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Abstract: Molybdenum disulfide (MoS2) is a layered transition metal-sulfur compound semiconduc-
tor that shows promising prospects for applications in optoelectronics and integrated circuits because
of its low preparation cost, good stability and excellent physicochemical, biological and mechanical
properties. MoS2 with high quality, large size and outstanding performance can be prepared via
chemical vapor deposition (CVD). However, its preparation process is complex, and the area of
MoS2 obtained is difficult to control. Machine learning (ML), as a powerful tool, has been widely
applied in materials science. Based on this, in this paper, a ML Gaussian regression model was
constructed to explore the growth mechanism of MoS2 material prepared with the CVD method. The
parameters of the regression model were evaluated by combining the four indicators of goodness of
fit (r2), mean squared error (MSE), Pearson correlation coefficient (p) and p-value (p_val) of Pearson’s
correlation coefficient. After comprehensive comparison, it was found that the performance of the
model was optimal when the number of iterations was 15. Additionally, feature importance analysis
was conducted on the growth parameters using the established model. The results showed that the
carrier gas flow rate (Fr), molybdenum sulfur ratio (R) and reaction temperature (T) had a crucial
impact on the CVD growth of MoS2 materials. The optimal model was used to predict the size of
molybdenum disulfide synthesis under 185,900 experimental conditions in the simulation dataset so
as to select the optimal range for the synthesis of large-size molybdenum disulfide. Furthermore, the
model prediction results were verified through literature and experimental results. It was found that
the relative error between the prediction results and the literature and experimental results was small.
These findings provide an effective solution to the preparation of MoS2 materials with a reduction in
the time and cost of trial and error.

Keywords: machine learning; Gaussian regression model; CVD; MoS2; area prediction

1. Introduction

MoS2 is a typical layered transition metal-sulfur compound. Single-layer MoS2 is a
sandwich structure with S-Mo-S overlapping, which has a good band gap structure [1].
Under certain external conditions, it will transit from an indirect to direct bandgap semi-
conductor, exhibiting strong photoluminescence when confined in a 2D monolayer [2]. It is
expected to be a candidate for next-generation application in the field of nanoelectronics
devices, which has aroused the interest of many researchers. As early as 2011, B. Radisavl-
jevic and A. Radenovic et al. reported that semiconductors made of single-layer MoS2 thin
films can be used to manufacture electronic chips with smaller volume, better performance
and higher efficiency [3]. In recent years, the preparation of large-area, high-quality MoS2
thin films has become the focus of research, and its application areas have been constantly
expanding, with typical representatives being next-generation nanoelectronics [4,5], biosen-
sors [6], solar cells [7,8], etc. However, the area of MoS2 has an extremely important impact
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on the characteristics of the prepared devices. For example, a new single heterojunction
solar cell structure based on n-type MoS2 and WS2 was prepared with its photovoltaic
characteristics being greatly affected by the area of MoS2 and WS2 [9]. At present, the
common method for preparing MoS2 is chemical vapor deposition (CVD). CVD, a method
of reacting chemical gases or vapors on the surface of a matrix to synthesize coatings
or nanomaterials, is the most widely used technology in the semiconductor industry for
depositing a variety of materials, including a wide range of insulating materials, most metal
materials and metal alloy materials. In theory, it is simple: after the introduction of two or
more gaseous raw materials into a reaction chamber, they chemically react with each other
to form a new material, which is deposited on the wafer surface. The single layer of MoS2
generated on the substrate often has a certain triangular shape, and the reaction needs to
be carried out under high-temperature conditions. If the reaction time is too long, certain
sulfur, molybdenum and their compounds will be deposited on the generated MoS2, which
will have a considerable impact on the area of the generated MoS2. Lee et al. obtained
a continuous MoS2 film with a size of up to 2 mm through the vulcanization of MoO3,
but the film was not a uniform monolayer [10]. Hence, the preparation of large-area and
high-quality MoS2 thin films remains a challenge.

With the deepening of computer science research, an increasing number of machine
learning algorithms, such as support vector machines, naive Bayes, artificial neural net-
works, decision trees, etc., are being widely used. In chemical synthesis, James M. Tour et al.
used the parameters of mass, capacitance, voltage, pretreatment and duration and then
applied an ensemble of models to predict the yield of graphene, an extremely important
material in wastewater treatment [11]. Chen et al. successfully achieved the two-step
hydrothermal synthesis of VO2 under the guidance of machine learning and evaluated the
performance of the machine learning model. The RF model had the best performance, with
a prediction accuracy of 87.27% [12]. Chen et al. realized the controllable synthesis of mul-
ticolor discs with the assistance of machine learning, providing new ideas for the rational
design and improvement of optical disc performance in the future [13]. Our research group
successfully achieved controllable preparation of MoS2 using an extreme gradient boosting
(XGBoost) model with an average prediction accuracy of over 88% and an AUC value of
up to 0.91. The multilayer perceptron (MLP) model, with an average prediction accuracy of
75% and an AUC value of 0.8, was used to successfully realize the controllable preparation
of MoS2 materials [14]. Machine learning can largely compensate for the shortcomings of
cumbersome experimental steps, long experimental time and high cost in the traditional
material research process. However, further exploration is needed to prepare MoS2 films
with larger areas for better applications.

