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Abstract: Energy storage applications received great attention due to environmental aspects. A
green method was used to prepare a composite of nickel–iron-based spinel oxide nanoparticle@CNT.
The prepared materials were characterized by different analytical methods like X-ray diffraction,
X-ray photon spectroscopy (XPS), scanning electron microscopy (SEM), and transmitted electron
microscopy (TEM). The synergistic effect between nickel–iron oxide and carbon nanotubes was
characterized using different electrochemical methods like cyclic voltammetry (CV), galvanostatic
charging/discharging (GCD), and electrochemical impedance spectroscopy (EIS). The capacitances
of the pristine NiFe2O4 and NiFe2O4@CNT were studied in different electrolyte concentrations. The
effect of OH− concentrations was studied for modified and non-modified surfaces. Furthermore, the
specific capacitance was estimated for pristine and modified NiFe2O4 at a wide current range (5 to
17 A g−1). Thus, the durability of different surfaces after 2000 cycles was studied, and the capacitance
retention was estimated as 78.8 and 90.1% for pristine and modified NiFe2O4. On the other hand,
the capacitance rate capability was observed as 65.1% (5 to 17 A g−1) and 62.4% (5 to 17 A g−1) for
NiFe2O4 and NiFe2O4@CNT electrodes.

Keywords: nickel–iron oxide; spinel oxide; capacitance; galvanostatic charging/discharging;
electrochemical capacitor

1. Introduction

Renewable energy is becoming an increasingly important part of our lives as we strive
to reduce our dependence on fossil fuels. With the help of renewable energy sources, such
as solar, wind, and geothermal power, we can reduce our carbon footprint and create
a more sustainable future. Renewable energy also has the potential to create jobs and
stimulate economic growth in communities that are heavily reliant on fossil fuels. As we
move toward a greener future, it is important to understand the various used cases of
renewable energy and how they can benefit individuals and society [1–4].

A capacitor is an electrical component that stores energy as an electric field. It is used
in many electronic circuits to store and release energy when needed [5–9]. Capacitors
are widely used in various applications, from power supplies to audio equipment. They
also filter out noise and interference from signals and provide a steady voltage supply for
sensitive components. The capacity of a capacitor is determined by its size and fabricated
material, so choosing the right type for your application is essential [10–14].

The nickel-based modified surface has recently been reported as an efficient material
for electrochemical applications in basic media because it generates NiOOH electroactive
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species [15,16]. Thus, Ni-based materials are reported for applications like fuel cells,
electrochemical sensors, and batteries [17–26].

Spinel oxides with a typical structure of AB2O4 (where A and B are transition met-
als) are durable and robust materials for chemical and thermal changes that are widely
used in different applications [27,28]. Metal spinel oxides may be classified into three
categories: monometallic spinel oxides, bimetallic spinel oxides, and polymetallic spinel
oxides. Magnetic spinel oxides have favorable characteristics in terms of their magnetic,
electrical, and catalytic attributes, rendering them extensively employed in many domains
such as magnetic materials, electronic devices, and catalysis, among others [29].

Spinel ferrites have garnered a lot of interest recently because of their many redox
states, excellent electrochemical stability, and pseudo capacitive behavior. The spinel fer-
rites outperform other metal oxides in terms of operation voltage and theoretical capacity.
However, because of its high surface energy and significant particle aggregation, its practi-
cal capacitance and cycling characteristic still require improvement, and creating pertinent
composites appears to be a potential path to improving the electrochemical performance.

In recent years, NiFe2O4 has been employed for various applications like electrochem-
ical sensors [23,30,31], water splitting [32–34], solar cells [35], and supercapacitors [36–38].

Carbon support materials were reported extensively for catalysis applications. High
surface area, suitable electrical conductivity, and low toxicity are considered the most
important points for using carbon materials to support modified surfaces. Different carbon
materials were reported as proper support for transition metals-based modified surfaces
like carbon nanotubes (CNTs) [39,40], graphene [41–43], graphene oxides [44], conducting
polymer [45], chitosan [46,47], and porous carbon [48]. With their superior electronic
conductivity and robust mechanical qualities, carbon nanotubes are frequently used as
electrode materials for energy storage systems [49–51].

