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Abstract: A two-dimensional/two-dimensional (2D/2D) TiO2/ZnIn2S4 photocatalyst was reasonably
proposed and constructed by a two-step oil bath-hydrothermal method. TiO2 nanosheets uniformly
grown on the surface of ZnIn2S4 nanosheets and a synergetic effect between the TiO2 and ZnIn2S4

could highly contribute to improving the specific surface area and hydrophilicity of ZnIn2S4 as well
as accelerating the separation and transfer of photon-generated e−-h+ pairs, and thus enhancing the
visible-light photocatalytic degradation and H2 evolution performance of ZnIn2S4. Rhodamine B
(RhB) and tetracycline (TC) were simultaneously selected as the target pollutants for degradation in
the work. The optimum photocatalytic RhB and TC degradation properties of TiO2/ZnIn2S4-10 wt%
were almost 3.11- and 8.61-fold higher than that of pure ZnIn2S4, separately, while the highest
photocatalytic hydrogen evolution rate was also observed in the presence of TiO2/ZnIn2S4-10wt% and
4.28-fold higher than that of ZnIn2S4. Moreover, the possible photocatalytic mechanisms for enhanced
visible-light photocatalytic degradation and H2 evolution were investigated and proposed in detail.
Our research results open an easy pathway for developing efficient bifunctional photocatalysts.

Keywords: TiO2/ZnIn2S4; 2D/2D heterostructures; bifunctional photocatalysts; degradation;
hydrogen evolution

1. Introduction

Since the concept of sustainable development was proposed, the production of clean
energy and the treatment of wastewater with persistent organic pollutants have attracted
increasing attention from researchers [1–4]. Compared to conventional treatment methods,
photocatalysis technology by semiconductors has some advantages of clean, easy operation
and high efficiency, which is considered to be promising in the territory of alleviating energy
shortages and environmental crises [5,6]. Numerous scholars have been endeavoring
to probe newfashioned semiconductors photocatalysts with superior activity and good
stability to achieve effective hydrogen production and pollutant degradation in the past
few decades [7,8]. Among the semiconductors photocatalysts, ternary metal chalcogenide
semiconductors, such as CuCo2S4, ZnIn2S4, and CaIn2S4, have obtained exceeding attention
in the domain of photocatalysis research owing to the advantages of small band gaps,
outstanding photoconversion capacity, and good stability [9–11].
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ZnIn2S4, as an outstanding representative of ternary metal chalcogenides, possesses
two-dimensional (2D) nanosheet morphologies, a narrow bandgap of ca. 2.4 eV, and good
stability, and thus is recognized to be a suitable candidate for visible-light photocatalytic
hydrogen production and pollutant degradation [12,13]. Nonetheless, pristine ZnIn2S4
tends to agglomerate and displays low separation efficiency of the photogenerated electron-
hole pairs, which greatly restricts its photocatalytic property with hindering its application
in the photocatalytic realm [14]. Therefore, it is urgently needed to surmount the draw-
backs of pristine ZnIn2S4, and thus a series of modification strategies have been proposed.
Among all of them, constructing heterojunctions with other semiconductor materials can
immensely promote the separation of photogenerated electron-hole pairs, which has been
demonstrated to be a productive modification strategy [15,16].

