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Abstract: Copper-doped zinc oxide films (Zn1−xCuxO) (x = 0, 2%, 4%, 6%) were fabricated on
conductive substrates using the sol-gel process. The crystal structure, optical and resistive switching
properties of Zn1−xCuxO films are studied and discussed. RRAM is made using Zn1−xCuxO as the
resistive layer. The results show that the (002) peak intensity and grain size of Zn1−xCuxOfilms
increase from 0 to 6%. In addition, PL spectroscopy shows that the oxygen vacancy defect density
of Zn1−xCuxO films also increases with the increase in Cu. The improved resistive switching
performance of the RRAM device can be attributed to the formation of conductive filaments and
the destruction of more oxygen vacancies in the Zn1−xCuxO film. Consequently, the RRAM device
exhibits a higher low resistance state to high resistance state ratio and an HRS state of higher
resistance value.

Keywords: ZnO; sol-gel; thin films; resistive switching

1. Introduction

In recent research, resistive random access memory (RRAM) devices have been de-
veloped using various binary oxide materials, making them highly attractive for next-
generation memory applications due to their fast operation, simple structure, low power
consumption, nondestructive readout, long data retention, ease of fabrication, and cost-
effectiveness [1–5]. Among the different oxide materials, ZnO-based semiconductor thin
films are widely employed in RRAM devices. The ZnO-based semiconductor was in-
vestigated for its potential applications in RRAM, due to its low carrier trapping degree,
non-toxicity, and simple chemical composition [6–10].Recent studies have indicated that
doping zinc oxide with transition metals can effectively reduce its intrinsic carrier den-
sity [11,12]. Specifically, La doping has been found to decrease the oxygen vacancy density
in ZnO thin films, leading to an improved ON/OFF ratio in RRAM devices [13]. Numer-
ous studies have also demonstrated RRAM characteristics in various doped ZnO thin
films [14–18]. Additionally, researchers have explored Cu-doped ZnO materials, the grain
size of which can be controlled by the amount of copper doping [19,20]. Cu is considered a
suitable dopant for ZnO due to its similar ionic radii to Zn and its ability to act as a deep
receptor, binding with adjacent O vacancies in the ZnO lattice [21,22].

We investigate the effects of copper on the electrical, structural, and switched resistive
properties of Zn1−xCuxO thin films. The Zn1−xCuxO was synthesized on FTO substrates
through the sol-gel process, followed by rapid thermal treatment. The crystallization
and microstructure of the samples were analyzed using an X-ray diffractometer and a
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scanning electron microscope, respectively. RRAM devices employing Zn1−xCuxO thin
films were thoroughly examined, and their bipolar switching characteristics were analyzed
and discussed.

2. Experimental Section

In this research, we prepared thin films of Zn1−xCuxO (x = 0%, 2%, 4%, 6%) us-
ing the sol-gel process.Zn1−xCuxO films were prepared using a sol-gel method, em-
ploying zinc acetate dihydrate (CH3COO)2Zn·2H2O and copper acetate monohydrate
(Cu(CH3COO)2·2H2O) as precursor materials. The precursors were dissolved in 2-Meth-
oxyethanol solvent to maintain a constant metal ion concentration of 0.05 M. Ethanolamine
was added to ensure solution stability. These solutions were stirred at 60 ◦C for three
hours using a magnetic stirrer and then allowed to stand for 72 h to obtain transparent
solutions. The sol-gel solution was deposited onto a substrate mounted on a spin coater
using a two-step spin process. The deposition step began with spinning at 1000 rpm for
10 s and then at 3000 rpm for 30 s. Subsequently, the samples were annealed on a hot plate
at 300 ◦C for 2 min to remove the solvent. The entire process was repeated ten times to
achieve the desired film thickness. Finally, the film was annealed at 600 ◦C for 2 min in a
rapid annealing system. The annealing rate was 100 ◦C/min. The thickness of Zn1−xCuxO
film was 500 nm withα-step surface profiler.

