14.5
409.9
17.5
16.2
15.9

0.078/0.004
69/3.4
3/0.1

58/2.9
62/3.1
67/3.3

1 Detection using a Perkin Elmer WIZARD 3” 1480 automatic gamma counter, assuming a detection limit of 1 Bq
and a maximum sample size of 20 mL.
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To test the stability of the radiolabel, leaching experiments were performed, spanning
five steps within one week, covering the decay time of the 64Cu (conventionally, the
maximum duration of radiotracer experiments is considered to be up to 10 half-lives,
t1/2(64Cu) = 12.7 h). Any leaching observed during this period did not exceed single-digit
percentages, falling within the error margin caused by the imperfect separation of particles
from the supernatant solution (see Figure 9).
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4. Discussion

Our results demonstrate the usefulness of a HSP and hydrophobicity screening in se-
lecting the solvent and label carrier. PA and PVDC exhibited the most pronounced swelling
of the plastics in accordance with the HSP screening. These polymers consequently quanti-
tatively incorporated all of the dyes, highlighting the swelling mechanism’s predominant
importance. A HSP screening for other common plastics, including polypropylene (PP),
polyvinyl chloride (PVC), polybutadiene (PB), polymethylmethacrylate (PMMA), polyvinyl
alcohol (PVA), and polycarbonate (PC), indicates the potential for labeling a wide range
of plastic materials with a THF-based procedure (RED < 1, Table S1). For cases like poly-
acrylonitrile (PAN, RED = 1.19, see Table S1), a HSP screening can aid in selecting an
alternative solvent. Hydrophobicity, as quantified by the log KOW, proved to be a valuable
guide but does not capture every aspect of the system. It may be beneficial to extend the
HSP screening to the dye in interaction with the solvent and/or polymer matrix [54,63,64].
For instance, a screening for rhodamine B demonstrates that there are low HSP distances
between rhodamine B, the plastics and THF, whereas the interactions with octanol are
less favorable (see Table 6). Therefore, a HSP screening for the dyes could more precisely
capture the required interaction profiles than the octanol–water partition coefficient.

Discrepancies in the observed trends may arise due to variation in the speciation
of the dyes caused by fluctuations in pH, which can impact hydrophobicity [65]. For
instance, fully protonated fluorescein exhibits low solubility in water. Literature values
for rhodamine 6G and rhodamine B indicate different hydrophobicities to those measured
in this study [56]. As a result, the rhodamines might trade positions in the hydropho-
bicity sequence depending on minor fluctuations in reaction conditions. Deprotonation,
dimer formation, and tautomerization can cause changes in hydrophobicity and effective
molecular size, which may hinder or facilitate the labeling process [66–68]. In any case,
dye-dependent optimized procedures may improve labeling yields [69,70]. We observed
no impact of the glass transition temperature of the plastics and no evidence of dye leach-
ing from the particles. Furthermore, our experimental results indicate that the yields for
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rhodamine B incorporation do not align with the Ra values acquired from an HSP screening
of interactions between rhodamine B and the plastics (see Table 6). Therefore, we may
conclude that for our plastics and experimental conditions, the actual chemistry of the
polymer material only plays a minor role. It seems limited to providing a suitable matrix to
swell with the THF. The solvent effectively eliminates the physical obstacle to molecular
diffusion into a rigid polymer below the glass transition temperature [71]. The solvent
swelling notably lowers the glass transition temperature and expands the polymer mesh,
only leaving an inhibiting effect on diffusion for the largest dye molecules [38,72,73]. Mesh
size, crosslinking [74], the entanglement of polymer strands [75], and the semi-crystallinity
of the plastic matrix, as well as polymer particle size [76], control this factor on the side of
the polymer [77,78]. On the side of the dye, the actual effective size can vary with speciation
and is influenced by the anisometric shape of flat molecular structures [79].

Table 6. HSP distance Ra [MPa
1
2 ] for rhodamine B in combination with different solvents and

polymers.

Material Ra

THF
water

1-octanol
PE
PS

PET
PVDC

PA

3.03
38.23
6.00
3.12
4.39
2.61
4.07
3.87

The porphyrin structure allowed the successful quantitative complexation and hy-
drophobization of radiocopper 64Cu, thus allowing the integration of the radiolabel into
micro- and nanoplastics. As a result, the sensitive tracking of nanograms of particles is
enabled, as the radiolabel is stably bound inside of the polymer matrix. Furthermore,
autoradiography and positron emission tomography techniques can achieve 2D spatial
distribution data and 4D spatiotemporal tracking, respectively.

Porphyrins can complex various di- and trivalent metals, prominently evidenced by
the natural metalo-porphyrin derivatives hemoglobin (Fe) and chlorophyll (Mg). This has
the potential to introduce a wide range of radiotracers into plastic systems. Adaptations to
the complexation procedure may be required to achieve efficient hydrophobization through
TPP metalation when using other radiometals [61,62]. Depending on the propensity of the
metal to form porphyrin complexes, it may be necessary to increase the reaction temperature
and/or use a different solvent. As a result, an additional step in the procedure would be
required to separate the metal-TPP. However, hydrothermal and solvent-free metalations
offer a solution to this issue [80,81]. The derivatization of the porphyrin structures may
allow the tailoring of the carrier–polymer interactions to specific systems to enhance the
yields and stability. Potential radiotracer candidates have a broad range of half-lives,
ranging from hours to days to years, offering numerous tracing applications (see Table 7).
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Table 7. Potential radiotracers for porphyrin-labeling strategies *.

Metal Radiotracer t1/2

Cu
Zn
Mn
Co
Fe
Ni
Pd
Ag
Au
Ba
V
Cr
Cd
Ti
P

Ga
In
Pb
Zr

64Cu
65Zn
54Mn
57Co

55Fe/59Fe
63Ni

103Pd
110mAg/105Ag

198Au
133Ba

48V
51Cr

109Cd
44Ti/45Ti

32P
67Ga
111In
203Pb

88Zr/89Zr

12.7 h
244.06 days
312.3 days

271.79 days
2.737 years/44.495 days

100.1 years
16.991 days

249.79 days/41.29 days
2.69 days
10.5 years

15.9735 days
27.7025 days

462.6 days
49 years/184.8 min

14.26 days
3.2612 days
2.8047 days

59.1 h
83.4 days/78.41 h

* Based on common radiotracers according to IAEA [82,83] and the commercial availability of M-TPP deriva-
tives [84–86], indicating the feasibility of synthesis and stability of the product.

5. Conclusions

The radiolabeling of the common micro/nanoplastics PET, PS, PA, PE, and PVDC was
successfully achieved through an in-diffusion technique with [64Cu]-TPP in THF. The study
demonstrated the practicality of utilizing HSP and log KOW screenings for selecting suitable
experimental conditions and radiometal carrier systems. An efficient labeling outcome was
found to be influenced by the swelling behavior of the polymer and the molecular size and
hydrophobicity of the label. The established experimental procedure allows facile one-pot
radiolabeling of polymer particles, enabling sensitive and selective detection, regardless
of the elemental and particle backgrounds. The technique is versatile and can be applied
to various tracer and polymer particles types, with HSP calculations serving as a valuable
guide for adjustments to the procedure.
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