Among the semiconductor materials, TiO2, as a wide bandgap (Eg~3.2 eV) semicon-
ductor material, is widely considered as an ideal candidate to fabricate heterojunction with
ZnIn2S4 due to its excellent stability, nontoxicity, and low cost [17], which has been widely
applied in photocatalytic H2 production [18], pollution degradation [19], CO2 reduction [20],
and organic synthesis [21]. More importantly, the energy band position of ZnIn2S4 is above
that of TiO2 allowing for photogenerated carriers transfer between ZnIn2S4 and TiO2, and
thus coupling ZnIn2S4 and TiO2 contributes to addressing the shortfalls of ZnIn2S4 [22].
So far, TiO2/ZnIn2S4 heterojunctions with different morphologies, such as 2D/3D TiO2
nanosheets/ZnIn2S4 nanostructure [23,24], 3D ZnIn2S4 nanosheets/TiO2 nanobelts [25],
and 1D TiO2 nanofibers/2D ZnIn2S4 nanosheet heterostructure [26], have been successfully
fabricated with significantly improving the separation efficiency and lifetime of carriers,
and thus boosting the photocatalytic activity of ZnIn2S4. It is widely believed that the
2D/2D structure with close contacts has potential advantages of large specific surface area,
excellent light absorption ability, and effective charge separation efficiency [27–29]. It was
revealed that due to the 2D/2D structure, Co3O4/ZnIn2S4 and TiO2/g-C3N4 photocatalysts
showed efficient separation of photogenerated carriers, and thus obtaining enhanced pho-
tocatalytic properties [30,31]. Therefore, it is necessary to fabricate 2D/2D TiO2/ZnIn2S4
nanostructures and investigate the enhanced photocatalytic activity.

Enlightened by the aforementioned studies, we attempt to design and synthesize the
TiO2/ZnIn2S4 nanocomposites with intimate contacted 2D/2D structure by growing TiO2
nanosheets on the surfaces of ZnIn2S4 nanosheets. The synergistic effect between TiO2 and
ZnIn2S4 promoted the photogenerated carriers’ separation as well as enhanced specific
surface area and hydrophilicity. As a result, the as-obtained composite photocatalysts
showed significantly enhanced photocatalytic H2 production rate and pollution removal
efficiency with excellent reusability. The charge separation and transfer mechanism on
the contact interface of TiO2 and ZnIn2S4 for the superior photocatalytic performance
was analyzed in-depth. This study provides a promising path for the construction of
highly efficient photocatalysts for simultaneous application in energy- and environment-
related areas.

2. Materials and Methods
2.1. Chemicals

HF (40% aqueous solution), tetraisopropyl titanate (TIPT, ≥95.0%), NaOH (≥99.0%),
chromic chloride (CdCl3, ≥99.0%), and indium chloride (InCl3, ≥99.9%) were purchased
from Macklin Biochemical Co., Ltd. (Shanghai, China). RhB (≥99.0%), TC (≥99.0%), Thioac-
etamide (TAA, ≥99.0%), anhydrous ethanol (≥99.7%), hydrochloric acid (HCl, 36.5%), and
zinc chloride (ZnCl2, ≥98.0%) were commercially available from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Ethylenediamine tetraacetic acid disodium (EDTA-
2Na, ≥99.5%), p-Benzoquinone (BQ, ≥99.5%), tertiary butyl alcohol (t-BuOH, ≥99.5%), and
triethanolamine (TEOA, ≥98.0%) were supplied by Shanghai Zhanyun Chemical Co., Ltd.
(Shanghai, China). All chemicals were utilized as received. The distilled water was obtained
using Water Purification System.
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2.2. Synthesis of ZnIn2S4 Nanosheets

ZnIn2S4 was prepared via an oil-bath process according to the former literature [12].
272 mg of ZnCl2, 442 mg of InCl3, and 300 mg of TAA were dissolved into 50 mL of deion-
ized water (pH = 2.5), and heated at 80 ◦C for 2 h. After cooling, ZnIn2S4 could be obtained
by separating, washing, and drying under a vacuum at 60 ◦C overnight. Finally, 500 mg of
ZnIn2S4 was dispersed into 100 mL of methanol with continuous ultrasound treatment.