Crystallization of samples was analyzed using XRD. To study the optical properties of
Zn1−xCuxO, we conducted transmittance optical measurements using a UV spectrometer.
The effect of the fluorine-doped tin oxide (FTO) substrate was also taken into account
during the transmittance correction. This is due to the fact that FTO substrate can absorb
light in the UV-visible range. The transmittance may be measured inaccurately. We used a
blank FTO substrate (without Zn1−xCuxO sample) for reference measurements. To correct
for substrate effects, the transmittance of the FTO substrate alone was subtracted from the
transmittance of the sample and substrate combination. These corrected transmittance data
represent the transmittance of the Zn1−xCuxO sample without FTO substrate contribution.
For analyzing optical emissions, photoluminescence spectroscopy was employed, covering
a wavelength range from 350 nm to 600 nm. In addition, we characterized the switch-
ing properties of current-voltage for the Zn1−xCuxO thin films in RRAM. RRAM with a
Ag/Zn1−xCuxO/FTO structure was measured using a semiconductor parameter analyzer.
Figure 1 shows a schematic diagram of an RRAM device with Ag electrodes. One hundred
circular top silver electrodes (100 nm thickness and 0.05 cm diameter) were fabricated on
top of the Zn1−xCuxO layer using thermal evaporation technique at 5 × 10−6 torr.
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Figure 1. RRAM structure of Ag/Zn1−xCuxO/FTO.

3. Results and Discussion

Figure 2 displays the XRD for Zn1−xCuxO with various Cu concentrations, compared
with the pure zinc oxide. The XRD patterns match the standard JCPDS data (36-1451),
indicating the absence of a rutile phase or any other phase. All samples have a wurtzite
hexagonal structure oriented along the c-axis and a symmetric P63/mc structure. There is
no evidence of phase separation in the Zn1−xCuxO thin films with the replacement of Zn
with Cu ions. In addition, there are no diffraction peaks of other impurities or compounds,
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indicating that copper ions have been doped into the ZnO lattice to replace zinc ions. The
(002) peak intensity of Zn1−xCuxO films increases with the Cu doping content from 2% to
6%. The samples exhibit a (002) peak of ZnO at approximately 2θ = 34.5◦. The enhanced
(002) peak intensity with a higher Cu concentration can be attributed to lattice strain
introduced by the size difference between Cu and Zn ions when Cu ions replace Zn ions
in the ZnO lattice. The increased intensity of the (002) diffraction peak at approximately
2θ = 34.5◦ indicates a more ordered and periodic arrangement of atoms in the lattice along
the c-axis. Lattice strain caused by the size mismatch between copper and zinc ions leads to
this increase in order. When the atomic planes along the c-axis are more regularly spaced,
the X-rays diffract more efficiently, resulting in higher intensity peaks in the XRD pattern.
Strain affects the crystal structure and orientation of ZnO, resulting in greater distortion
and increased (002) peak intensity as the Cu concentration rises.
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Figure 2. The patterns of XRD for Zn1−xCuxO films.