Consequently, several NiFe2O4-based surfaces are used for high capacitance applica-
tion such as NiFe2O4/MoS2, rGO-NiFe2O4, and PANI-NiFe2O4 [52–54].

However, different approaches could be used for preparation of spinel oxides like
hydrothermal, sol-gel, and coprecipitation. Thus, green approaches were recently reported
in the literature to increase the sustainability of the preparation steps.

Several green plant extracts, including Terminalia Catappa, Tamarindus Indica seeds,
and Urtica, have been widely reported for the production of nickel ferrite [55–57]. The
botanical extract comprises various organic compounds that act as green-reducing and
capping agents, such as phenolic compounds, flavonoids, carotenoids, and vitamins. Green
tea extract is a commonly utilized substance in the production of metals due to its inclusion
of diverse reducing and capping agents such as enzymes, polyphenols, and amino acids.

The concentration of, herein, NiFe2O4-decorated carbon nanotube composites was
examined for enhancing the capacitance, in addition to the role and advantages that
carbon nanotubes can provide to capacitor designs. The nickel ferrite was prepared using
green methods. A comparative study was performed between pristine NiFe2O4 and
NiFe2O4@CNT. Different analytical approaches characterized the prepared materials. The
effect of electrolyte concentration was studied, whereas galvanostatic charging/discharging
was utilized at wide current density ranges. The durability of the electrode was investigated
using repeated charging and discharging cycles. EIS was employed to determine the charge
transfer resistance for pristine and modified NiFe2O4 surfaces for different electrolyte
concentrations.

2. Experimental Section
2.1. Green Synthesis of NiFe2O4

The preparation of the green tea extract involved the boiling of green tea leaves
in 100 mL of distilled water. Subsequently, the solution was subjected to cooling and
filtration procedures, followed by transferal into a sterile container. The precursor salts
of Fe(NO3)3.9H2O and Ni(NO3)2.6H2O were dissolved in a 2:1 molar ratio in 50 mL of
deionized water. The process involved gradually adding green tea leaf extract into the
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precursor solutions, followed by heating to 80 ◦C with intense agitation. Subsequently, the
fluid was subjected to thermal energy until a solid-like substance was produced. The gel
underwent a drying process for a duration of two hours at a temperature of 150 ◦C in an
oven. The specimens underwent a four-hour annealing process at a temperature of 600 ◦C.

2.2. Electrode Preparation and Electrochemical Measurements

The experimental setup utilized a working electrode in the form of a glassy carbon
electrode (GC) with a diameter of 3 mm and a surface area of 0.0707 cm2. The initial step
involved the use of a mild emery paper for polishing, followed by a thorough cleansing
process utilizing ethanol and double-distilled water. Two catalyst inks were produced
through the dispersion of 60 mg of pristine NiFe2O4 and 60 mg of NiFe2O4@CNT (with
a NiFe2O4: CNT ratio of 1:1) in a solution comprising 1 mL of ethanol and 1 mL of
5 wt% Nafion. This facilitated the uniform distribution of NiFe2O4 on every electrode.
Subsequently, a volume of 50 µL of ink was deposited onto the surface of the glassy carbon
electrode and subjected to desiccation overnight. The catalyst loading was determined
to be 1.5 mg. Consequently, the modified surfaces that were prepared, namely pristine
NiFe2O4 and NiFe2O4@CNT, were denoted as NFO and NFO@CNT, respectively.

Autolab PGSTAT128N was utilized to acquire data through cyclic voltammetry, elec-
trochemical impedance spectroscopy, and galvanostatic charging/discharging. The elec-
trochemistry tests and impedance spectrum fitting were conducted using NOVA software
(Version 2.1, Metrohm Autolab, Utrecht, The Netherlands). A three-electrode cell was
employed, with Ag/AgCl/KCl (sat.) serving as the reference electrode, Pt wire as the
counter electrode, and GC/NiFe2O4 and GC/NiFe2O4@CNT as the working electrodes.
The computation of all conceivable values in this study was executed utilizing reference
electrodes of Ag/AgCl/KCl (sat.). The electrochemical impedance spectroscopy measure-
ments were adjusted to a consistent AC voltage value by utilizing an AC voltage amplitude
of 10 mV and a frequency range spanning from 104 Hz to 0.1 Hz.