2.3. Synthesis of TiO2/ZnIn2S4 Nanosheets

The specific reaction process was illustrated in Figure 1. Firstly, 10 mL of HF was
slowly dropped into a 100 mL of Teflon-lined autoclave reactor containing 25 mL of
tetrabutyl titanate and heated at 200 ◦C for 40 h. After cooling, the precipitates were
thoroughly separated by centrifugation and then dried under vacuum at 60 ◦C for overnight.
Subsequently, the precipitates (3.1 mg, 15.5 mg, 18.6 mg, and 31 mg) and ZnIn2S4 dispersion
liquid (19.6 mL, 18 mL, 17.6 mL, and 16 mL) were added in 0.1 M NaOH solution under
stirring for 24 h, separately, then washed with deionized water till the pH = 7 and dried
at 100 ◦C in a vacuum drying chamber. Finally, TiO2/ZnIn2S4 composites with different
weight percent of TiO2 (2 wt%, 10 wt%, 12 wt% and 20 wt%) were obtained via the
procedure and marked as TiO2/ZnIn2S4-2 wt%, TiO2/ZnIn2S4-10 wt%, TiO2/ZnIn2S4-
12 wt% and TiO2/ZnIn2S4-20 wt%, respectively. Further, the identical method was also
utilized to synthesize blank TiO2 in the absence of ZnIn2S4.
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Figure 1. Schematic illustration for the formation process of TiO2/ZnIn2S4 composites.

2.4. Characterization

The crystal phases were investigated via an X-ray diffractometer (XRD, XRD-6100,
Shimadzu, Kyoto, Japan) using Cu-Kα radiation (λ = 1.5406 Å). The morphologies and
lattice properties were analyzed by scanning electron microscopy (SEM, Sigma, Carl Zeiss,
Oberkochen, Germany) and transmission electron microscopy (TEM, JEM2100, JEOL, Kyoto,
Japan). The specific surface areas were determined by the physical adsorption of N2 on a
Micromeritics (ASAP 2020, Micromeritics, Atlanta, GA, USA) using the Brunauer–Emmett–
Teller (BET) equation. The chemical state was analyzed by X-ray photoelectron spectroscopy
(XPS, Thermo Scientific K-Alpha, Thermo Fisher, Waltham, MA, USA). The light absorption
as well as charge separation and transfer efficiency were studied by ultraviolet-visible
diffuse reflection spectroscopy (UV–vis DRS, Lambda 750, PerkinElmer, Waltham, USA),
photoluminescence spectroscopy (PL, ZolixLSP-X500A, Zolix, Beijing, China), fluorescence
lifetime spectrophotometer (C11367, Quantaurus-Tau, Hamamatsu, Japan), and three-
electrode photoelectrochemical cell system (CHI660E, Chenghua, Shanghai, China). The
water contact angles were measured by a contact angle meter (HARKE-SPCA, HARKE,
Beijing, China). TOC analyzer (TOC-2000, Metash, Shanghai, China) was utilized to
investigate the total organic carbon (TOC) of the residual solution.

2.5. Density Functional Theory (DFT) Calculation

To calculate the band gaps and work functions of TiO2 and ZnIn2S4, the model of
TiO2 (1 × 2 × 1 supercell) and ZnIn2S4 (1 × 1 × 2 supercell) were first built and given
in Figure S1. Subsequently, the calculations were performed by utilizing the Vienna ab
initio Simulation Package (VASP), which implements the DFT with a generalized gradient
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approximation (GGA) and super-soft pseudopotential method. Calculations were carried
out by utilizing the Predew–Burke–Ernzerhof (PBE) scheme. The electron wave functions
were described by the projector augmented wave (PAW) method with a cutoff energy of
300 eV and a K-point of 2 × 3 × 2.

2.6. Photocatalytic Hydrogen Generation

The photocatalytic hydrogen experiments were conducted in an automatic online
gas analysis system (Labsolar-6A, Perfectlight, Beijing, China). A Xenon lamp of 300 W
(PLS-SXE 300C, λ > 420 nm) was employed to supply the visible-light source. During the
process, 20 mg of as-fabricated photocatalysts were added into a 60 mL of mixed solution
(50 mL deionized water and 10 mL of TEOA) without adding H2PtCl6, and then the reaction
container was installed into the photocatalytic reaction instrument and the distance between
the light source and the solution was about 16 cm. Ahead of starting the reaction, the entire
installation was vacuumed to remove the air until the system pressure was beneath 1.0 Kpa.
Then, turned on the light source and operated the program, automatic sampling every
60 min. In the whole reaction process, the temperature of circulating cooling water was
always controlled at about 5 ◦C. Finally, the generated blended gas was transferred to gas
chromatography (GC9790) equipped with a TCD detector (LabSolar-IIIAG, Perfectlight,
Beijing, China) to further detect and calculate the production of hydrogen. To investigate
the reusability of the binary heterostructure, recycled hydrogen production was carried
out four times using TiO2/ZnIn2S4-10 wt% as the photocatalyst. The apparent quantum
efficiencies (AQE) for H2 evolution of λ = 400, 420, and 500 nm were determined in a 75 mL
Pyrex glass reactor. The apparent quantum efficiency (AQE) could be determined using the
following equation:

