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The 29th International Conference on Amorphous and Nanocrystalline Semiconduc-
tors served as a continuation of the biennial conference that has been held since 1965.
ICANS 29 was held from 23 to 26 August at the campus of Nanjing University—a great
venue for global academic researchers, industrial partners, and policy-makers to come
together and share their latest progress, breakthroughs, and new ideas on a wide range of
topics in the fields of amorphous and nanocrystalline thin films and other nanostructured
materials, as well as device applications.

It was the first time that this prestigious event was held in China, and it provided the
perfect opportunity for young Chinese researchers and students to more actively participate
in academic exchange as a part of the conference and get to know the latest developments
in the fields in which they work. And despite a one-year delay due to the COVID-19
pandemic, ICANS 29 still attracted more than 300 paper submissions from 11 countries,
including on-site or online oral and poster presentations, which made it truly both a global
and hybrid conference.

For this Special Issue on “ICANS29”, twenty-one papers presented at the 29th ICANS
have been selected by the Journal of Nanomaterials for publication, following a rigorous
peer-review process. The scope of this Special Issue is to provide recent developments
and research activities in the field of amorphous and nanocrystalline semiconductors. This
includes topics such as Si-based, oxide, perovskite, 2D thin films and nanostructures, device
applications for TFTs, solar cells, and LEDs, as well as memory devices and emerging flexi-
ble electronics and neuromorphic applications. For example, new fabrication technologies
of amorphous and nanocrystalline thin films, electronic and optical characteristics, and
device applications are presented and discussed in [1–21], including theoretical work in an
ab initio study [9], controllable growth and formation of Si nanowires [1], nanocrystals [2],
and quantum dots [3,4]. There are also several papers that cover emerging memory devices.
These include phase change memory [5–9] based on amorphous chalcogenide thin films
and memristors based on transition metal oxides acting as an artificial synapse [10–12]; the
improvement of electro-luminescence (EL) efficiency Er-doped oxide thin films [13–15]; 2D
semiconductor thin films and perovskite for solar cells and aqueous Zn-air battery [16–19];
and flexible electronic materials for integrated strain sensors [20,21]. We anticipate that this
Special Issue should interest a broad audience in these related fields.

In terms of the content of this Special Issue, the first paper, from Yu’s group [1], de-
tails the process of growing a uniform ordered ultrathin Si nanowire (SiNW) array by a
nano-stripe-confined approach to produce highly uniform indium catalyst droplets via
a relatively new in-plane solid–liquid–solid growth model. The diameters of the ultra-
thin SiNWs can be scaled down to only 28 ± 4 nm, which opens up a reliable route to
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batch-fabricate and integrate ultrathin SiNW channels for various high-performance field
effect transistors (FET), sensors, and display applications. Xu’s group [2] describes using Si
nanocrystals (NCs)/SiC multilayer structures to form uniform SiNCs by plasma-enhanced
chemical vapor deposition (PECVD) via the interface-confinement growth approach. The
results show that the main EL near 750 nm can be obtained from 4 nm sized NCs. More-
over, it was found that the external quantum efficiency (EQE) of SiNCs/SiC multilayer
light-emitting diode (LED) can be improved by phosphor doping. Pi’s group [3] used
nonthermal plasma to synthesize Si quantum dots (QDs) hyper-doped with Er at the con-
centration of ~1% to obtain near-infrared (NIR) light emission at a wavelength of ~830 and
~1540 nm. Furthermore, an ultrahigh ηET (~93%) was obtained owing to the effective energy
transfer from SiQDs to Er3+. The results suggest that Er-hyper-doped SiQDs have great
potential for the fabrication of high-performance near-infrared (NIR) light-emitting devices.
Additionally, Miyazaki’s group [4] demonstrated the high-density formation of SiQDs with
Ge-core on ultrathin SiO2 with the control of highly selective chemical vapor deposition
for NIRLED applications. The results show that light emission is attributed to radiative
recombination between quantized states in the Ge-core with a deep potential well for holes
caused by electron/hole simultaneous injection from the gate and substrate, respectively.