The following equation was used to compute the specific capacitances of supercapaci-
tors during discharge:

C =
I ∆T

m ∆V
(1)

The specific capacitance (C) was determined using the discharging current (I), the
time required for discharging (∆T), the mass of modified surface (m), and the potential
window (∆V).

3. Results and Discussion
3.1. Material Characterization

The Powder X-ray diffraction technique characterized the chemical structure of the
prepared NiFe2O4. An XRD chart of the NiFe2O4 is illustrated in Figure 1a. According to
reference card JCPDS No.54-0964, seven characteristic peaks were observed for NiFe2O4 at
2θ = 22.5, 30.2, 35.3, 36.4, 43.2, 53.7, 57.4, and 63.2◦, corresponding to miller indices (111),
(220), (311), (222), (400), (422), (511), and (440), respectively. The estimated crystal system of
NiFe2O4 is cubic with crystal point group m3m.

Furthermore, X-ray photon spectroscopy (XPS) characterized the oxidation states and
types of bonds between atoms. Figure 1b shows an introductory survey of the NiFe2O4,
which displays the presence of Ni, Fe, O, and C at a binding energy of 857.38, 712.35, 285.81,
and 532.07 eV, respectively. The XPS spectra of the NiFe2O4 elements are displayed in
Figure 1c–f. As shown in Figure 1c, Ni2P spectra were observed to have characteristic peaks
at 855.5 and 857.76 eV, corresponding to 2p3/2 Ni+2 and Ni+3 peaks. The peaks observed
at 862.1 and 865.62 were due to satellite of Ni 2p3/2 [58]. The peaks observed at 873.15,
876.67, and 880.14 eV were also attributed to Ni 2p1/2 and its satellites. Figure 1d displays
the XPS spectra of the 2p core level of Fe. The spectra showed Fe2p signals at 710.69 and
713.08 eV, which are attributed to Fe2p3/2. Furthermore, peaks were observed at 716.47
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and 719.88 eV for 2p3/2 satellites [59]. The peaks at binding energies of 724.34, 727.79, and
732.61 eV are attributed to Fe2p1/2 and its satellite.
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The origin of oxygenated Ni and Fe bonds can be ascribed by the peaks at 530.28 and
531.87 eV in Figure 1e. The peak observed at a binding energy of 532.91 eV is attributed
to the water molecules that were adsorbed on the surface of the catalyst [60]. Figure 1f
depicts the C1s spectra. Three distinct peaks were detected in the C1s spectra at binding
energies of 284.83, 285.32, and 288.58 electron volts. The spectral peaks detected at 284.83
and 285.32 electron volts are indicative of a carbonaceous layer that is typically present
on the surfaces of air-exposed samples. The third peak observed at a binding energy of
288.58 eV indicates the existence of metal carbonate, as reported in previous studies [61,62].

A scanning electron microscope characterized the surface morphology of the modified
GC/NFO@CNT electrode. Figure 2a shows a modified GC/NFO@CNT. Thus, NiFe2O4
was observed to decorate the carbon nanotube. The cavity within the surface of NFO@CNT
promotes the diffusion of OH−. The well distribution of NFO on the CNT surface led to
higher efficiency. Additionally, the structure stability after cycling was characterized using
SEM (see Figure 2b). The particle coagulated after cycling due to the deterioration of nickel
ferrite after several Ni(OH)2/NiOOH conversions.
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The morphological structure and nanoparticle distribution were characterized using
a transmitted electron microscope (TEM). The TEM image of the NFO@CNT sample is
represented in Figure 2c. The average particle size is estimated to be in the range of
13~25 nm. For comparison between pristine and modified NiFe2O4 surfaces, TEM of
unmodified NiFe2O4 was characterized using TEM (see Figure 2d)