AQE =
2 × the number of H2 evolved molecules

the number of incident photons
× 100%

2.7. Photodegradation Activity Evaluation

The visible-light photocatalytic degradation activity was evaluated by the degradation
of fresh TC (10 mg/L) and RhB (30 mg/L) solution. The light source was provided by 500 W
Xenon light (PLS-SXE 500C) equipped with a UV cutoff filter (λ > 420 nm). Firstly, 10 mg
of photocatalyst was dispersed into the 50 mL of TC solution and 50 mL of RhB solution,
respectively. Then, the above-mentioned solution was transferred to the photocatalytic
reaction apparatus (XPA-7) and kept stirring in the dark for 60 min to obtain an adsorption-
desorption equilibrium. After turning on the Xenon light, the photocatalytic degradation
reaction was starting. At a given interval, a 4 mL aliquot of mixture was taken out utilizing a
syringe with a needle and then filtrated using a 0.22 µm Millipore filter to obtain the residual
solution, the concentration of which at the maximum absorption wavelength (355 nm for
TC and 554 nm for RhB) was monitored using a PerkinElmer UV–vis spectrophotometer
(Lambda 35). Moreover, the recycled photodegradation experiments were carried out four
times using TiO2/ZnIn2S4-10 wt% as the photocatalyst at the same condition. Once the
degradation experiment was over, the remaining sample in the beaker was immediately
recycled by separation, washing, and drying for the next cyclic degradation experiment.
The degradation efficiency (De %) was calculated by the equation:

De % =
C0 − Ct

C0
× 100%

In the formula, C0 and Ct denote the concentrations at the initial time and after each
stage of degradation, separately. As for the trapping experiments, equal amounts (1.0 mM)
of scavengers were added to the TC solution to capture active radicals.

3. Results and Discussions

The text continues here. The XRD patterns were used to recognize the phase composi-
tion and the structure of samples, and the results are exhibited in Figure 2. The diffraction
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peaks observed at 21.6◦, 27.7◦, 47.2◦, 52.7◦, and 55.6◦ can be well attributed to the (006),
(102), (110), (116), and (022) crystal planes of hexagonal ZnIn2S4 (JCPDS No. 72-0773) [32].
For pure TiO2, a set of diffraction peaks located at 25.3◦ (101), 37.8◦ (004), 48.1◦ (200),
54.1◦ (105), 55.1◦ (211) and 62.8◦ (204) are consistent with the anatase TiO2 (JCPDS No.
21-1272) [33]. The diffraction peaks of ZnIn2S4 and TiO2 can be seen simultaneously in
the XRD patterns of TiO2/ZnIn2S4 composites, the characteristic peak intensities of TiO2
generally increased, while the diffraction peaks of ZnIn2S4 gradually decrease with the
increased content of TiO2. Further, no other peaks of the third (impurity) phase are detected
in all XRD patterns, implying the successful construction of the TiO2/ZnIn2S4 composites.
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SEM and TEM were utilized to observe the morphology of the catalysts. As displayed
in Figure 3a, pristine TiO2 showed a 2D nanosheet structure with different sizes. As for
pure ZnIn2S4, a nanoflower-like structure assembled by the large number of nanosheets
can be seen in Figure 3b. After coupling ZnIn2S4 with TiO2, SEM (Figure 3c) and TEM
(Figure 3d) images indicate TiO2 nanosheets grow on the surface of ZnIn2S4 nanosheets,
forming an intimate 2D/2D contact interface between ZnIn2S4 and TiO2. The elemental
distribution in the TiO2/ZnIn2S4 composite was analyzed using SEM-energy-dispersive
X-ray spectroscopy (Figure S3), and the result confirmed the homogeneous coexistence of
Ti, O, Zn, In, and S elements. Moreover, high-resolution TEM analysis was conducted to
investigate the microstructure information of the TiO2/ZnIn2S4-10 wt% composite, and the
result is depicted in Figure 3e, the lattice fringes with d spacings of 0.352 and 0.322 nm can
be seen, which can be assigned to TiO2 (101) and ZnIn2S4 (102) facets, separately [34,35].
The above results further indicate the successful formation of the TiO2/ZnIn2S4 hybrid.