The study of amorphous chalcogenide phase change characteristics and phase change
random access memory (PCRAM) devices is one of the most active areas of research fea-
tured in this conference. Song’s group [5] investigated the microstructural characterization
and electrical properties of the Ta-doped Sb3Te1 films. The results show that Ta1.45Sb3Te1
has enhanced thermal stability, reduced grain size, and increased the switching speed of
PCRAM devices. Wu’s group [6] reported the effect of carbon doping on Sb2Te3. It was
found that the face-centered cubic (FCC) phase of C-doped Sb2Te3 appeared at 200 ◦C
and began to transform into the hexagonal (HEX) phase at 25 ◦C. Based on the first prin-
ciple density functional theory calculation, it was found that the formation energy of the
FCC–Sb2Te3 structure decreases gradually with an increase in C-doping concentration.
In addition, Zheng’s group [7] studied the relationship between electron transport and
microstructure in mature Ge2Sb2Te5 (GST) alloy. The results indicated that the first resis-
tance dropping in GST films is related to the increase in carrier concentration. However,
the second drop is related to the increase in carrier mobility. In order to suppress the
crosstalk and provide a high on-current to melt the incorporated phase change materials
in the PCRAM array and 3D stacking chips, the authors [8] investigated the influence of
Si concentration on the electrical properties of the Si-Te ovonic threshold selector. The
results showed that the threshold voltage and leakage current remain basically unchanged
with the electrode size scaling down. In addition, Kolobov’s group [9] studied the effect
of doping in typical chalcogenide glass As2S3 with transition metals (TM), such as Mo,
W, and V, by using first-principal scaling simulations. The results indicated a strong ef-
fect of TM deposits on electronic structures of the a-As2S3 as well as an appearance of a
magnetic response, which suggests that chalcogenide glasses doped with TMs may be-
come a technologically important material. Besides the PCRAM devices, the memristive
devices based on a metal–insolate–metal (MIM) structure with a transition metal oxide
dielectric layer are yet another kind of emerging memory device discussed in this Special
Issue. Ma’s group [10] reported that the controllable memory window of the HfO2/TiOx
memristive device could be obtained by tuning the thickness ratio of sublayers. As an
artificial synapse based on HfO2/TiOx memristor, stable, controllable biological functions
have been observed, which provides a hardware basis for their integration into the next
generation of brain-inspired chips. In addition, they [11] described the a-SiNx:H-film-based
resistive switching memory and used the transient current measurements to discover the Si
dangling bonds nanopathway in a-SiNx:H resistive switching memory. Moreover, they [12]
also employed the capacitance–voltage (C-V) measurements to investigate how to control
the carrier injection efficiency in 3D nanocrystalline Si floating gate memory.

Sun’s group [13,14] studied the luminescence characteristics of metal oxides doped by
rare-earth elements. Firstly, the amorphous Al2O3-Y2O3:Er nanolaminate films prepared by
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atomic layer deposition with 1530 nm EL were obtained. It was found that the introduction
of Y2O3 into Al2O3 reduced the electric field for Er excitation, and the EL performance
was significantly enhanced. Additionally, a YBO3 phosphor co-doped by Bi3+ and Gd3+

was prepared via high-temperature solid-state synthesis. The strong photon emissions
were found under both ultraviolet and visible radiation, which could serve as a potential
application for skin treatment. On the other hand, an intriguing phenomenon was discov-
ered by Huang’s group [15]. The PL properties and stability of CsPbBr3 QDs films can be
enhanced by an a-SiCxNy:H encapsulation layer prepared using a very-high-frequency
PECVD technique. This method not only reduced the impact of air, light, and water on
the QDs but also effectively passivated their surface defect states, leading to improved
PL efficiency.

There are also two papers on solar cells from Wang’s group [16], which focus on how
to employ TiO2/SnO2 bilayer electron transport layer (ETL) to construct high-performance
perovskite solar cells (PSCs). Such a bilayer structure ETL can not only produce a larger
grain size of PSCs but also provide a high current density and reduced hysteresis. Their
other paper [17] demonstrated high-performance Ag/ITO/CuO2/ZnSnN2/Au hetero-
junction solar cells. The crucial technique employed was a nanocrystallization process,
which can greatly reduce the electron density of the ZnSnN2 sublayer. Song’s group [18] de-
signed 2D van der Waal (vdW) heterostructures, such as BP/BP/MoS2, BlueP/BlueP/MoS2,
BP/graphene/Mos2 and BlueP/graphene/MoS2, etc., trilayer structures, and stimulated
using the first-principles calculation to discover new optoelectronic properties. It is sug-
gested that sophisticated 2D trilayer vdW heterostructures can provide further optimized
optoelectronic devices. For the study of 2D materials, Song’s group [19] reported a stable
rechargeable aqueous ZN-air battery by using a heterogeneous 2D MoS2 cathode catalyst,
which demonstrated a capacity of 330mAhg−1 and a durability of 500 cycles (~180 h) at
0.5 mAcm−2. The hydrophilic and heterogeneous MoS2 catalysts were prepared through a
simple hydrothermal synthesis method.

Finally, this Special Issue features a study of the flexible electronic materials for sensor
device applications. Shi and Pan’s group [20,21] presented a scalable porous piezoresis-
tive/capacitive dual-mode sensor with a porous structure in polydimethylsiloxane (PDMS)
and with multi-walled carbon nanotubes (MLCNTs) embedded on its internal surface to
form a 3D spherical-shell-structured conductive flexible network. This kind of polymer
flexible sensor can be assembled into a wearable sensor that has a good ability to detect
human motion and can be used for simple gesture and sign language recognition. More-
over, they also proposed a novel approach that combines self-assembled technology to
prepare a high-performance flexible capacitive pressure sensor with a microsphere-array
gold electrode and a nanofiber nonwoven dielectric material. The results of COMSOL sim-
ulations and the experiments showed that the flexible capacitive pressure sensor exhibits
excellent performance in pressure measurements and has significant potential for electronic
skin applications.

The papers collected here only reflect a portion of the topics presented in this confer-
ence. We hope that this Special Issue will stimulate fruitful discussions and cooperation
between experts in academia and industry who work in the field of amorphous and
nanocrystalline semiconductors. It has also been a wonderful gift to have hosted the
ICANS29 in Nanjing, China.

We would like to thank all of the authors and the Nanomaterials Editorial Office for
their great contributors and excellent work.
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