Additionally, the prepared materials were confirmed using the TEM diffraction pattern,
as shown in Figure 2e. However, the miller indices were estimated for different d-spacing
values in reference card JCPDS No.54-0964. EDAX estimated the elemental analysis of
NFO@CNT. Thus, the EDAX shows the presence of Ni, Fe, O, and C. The elemental
compositions of the NFO@CNT sample are shown in Figure 2f. Thus, the elemental
percentage shown in the inset figure matches with our target structure of NiFe2O4, as the
ratio between Ni and Fe is found as 1/2.

3.2. Electrochemical Characterization

The electrochemical studies of the modified GC/NFO and GC/NFO@CNT were stud-
ied in an alkaline medium. At the same time, the capacitive properties of the different
modified electrodes were studied at different electrolyte concentrations. Since the capaci-
tance performance of nickel-based electrodes in an alkaline medium mainly depends on the
conversion of Ni(OH)2 to NiOOH, modified electrodes were activated in 1.0 M KOH using
repeated CVs until the resultant current showed a stable response. Figure 3a,b show CVs
of the modified GC/NFO and GC/NFO@CNT electrodes in a solution of KOH at different
concentrations. One redox peak observed at (0.2 to 0.4 V (vs. Ag/AgCl)) is attributed
to the Ni(OH)2/NiOOH redox couple. The increase in the oxidation/reduction current
was observed due to the dependent of the OH− ions for the generation of redox species,
according to the following equation [45,63]:

6Ni(OH)2 + 6 OH− ↔ 6NiOOH + 6H2O (2)
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Accordingly, the redox peak shifted to a more negative value by increasing the elec-
trolyte concentration, and the electrochemical reaction tended to be more thermodynami-
cally favored.

By comparison, the addition of CNT to the NFO nano-spinel oxide enhanced the
faradic process by increasing available surface area and electrical conductivity. Furthermore,
the metal-oxide-decorated CNT was reported to have efficient activity compared to pristine
counterparts like ZnWO4@CNT, NiCo2O4@CNT, and Co3O4/CNT [64–66].
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Figure 4 shows the modified GC/NFO@CNT electrode CVs at different electrolyte
concentrations (0.1 to 2.0 M KOH). The scan rate was changed in the range of 5–200 mV s−1.
The diffusion coefficient of OH anions was studied using Randles–Sevcik equation:

ip = 2.69 × 105 × n3/2 × A × D1/2C × ν1/2 (3)

where ip: peak current, A: electrode geometrical area, n: electron participated in a redox
reaction, C: concentration of KOH, D: diffusion coefficient, and ν: scan rate.
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Accordingly, the diffusion coefficient for the modified electrode was estimated using
the linear relation between the anodic and cathodic peak currents and the square root
of the scan rate (see Figure 5a). The average diffusion coefficient was provided for each
concentration as 1.65 × 10−5, 3.55 × 10−5, 4.62 × 10−5, and 6.41 × 10−5 cm2 s−1 for 0.1, 0.5,
1.0, and 2.0 M KOH, respectively. For the GC/NFO@CNT electrode, diffusion of OH ions
increased versus concentration in the range of 0.1 to 1.0 M. In comparison, the diffusion
at a concentration of 2.0 M is lower due to the columbic repulsion between the similarly
charged ions.
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For mixed capacitance mechanism, the following equation could be used [8,42]:

i = s × νw (4)

where i is current at characteristic potential, ν is sweep rate, and s and w are constants.
However, the value of w represents the mechanism. The w-value indicates the charge
storage mechanism with a value ranging from 0.5 to 1.0. Figure 5b shows the relation
between the natural logarithm of scan rate and the natural logarithm of peak current. The
values of w were provided as 0.54, 0.57, 0.67, and 0.68 for concentrations of 0.1, 0.5, 1.0, and
2.0 M, respectively. The estimated value of w indicates that the GC/NFO electrode storage
mechanism tends to be mixed between bulk faradic and capacitive. Also, the increase in
electrolyte concentration led to a shift in mechanism toward a more faradic process due to
the availability of hydroxide ions in the solution, which is essential for the conversion of
the redox system of Ni-based surfaces.