XPS was explored to be aware of the surface element composition and chemical state
of the TiO2/ZnIn2S4-10 wt% composite. As shown in Figure 4a, the XPS survey spectrum
of TiO2/ZnIn2S4 reveals the coexistence of Ti, O, S, Zn, and In elements, which is in keeping
with the EDS test results. Figure 4b presents the XPS spectrum of O 1s, two characteristic
peaks located at 530.6 and 531.92 eV can be attributed to the Ti-O bond and the –OH group,
respectively [36]. The high-resolution XPS spectra of Ti 2p showed two characteristic
peaks located at 458.34 and 463.89 eV (Figure 4c), assigning to Ti 2p3/2 and Ti 2p1/2,
separately [37]. In the high-resolution S 2p spectrum (Figure 4d), the binding energies of
161.06 and 162.31 eV can be assigned to the S 2p3/2 and S 2p1/2, respectively, suggesting the
occurrence of S2− [38]. In Figure 4e, the peaks centered at 444.30 and 452.40 eV are ascribed
to In 3d5/2 and In 3d3/2, assigning to In3+ binding state [39]. As for Zn 2p (Figure 4f), the
peaks centered at 1021.34 and 1044.36 eV ascribed to 2p3/2 and 2p1/2, respectively, which
proves the existence of Zn2+ [40].
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The specific surface area and water contact angles were measured to investigate the
adsorption performance of photocatalysts, and the results are displayed in Figure 5. The
nitrogen adsorption-desorption isotherms of TiO2, ZnIn2S4, and TiO2/ZnIn2S4-10 wt%
showed type IV isotherms with the hysteresis loop of mesoporous structures (Figure 5a),
the specific surface area of TiO2/ZnIn2S4-10 wt% was larger than that of TiO2 and ZnIn2S4.
It can be seen that the average pore sizes are between 2 and 50 nm (Figure 5b), which further
confirmed the formation of a mesoporous structure. Meanwhile, water contact angles of
TiO2, TiO2/ZnIn2S4, and ZnIn2S4 were also measured to analyze the hydrophilicity and
hydrophobicity of prepared materials. It can be observed from Figure 5c–e that contact
angles of ZnIn2S4, TiO2/ZnIn2S4-10 wt% and TiO2 were, respectively, 72.9◦, 15.6◦, and 8.9◦,
manifesting the hydrophilicity of ZnIn2S4 can be improved by coupling with TiO2. These
results illustrated that interface contact exists between pollutants and the photocatalysts
owing to the enhanced specific surface area and hydrophilicity, and thus it is expected to
obtain excellent photocatalytic performance.
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The photoabsorptive behavior of TiO2, ZnIn2S4, and TiO2/ZnIn2S4-10 wt% was de-
tected via UV–vis DRS spectra as shown in Figure 6a, the absorption wavelength of
pristine ZnIn2S4 with steep edge was at approximate 560 nm in the visible-light areas,
which presented favorable absorption capacity both in the visible and UV light, while
the absorption edge of absolute TiO2 was located in about 406 nm. The photoabsorption
ability of TiO2/ZnIn2S4-10 wt% exhibits a very close absorption profile with ZnIn2S4 with
slightly diminished absorption and blue-shifted absorption edge, suggesting the intro-
duction of TiO2 has a slight influence on the light absorption property of ZnIn2S4. As
depicted in Figure 6b,c, the band gaps of TiO2 and ZnIn2S4 were calculated as 3.24 and
2.48 eV based on the equation: (αhν)1/n = A(hν−Eg) [41], which were roughly matched
with the results of DFT calculation (Figure S3). Valence band XPS (VB-XPS) of TiO2
and ZnIn2S4 were also conducted to further understand the band structure of TiO2 and
ZnIn2S4. As demonstrated in Figure 6d, the EVB-XPS values of pure TiO2 and ZnIn2S4
were 2.95 and 1.49 eV, respectively. Therefore, the VB potentials of the normal hydrogen
electrode (EVB–NHE, pH = 7) of TiO2 and ZnIn2S4 were determined to be 2.71 and 1.25 eV
based on the EVB vs. NHE = ϕ + EVB-XPS − 4.44, where ϕ is the work function (4.2 eV) of the
XPS analyzer [42], while the ECB vs. NHE values of TiO2 and ZnIn2S4 could be computed as
−0.53 and −1.23 eV using the equation: ECB = EVB − Eg [43]. Therefore, the overall band
structure positions of TiO2 and ZnIn2S4 can be obtained and shown in Figure S4.