FWHM reflects the change in the average size of Zn1−xCuxO grains. The grain size
of Zn1−xCuxOdecreases with increasing FWHM. Specifically, a slight increase in FWHM
was observed as the Cu concentration increased from 0% to 6%. Average sizes of grains for
films, calculated using the Scherrer formula, were 20.3 nm for 0%, 15.2 nm for 2%, 9.5 nm
for 4%, and 8.6 nm for 6%, respectively [23]. Figure 3 displays the surface morphology of
theZn1−xCuxO films, showing granular porous surfaces for all samples. It is evident that
grain size decreases with the increase in the Cu concentration. This phenomenon can be
attributed to the crystal structure and growth of the material. When copper is introduced
into the zinc oxide lattice, copper (Cu) and zinc (Zn) have different atomic sizes and lattice
constants, creating a lattice mismatch. The lattice mismatch in the Zn1−xCuxOfilm causes
crystal strain in the crystal structure and hinders the growth of larger grains. In addition,
the surface density of films increases as the Cu concentration rises. Furthermore, the
thickness of all samples was found to be 500 nm.
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Figure 4 shows the photoluminescence (PL) spectrum of Zn1−xCuxO at room tem-
perature. The PL spectrum of ZnO exhibits two main components: one in the ultraviolet
region and the other in the yellow-green visible region. The ultraviolet emission band at
385 nm shows the transition of electrons from the bottom of the conduction band to the zinc
vacancy energy level [24,25]. Multiple yellow–green emissions observed in Zn1−xCuxO
films are attributed to oxygen vacancy defects, which correspond to the transition from
the conduction band to oxygen vacancy defects [26]. The ultraviolet emission at 385 nm of
the Zn1−xCuxO thin film increases as the copper content increases. This may be due to the
copper doping causing more zinc vacancy energy levels in the ZnO thin film, which en-
hances the ultraviolet emission. In addition, the yellow–green light emission of Zn1−xCuxO
thin film increases with the increase in the copper doping amount. This enhancement
may be caused by the replacement of copper ions into the ZnO lattice to form Zn1−xCuxO,
and more copper ions generate more oxygen vacancy defects in zinc oxide. Therefore, the
transition from the conduction band to oxygen vacancy defects will also increase, resulting
in an increase in yellow–green light emission in the Zn1−xCuxO thin film.
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Transmission spectra with a range of 300–800 nm for Zn1−xCuxO are shown in Figure 5.
As the doping of Cu increases from 0% to 6%, the light transmittance for the Zn1−xCuxO
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film decreases from 92% to 78%. To determine the absorption coefficient and bandgap
of these films, graphical methods were employed. The value of (αhυ)2 can be obtained
from the equation αhυ = A(hυ-Eg)n. In addition, the value of α can be obtained using the
equation α = –(1/D)lnT [27], where T is the transmittance, A is a function of the refractive
index and hole/electron effective masses, h is the constant of Planck, v is the frequency
of photons, and Eg is the bandgap. For a direct bandgap semiconductor (n = 1/2), the
bandgaps of all films were calculated via the extrapolation of the straight portion for the
curve of (αhυ)2 = 0 in Figure 6.The inset of Figure 6 shows the relationship between the Cu
doping amount and sample band gap energy. As the Cu content increases from 0 to 6%,
the bandgap inZn1−xCuxOfilms decreases from 3.285 eV to 3.271 eV. This phenomenon
may be attributed to the change in the energy band structure in the ZnO film when Cu ions
are incorporated into the ZnO lattice. An exchange interaction occurs between the valence
band/conduction band electrons of ZnO and the local d-electrons of Cu ions replacing Zn
ions. This exchange interaction introduces a new shallow energy level between the valence
band and conduction band of ZnO, resulting in a reduction in the band gap of ZnO [28].
The transmittance decreases with increased Cu content, and the bandgap energy reduces
as Cu content increases. The observed correlation between the bandgap and Cu content is
likely influenced by the microstructure changes arising from the incorporation of Cu ions.
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Figure 7 illustrates the bipolar I-V switching curves of Zn1−xCuxO films during the
initial formation at 5 V in RRAM, with green arrows indicating the direction of the voltage
sweep. The compliance current is controlled at 10 mA. RRAM devices can be operated using
LRS-HRS switching cycles up to 100 times without losing the electric properties. The real
image of Zn1−xCuxO films’ RRAM device is shown in Figure 7a. The RRAM setup process
involves shifting the device into the LRS with a high forward bias of the control voltage.
The reset process is to reduce the operating current of the LRS and provide a negative bias
voltage to the reset voltage to transition to the HRS state, showing a bipolar resistance
change characteristic. According to the bipolar I-V switching curve of the Zn1−xCuxO film
in Figure 7, the set voltages are 1.1V (0%), 1.2V (2%), 3V (4%), and 1.5V (6%), respectively.
In addition, the rest voltages are −0.9V (0%), −1.4V (2%), −2.8V (4%), and −1.5V (6%),
respectively. The LRS and HRS properties of RRAM can be explained by the formation and
destruction of conductive filaments composed of oxygen vacancies [2–5]. The switching of
RRAM can be explained by two resistance states (HRS and LRS), the basic mechanism of
which is shown in Figure 8. The SET process is initiated when an external positive voltage
is applied to the top electrode (Ag), as shown in Figure 8. During this process, oxygen
anions (O2−) migrate away from their original sites towards the top electrode, creating
oxygen vacancies in their place. As these oxygen vacancies cluster together, they align and
form conductive filaments between the top and bottom electrodes, switching the RRAM
device from HRS to LRS. Conversely, the RESET process occurs when the polarity of the
applied bias voltage is changed, leading to the breaking of conductive filaments in the
HRS state. Some partially occupied oxygen vacancies below the top electrode are refilled
with oxygen anions, converting them back into regular oxygen sites. Figure 7 provides
a comparison of the switched resistance properties for Zn1−xCuxO thin films in RRAM
devices at different Cu concentrations. The RRAM device with 6% exhibits the highest ratio
of LRS/HRS and a higher value of resistance in a state of HRS. When an external positive
voltage is applied to the top electrode, the oxygen vacancies gather and arrange to connect
the top and bottom metal electrodes, and electrons can be transferred near the oxygen
vacancies by hopping, thus forming a conductive filament. On the contrary, when the
polarity of the applied bias voltage is changed, some partially occupied oxygen vacancies
under the top electrode are refilled by oxygen anions, resulting in the destruction of the
oxygen vacancies forming the conductive filament. At this time, the device will change
from a high current state to a low current state. The higher the number of destroyed oxygen
vacancies, the higher the LRS/HRS ratio will be. Therefore, the highest LRS/HRS ratio of
the 6% RRAM device should be attributed to the formation of conductive filaments and
the destruction of more oxygen vacancies in 6% Cu-doped ZnO. The higher the number
of oxygen vacancies destroyed, the lower the low current state, and, thus, the higher the
LRS/HRS ratio. In addition, the grain size of Zn1−xCuxO decreases with increasing Cu
doping in the SEM analysis, which means there are more grain boundaries within the
material. The grain boundaries typically exhibit higher electrical conductivity than the
interior of grains in polycrystalline materials. The doping of copper can promote the
formation of carrier transmission paths at the grain boundaries of Zn1−xCuxO and can also
increase the carrier concentration within the Zn1−xCuxO material. This means that more
carriers are available for transmission, which can lead to a lower resistive resistance state
(LRS) and, thus, improve the LRS/HRS ratio and enhance the switching performance [29].
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Figure 9 displays the lnI versus lnV plot of the Zn1−xCuxO thin film, which is used to
analyze the carrier conduction mechanism and understand the initial conductive filament
formation process in the set/reset states of a metal–insulator–metal (MIM) structure. In
the set state, the conduction path of the filaments is primarily influenced by the presence
of oxygen vacancies in the Cu-doped ZnO films. The IV curves for the low resistance
state (LRS) of all samples show slopes of approximately 0.98–0.99, indicating an ohmic
conduction mechanism where the current is linearly dependent on the applied voltage.
As the voltage increases, a stepwise increase in current is observed. On the other hand,
in Figure 9b–d, the curves’ slopes in the high electric field region of the high resistance
state (HRS) are approximately 7.27–8.2, and the current rises sharply with the voltage.
This suggests that the accumulation of oxygen vacancies in Cu-doped ZnO films enables
carriers to be transported through traps located at different energy levels, leading to the
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trap-assisted tunneling (TAT) mechanism responsible for this IV behavior [30–32]. Current
density dominated by TAT can be expressed as:

JTAT = AE2exp
[
−B

E

]
(1)

A =
q3m

16π2ℏm∗ϕt
(2)

B =
4
√

2m∗

3ℏq
ϕ3/2

t (3)

where m∗ is the effective mass of the electron, h̄ is Planck’s constant, m is the mass of the
electron in free space, and ϕt is the barrier height of the trap.
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From the above results, the switching retention and endurance characteristics of the
6% Cu-doped ZnO thin film RRAM device are shown in Figure 10. It can be seen from
the results that the 6% Cu-doped ZnO thin film RRAM device exhibits a stable state in
more than one million switching cycles in Figure 10a. And the relationship between the
resistance and switching time between the HRS and LRS states of the RRAM device can
be clearly observed. RRAM devices also exhibit typical bipolar switching behavior and
memory ratios greater than 103 HRS/LRS. In addition, the endurance characteristics of the
6% Cu-doped ZnO thin film RRAM device are shown in Figure 10b. There is no significant
change in the on/off ratio switching behavior cycling versus time curves of the RRAM
device over 103 s.
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4. Conclusions

Zn1−xCuxO films were deposited on FTO substrates fabricated using the sol-gel
process. The crystal structure, optical and resistive switching properties of Zn1−xCuxO
were studied and analyzed. The intensity of the (002) peaks of the Zn1−xCuxO increased
with an increase in doping of Cu from x=0 to x=0.06. Moreover, as the Cu content increased,
the intensity of the ultraviolet emission and the yellow–green light emission peaks increased
in the photoluminescence spectrum of Zn1−xCuxO film. It was found that the Zn1−xCuxO
thin film RRAM exhibits the ohmic conduction mechanism and the trap-assisted tunneling
(TAT) mechanism in the low electric field region (LRS) and high electric field region (HRS),
respectively. RRAM devices based on 6% Cu-doped ZnO films exhibited the highest
LRS/HRS ratio and higher HRS state resistance.
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