The functionality of the modified GC/NFO electrode was examined in several KOH
solutions. Figure 6 shows the CVs of the modified GC/NFO electrode at various scan rates
(5 to 200 mV s−1) in various alkaline medium ranges (0.1 to 2.0 M). Increased scan rates of
CNT-based composites impact the delineation of the NiOOH/Ni(OH)2 redox peak when
compared to NFO@CNT. As opposed to the faradic current, the presence of CNTs increased
the capacitive current.

Since Randles–Sevcik relation should take the diffusion of OH− into account, the antic-
ipated diffusion coefficients for modified GC/NFO electrodes are 6.33 × 10−6, 1.87 × 10−5,
2.84 × 10−5, and 3.44 × 10−5 cm2 s−1 for 0.1, 0.5, 1.0, and 2.0 M, respectively. For com-
parison, the mixed capacitance was calculated using the relation shown in Figure 7b and
Equation (4). The slope of w was calculated to be 0.48, 0.51, 0.57, and 0.53 for electrolyte
concentrations of 0.1, 0.5, 1.0, and 2.0 M, respectively. Therefore, the supplied value of the
b slopes suggested that the bulk faradic process was used as the storage mechanism on the
modified GC/NFO electrode.
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Galvanostatic charging and discharging techniques were used to characterize the charg-
ing and discharging of electrode surfaces. GCD techniques for modified GC/NFO@CNT
at various electrolyte concentrations are shown in Figure 8a–d. To prevent oxygen evo-
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lution, the charging/discharging test occurred in the potential window of 0 to 0.4 V vs.
Ag/AgCl. Otherwise, a charging current in the range of 5 to 17 A g−1 was picked. The
charging and discharging times where the faradic process is accelerated by increasing the
available OH− species can be increased by raising the KOH concentration. The modified
electrode GC/NFO@CNT showed capacitance at 1.0 M KOH as 1169, 1007, 898, 800, 771,
and 730 F g−1 for 5, 7, 10, 13, 15, and 17 A g−1, respectively. The computed capacitance for
the modified electrode is listed in Table 1.
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The charging–discharging ability was investigated in different KOH concentration
ranges to compare CNT-modified and pristine NFOs. Figure 9 shows GCD curves of the
GC/NFO electrode at different current ranges 5–17 A g−1 in ranges of KOH concentration
(0.1 to 2.0 M). Specific capacitance was calculated for 1.0 M KOH concentrations as follows:
450, 366, 344, 328, 311, and 295 F g−1 for 5, 7, 10, 13, 15, and 17 A g−1, respectively. Thus,
the increase in KOH concentration enhanced the capacitance of the modified electrode
due to the enhancement of available OH ions that are essential for the NiOOH/Ni(OH)2
redox reaction.

Figure 10 shows the relation between the charging current and capacitance of different
electrode surfaces in various electrolyte concentrations. Thus, change in capacitance with
the current was illustrated for GC/NFO@CNT (see Figure 10a). This is provided that rate
capabilities for different electrolytes are 58, 63, 62, and 68% for 0.1, 0.5, 1.0, and 2.0 M,
respectively. Figure 10b displays the relation between capacitance and current for modified
GC/NFO electrodes. The rate capabilities are estimated as 53, 67, 65, and 70% for 0.1, 0.5,
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1.0, and 2.0 M, respectively. Reduced charge and discharge times, which restrict charge
diffusion in the films, may be owed to the drop in specific capacitance observed at high
current densities [67].
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Furthermore, the durability of the capacitor performance is considered an essential
factor in judging the prepared materials. As represented in Figure 11a, the stability tests
for modified GC/NFO@CNT and GC/NFO electrodes were carried out in a solution of
1.0 M KOH at the charging–discharging current of 10 A g−1 cm−2. For both electrodes, the
capacitance retentions were estimated as 90.1 and 78.8% for GC/NFO@CNT and GC/NFO,
respectively. Furthermore, the coulombic efficiencies of different modified electrodes were
studied to evaluate the electrode performances. Figure 11b shows a slight decrease in
efficiency after 2000 cycles. Thus, the GC/NFO@CNT efficiency decreased by 5% compared
to 6.5% for GC/NFO counterparts.
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(d) GC/NFO electrodes.