To uncover the positive influence of constructing heterojunction on the catalytic per-
formances of ZnIn2S4, the separation and migration behaviors of photogenerated charges
were deeply investigated. First, the PL spectra of ZnIn2S4 and TiO2/ZnIn2S4-10 wt% were
measured to monitor the recombination process of photoinduced charge carriers. Gen-
erally, the dramatically reduced PL intensity is regarded as a signal of effective charge
separation [44]. As shown in Figure 7a, TiO2/ZnIn2S4-10 wt% exhibited a lower PL inten-
sity than ZnIn2S4, suggesting a higher separation efficiency of photogenerated carriers in
TiO2/ZnIn2S4-10 wt% composite. The time-resolved photoluminescence (TRPL) spectra
were also acquired to investigate the detailed information about the decay behavior of
photogenerated carriers, and the results are shown in Figure 7b. The average fluorescence
lifetime (τavg) of TiO2/ZnIn2S4-10 wt% (581 ps) was longer than pristine ZnIn2S4 (543 ps),
implying that the coupling ZnIn2S4 with TiO2 can helpfully prevent the recombination of
photoinduced carriers and obtain a longer fluorescence lifetime. To further clarify the en-
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hanced photogenerated charge transfer and separation efficiency, the photoelectrochemical
performance was characterized and analyzed by transient photocurrent responses and EIS
tests. As demonstrated in Figure 7c, the TiO2/ZnIn2S4-10 wt% showed a higher photocur-
rent density than ZnIn2S4, and the average photocurrent density of TiO2/ZnIn2S4-10 wt%
was raised to be 2.11 mA·cm−2, approximately 1.5-fold larger than that of pristine ZnIn2S4
(1.39 mA·cm−2), implying that the construction of TiO2/ZnIn2S4 composite can promote
the photoexcited charge carrier transfer. Furthermore, the EIS plot of TiO2/ZnIn2S4-10 wt%
composite exhibited a smaller semicircle than pristine ZnIn2S4, as observed in Figure 7d,
manifesting a lesser electric resistance and more efficient charge transfer process existing in
the TiO2/ZnIn2S4-10 wt% composite. These optical and photoelectrochemical properties
demonstrated that the formation of TiO2/ZnIn2S4 heterojunction was capable of elevat-
ing the separation and transfer efficiency of photogenerated carriers, thus obtaining the
enhanced photocatalytic performance.

The visible-light photocatalytic H2 generation activities of TiO2, ZnIn2S4, and TiO2/
ZnIn2S4 composites were evaluated in the presence of TEOA sacrificial reagent. As shown
in Figure 8a, pure ZnIn2S4 possessed a low photocatalytic performance due to the high
recombination rate of photoexcited charge carriers and photocorrosion, while pristine TiO2
had almost no catalytic activity, which could be attributed to its wide bandgap [45]. Notably,
the photoactivity of ZnIn2S4 was gradually improved along with the introduction of TiO2.
Among all composites, the TiO2/ZnIn2S4-10 wt% composite showed the optimal H2 rate of
650 µmol/h/g, which was 4.28-fold higher than that of pristine ZnIn2S4 (Figure 8b). The
recycling tests were also conducted in the same reaction condition to investigate the durability
performance of TiO2/ZnIn2S4-10 wt% photocatalyst. As is demonstrated in Figure 8c, the
H2 production amount throughout four successive cycles barely changed. Moreover, the
crystal structure and morphology of TiO2/ZnIn2S4-10 wt% showed no noticeable changes by
comparing the XRD pattern (Figure S5a) or SEM image (Figure S5b) of a used sample with the
fresh sample. These test results manifested that the TiO2/ZnIn2S4-10 wt% composite possesses
good photocatalytic stability. To further clarify the driving force in the photocatalytic process,
the AQEs of TiO2/ZnIn2S4-10 wt% photocatalyst at 400, 420, and 500 nm were calculated as
1.3, 1.1, and 0.1%, respectively (Figure 8d), which exhibits a similar trend with the adsorption
spectrum, indicating that the H2 production reaction is a photocatalytic driven process.
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To confirm the performance multiformity of the as-prepared samples, the photocat-
alytic degradation capacities of all samples were also investigated by using colorless TC and
colored RhB as the simulated organic pollutants. The TC and RhB photodegradation curves
of TiO2, ZnIn2S4, and TiO2/ZnIn2S4 composites were illustrated in Figures 9a and S6a,
respectively. Almost no changes in the concentration of TC and RhB were noticed in the
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absence of a catalyst, suggesting that the self-degradation process could be ignored. The
pure TiO2 displayed weak degradation activities within 60 min, while ZnIn2S4 showed high
degradation activities than TiO2 due to a wider visible-light response range. With respect
to the TiO2/ZnIn2S4 composites, all composites showed better photocatalytic performance
than TiO2 and ZnIn2S4. Among them, TiO2/ZnIn2S4-10 wt% possessed the optimum
performance, and almost 95% of TC and 93% of RhB could be degraded. The photocatalytic
activity was enhanced when the mass content of TiO2 increased from 2% to 10%, then
decreased as TiO2 content further increased to 12% or even more, which may be attributed
to excessive TiO2 shielding the light absorption. To obtain the reaction rate constant “k”,
the photodegradation curves were further kinetically fitted by using the pseudo-first-order
equation: −ln (C/C0) = kt, the results were displayed in Figures 9b and S6b, separately.
The k value of TiO2/ZnIn2S4-10 wt% composite was highest compared with other samples
and was up to 0.04115 min−1 for TC and 0.04168 min−1 for RhB, which was almost 111 and
190 fold that of pure TiO2, and 26 and 6.65 fold that of individual ZnIn2S4. Meanwhile,
the mineralization capacities of all kinds of photocatalysts were investigated by TOC
measurement. As demonstrated in Figures 9c and S6c, the TOC removal efficiencies of
TiO2/ZnIn2S4 composites distinctly overtopped TiO2 and ZnIn2S4 under the irradiation of
visible light. Among them, the TiO2/ZnIn2S4-10 wt% composite showed the highest TOC
removal efficiency (83.5% for TC and 85.6 for RhB), which formed the correspondence with
its doughty photocatalytic degradation abilities, and confirmed that the TiO2/ZnIn2S4 had
high mineralization capacities. To determine the reusability of TiO2/ZnIn2S4-10 wt% in
the photocatalytic process, the photocatalytic cycle experiments were performed to inves-
tigate the reusable performance. As shown in Figures 9d and S6d, the photodegradation
efficiency scarcely had changed after undergoing four consecutive cycles. In addition,
the XRD pattern (Figure S7a,c) and SEM image (Figure S7b,d) of TiO2/ZnIn2S4-10 wt%
illuminated the crystal structure and morphology of TiO2/ZnIn2S4-10 wt% before and after
photodegradation cycling remained unchanged. The results demonstrated the splendid
degradation stability of TiO2/ZnIn2S4-10 wt% during the photocatalytic process.
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The work functions (Φ) were calculated to investigate the route of charge transfer
at the contact interface of ZnIn2S4 and TiO2, and the results are given in Figure 10a. It
was observed that the Φ of ZnIn2S4 is lower than that of TiO2, and thus the photoinduced
electrons could transfer from ZnIn2S4 to TiO2 when ZnIn2S4 and TiO2 came in contact to
construct a heterojunction. Subsequently, EDTA-2Na, t-BuOH, and BQ were selected in
sequence as the scavengers of h+, •OH, and •O2