The higher stability of CNT-modified composites regards outstanding properties
of CNTs in capacitance applications. Higher adsorption/desorption of OH− on CNTs
promotes the faradic process of Ni-based surfaces. Furthermore, GCD for the different
modified surfaces is represented in Figure 11c,d. After repeated cycling, a lower IR drop was
observed. Furthermore, there were higher charging and discharging times for activation of
the additional Ni centers. The outcomes of the modified GC/NFO and GC/NFO@CNT
were compared to other modified electrodes reported in the literature, as listed in Table 1.

Additionally, modified GC/NFO@CNT and pristine GC/NFO were compared using
a Ragone plot (Figure 12). The increases in both energy density and power density were
observed with electrolyte concentration. Whereas, the highest power and energy densities
were observed at 2.0 M of KOH. The provided values of energy density and power density
were (11.2 Wh kg−1, 330 W kg−1) and (30.2 Wh kg−1, 357 W kg−1) for pristine and modified
NFO, respectively.
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Table 1. Capacitance performance comparison between GC/NFO and others reported in the literature.

Electrode Preparation Electrolytes
Potential
Window

(V)
Cs/F g−1 Rate Capability Stability

(Cycle/Current) Ref.

GC/NFO Green method 1.0 M KOH 0.32 450 (5 A g−1) 65.1% (5 to 17 A g−1) 78.8% (2000 cycles
at 10 A g−1) This work

GC/NFO@CNT Green method 1.0 M KOH 0.4 1169 (at 5 A g−1) 62.4% (5 to 17 A g−1) 90.1% (2000 cycles
at 10 A g−1) This work

Fe-MnO2 Hydrothermal 0.5 M Na2SO4 1.0 145 F g−1 (1 A g−1) 71.4% (1 to 10 A g−1) 95.9% (5000 cycles
at 3 A g−1) [68]

Ni–Co double
hydroxide Electrodeposition 6.0 M KOH 0.45 1246 F g−1 (1 A g−1) 91.8% (1 to 10 A g−1) 80.1% (1000 cycles

at 10 A g−1) [69]

CoNiFe-layered
double hydroxide

In situ growth
method 6.0 M KOH 0.4 1203 F g−1 (1 A g−1) 77.1% (1 to 10 A g−1) 94% (1000 cycles at

20 A g−1) [70]

MnO2@CNTs/CNTs Vacuum
filtration 1 M Na2SO4 1.0 149 (0.2 A g−1) 85% (0.2 to 5 A g−1) 90% (5000 cycles at

50 mV s−1 [71]

Fe-MnO2@ CNF Chemical 1 M Na2SO4 1.0 210 (0.3 A g−1) 83% (0.3 to 10 A g−1) 94% (4500 cycles at
2 A g−1) [72]

RGO/Fe2O3 Chemical 2.0 M KOH 1.1 469.5 (4 A g−1) 49% (4 to 8 A g−1) 88% (5000 cycles at
8 A g−1) [73]

The improvement of the modified surface was obtained using the electrochemical
impedance technique. Comparative studies were employed to find out the effect of the
addition of CNTs to an NFO composite. Thus, Figure 13a represents a Nyquist plot
of the modified GC/NFO@CNT electrode for different electrolyte concentrations. The
shift in starting impedance values is attributed to a decrease in solution resistance with
electrolyte concentrations. Additionally, the obtained EIS data for the GC/NFO@CNT
surface indicated the mixing of charge transfer and diffusion processes. Whereas, the EIS
data fitting uses NOVA software, as referenced in Figure 13a inset. The equivalent circuit
deduced for GC/NFO@CNT contained two resistances referring to solution resistance and
charge transfer resistance. The presence of a constant phase element indicated the surface
roughness or inhomogeneous distribution over the electrode surface. Relatedly, diffusion
elements are connected in series with charge transfer cell. The fitting parameters for the
modified GC/NFO@CNT surface are listed in Table 2.
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Table 2. EIS parameters of modified GC/NFO@CNT electrode at different electrolyte concentrations.

KOH
(M)

Rs R1 Q1 W

R ( Ω cm2) R (Ω cm2) Y0 (Ω−1cm2s−n) n Y0 (Ω−1cm2s−n)

0.1 6.43 10.14 0.000656 0.1181 0.11318

0.5 3.71 6.14 0.012638 0.37549 0.16978

1.0 4.14 5.42 0.029051 0.23167 0.29914

2.0 2.28 3.43 0.019652 0.27925 0.54293

Figure 13b shows Nyquist plots of EIS measurements of GC/NFO in different con-
centrations of KOH. EIS results were fitted using NOVA software. The diameter of the
semi-circuit Nyquist plot reflects the electrode’s activity toward the faradic redox process.
Thus, increasing the concentration of the supporting electrolytes shifted the solution re-
sistance toward a lower value. Therefore, provided solution resistances for the GC/NFO
electrode were 4.14 and 2.28 Ω cm2 for 0.1 and 2.0 M KOH, respectively.

Additionally, Nyquist data were fitted as represented in the circuit-illustrated inset in
Figure 13b. The fitting circuit included Rs, corresponding to the resistance of the solution,
R1, and R2, attributed to the outer and inner layer resistances, respectively. Relatedly, Q1
and Q2 can be established as constant phase elements for the outer and inner surfaces,
respectively. The estimated EIS parameters for modified GC/NFO electrodes in different
KOH concentrations are listed in Table 3. Whereas, higher KOH concentrations lead to
higher faradic currents and consequently lower charge transfer resistances.

Table 3. EIS parameters of modified GC/NFO electrode at different electrolyte concentrations.

KOH
(M)

Rs R1 R2 Q1 Q2

R (Ω cm2) R (Ω cm2) R (Ω cm2) Y0 (Ω−1cm2s−n) n Y0 (Ω−1cm2s−n) m

0.1 12.11 17.11 40.15 0.0013199 0.2482 0.0043451 0.75486

0.5 6.87 8.87 19.21 0.0025709 0.31794 0.00089369 0.76123

1.0 1.96 2.95 14.96 0.0026587 0.40007 0.00079411 0.73669

2.0 1.46 2.65 12.79 0.002747 0.63216 0.0009814 0.81583
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4. Conclusions

The capacitance of nickel–iron-based spinel oxide in an alkaline medium was esti-
mated. Comparative studies between pristine NiFe2O4 and NiFe2O4@CNT showed the
dramatic effect of CNTs as carbon support for enhancing the faradic process of nickel. The
extended surface area, along with high electron transfer, facilitated the Ni(OH)2/NiOOH re-
dox process. The diffusion coefficients utilized by Randles–Sevcik equation were 2.84× 10−5

and 4.62 × 10−5 cm2 s−1 for pristine and modified NiFe2O4 electrodes.
The effect of electrolyte concentrations was studied for pristine and CNT-modified

NiFe2O4. Whereas, the capacitance increased by 46 up to 82% by increasing the electrolyte
from 0.1 to 2.0 M KOH.

On the other hand, the capacitance rate capability was observed as 65.1% (5 to 17 A g−1)
and 62.4% (5 to 17 A g−1) for NiFe2O4 and NiFe2O4@CNT electrodes. Both pristine and
CNT-modified surfaces showed high stability after 2000 cycles. Furthermore, the redox
process was estimated using EIS. The charge transfer resistances were estimated in 2 M
KOH as 3.43 and 12.79 Ω cm2 for GC/NiFe2O4@CNT and GC/NiFe2O4, respectively.
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