− to further identify the roles of active
species during the photodegradation process. As recorded in Figure 10b, varying degrees of
photocatalytic activity suppression were observed after sacrificial agents were added with
an order BQ > EDTA-2Na > t-BuOH, indicating •O2

− and h+ are main and secondary active
substances, separately, while •OH has minimal impact on the photocatalytic reactions.
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Figure 10. (a) Work functions of the TiO2 (001) and ZnIn2S4 (001) surfaces; (b) photocatalytic
degradation performance of TC on TiO2/ZnIn2S4-10 wt% with various scavengers.

The possible mechanisms for boosting photocatalytic pollutant degradation and H2
production performances of TiO2/ZnIn2S4 composites were proposed and illustrated in
Figure 11 based on the aforementioned discussion. When TiO2 nanosheets grew on the
surface of ZnIn2S4 nanosheets, a closed contact interface was formed between ZnIn2S4
and TiO2. Under visible-light irradiation, TiO2 could not absorb visible light due to its
large band gap energy, while the electrons on the VB of ZnIn2S4 could be easily excited to
its CB and generate electron-hole pairs because of the small band gap energy. According
to the DFT calculated results of work functions, the electrons would transfer from the
CB of ZnIn2S4 to that of TiO2, while h+ left on the VB of ZnIn2S4, which leads to the
spatial separation of electrons and holes with higher redox powers. For H2 production,
the photogenerated e− could easily reduce the surface-adsorbed protons to H2 with h+

being consumed by TEOA. Different from the H2 production process, electrons on the
CB of TiO2 would firstly react with O2 to obtain •O2

− in the photodegradation process.
Subsequently, the h+ and •O2

− participated in the photodegradation reaction due to their
strong oxidation ability. As a result, the improved separation efficiency of photoinduced
charge carriers would provide more carriers to participate in the photocatalytic reaction
process to acquire enhanced photocatalytic performance.
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4. Conclusions

In summary, a 2D/2D heterojunction consisting of ZnIn2S4 nanosheets and TiO2
nanosheets was fabricated by a facile two-step synthesis method for photocatalytic H2
evolution and pollutant degradation. The small TiO2 nanosheets deposited on the surface
of large ZnIn2S4 nanosheets, resulting in the formation of the close 2D/2D heterointer-
face contact, which contributes to providing sufficient and short paths for the separation
and transfer of photoinduced charge. All TiO2/ZnIn2S4 heterojunction photocatalysts
possess higher photocatalytic activities than pure ZnIn2S4 and TiO2. Among them, the
TiO2/ZnIn2S4-10 wt% photocatalyst exhibits optimal H2 evolution rate (650 µmol/h/g) and
pollution degradation efficiencies (95% for TC and 93% for RhB) with excellent photocat-
alytic stability during four consecutive test cycles. The enhanced photocatalytic properties
are believed to have originated from the accelerated charges separation and transfer as
well as enhanced specific surface area and hydrophilicity. This work provides a practical
strategy for preparing ZnIn2S4-based heterojunctions to act as highly efficient bifunctional
photocatalysts for energy and environmental application.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano13162315/s1, Figure S1: structure models;
Figure S2: The elemental mapping images; Figure S3: Calculated band structures; Figure S4: The
energy band structure; Figure S5: XRD patterns and SEM image in the recycled photocatalytic H2
development; Figure S6: Photocatalytic degradation rate, pseudo-first-order kinetics fitted curves,
TOC removal rate and maintenance of catalytic performance; Figure S7: XRD patterns and SEM
images in the recycling photocatalytic degradation.
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