Therefore, a Gaussian regression model was constructed using machine learning via
the collection of 200 sets of experimental data obtained in the laboratory and literature.
Furthermore, the best model parameters were found to optimize the synthesis conditions
and predict the experimental results by changing the iteration number of the model cross
validation, thus providing theoretical support for the MoS2 preparation of a given area.

2. Methods

Machine learning reveals the potential relationship between synthesized feature data
through training and learning models and then fits the experiments to select the optimal
experimental synthesis conditions. The research of machine learning in materials mainly
includes, as shown in Figure 1, data acquisition and processing, feature engineering, model
building, simulation data analysis and verification [15]. MoS2 is prepared by adding
precursors (molybdenum and sulfur sources) and controlling the macroscopic parameters
of the reaction (such as reaction temperature, the ratio of the two molybdenum trioxide and
sulfur element precursors, carrier gas flow rate, reaction time, etc.). For the purposes of this
paper, the larger the side-length size of the synthesized triangle MoS2 is, the larger its area.
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Figure 1. Machine learning-assisted CVD synthesis of a large-area MoS2 workflow diagram.

2.1. Data Acquisition and Processing

To form a dataset, 200 sets of experimental conditions for CVD synthesis of MoS2 were
collected from the literature and laboratory (see Table S1 from the Supporting Information).
The molybdenum-to-sulfur ratio, carrier gas flow rate, reaction temperature, reaction
time and side-length dimensions of the synthesized triangular MoS2 were recorded. Due
to the different selection of samples, the collected data were preprocessed to remove
some duplicate experimental conditions and results. Subsequently, 200 sets of data in the
dataset were statistically analyzed, with the scatterplots of each characteristic variable and
experimental results being shown in Figure 2. The 200 sets of experimental condition data
in our dataset originated from different laboratories, and there might have been a few subtle
differences in the experimental conditions. In our study, apart from the four characteristic
parameters selected, other parameters were not the main factors affecting the experimental
results. Rather, the other parameters were idealized and considered consistent during the
experiment process.

The triangular MoS2 edge lengths synthesized with CVD in the dataset ranged from
0.5 µm to 300 µm. Among them, those greater than 30 µm were defined as delimiting a
large area [16,17] and accounted for 48% of the total. The area size of MoS2 corresponds to
different experimental conditions, and there is an urgent need for a machine learning model
that can predict the generation area of MoS2 based on the input of experimental conditions.
In this study, the Gaussian regression model was used to fit the influence of each feature
parameter on the experimental results to predict the area size of the obtained MoS2.
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(b) carrier gas flow rate, (c) reaction temperature, (d) reaction time.

2.2. Feature Engineering

In order to reduce model computation time and make the fitting effect of the regression
model better, it is necessary to select the feature data that are a completely decisive factor
for the synthesized area of MoS2. Four characteristic parameters, including the ratio of
two precursors (molybdenum trioxide and sulfur, R), carrier gas flow rate (Fr), reaction
temperature (T) and reaction time (Rt) were selected during the establishment of the model.
The characteristics of the dataset for describing the potential relationship between the size
of MoS2 and the selected characteristic values are shown in Table 1; the distribution of each
feature parameter data in the dataset is described through means and standard deviations.
In machine learning, the Pearson correlation coefficient is a statistical data test used to reflect
the degree of similarity between two variables. It can be used to determine whether the
relationship between the extracted feature descriptors and categories is positive, negative
or noncorrelated. The correlation among the four selected feature parameters is shown in
Figure 3. Among them, the molybdenum-to-sulfur ratio was positively correlated with
the reaction temperature and reaction time. In addition, the reaction time and the carrier
gas velocity were also positively correlated. Among all the correlation coefficients, the
maximum value was 0.21, indicating that the independence of the different variables was
good and that there would be little influence exerted between them.
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Table 1. Characteristics of the MoS2 dataset prepared with CVD.

Notation Feature Unit Mean Standard Deviation

R(Mo:S) Molybdenum-to-sulfur ratio 0.12 0.18
Fr Gas flow rate sccm 105.10 120.70
T Reaction temperature K 1045.36 82.41
Rt Reaction time min 22.39 33.15
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There are many experimental variables in the preparation of MoS2. In addition to
the above four characteristic parameters, there were other parameters that needed to be
considered in the actual CVD preparation of the MoS2 experiment, such as the heating rate
during the reaction, potential addition of NaCl, boat configuration, and the pressure in the
quartz tube. In the reaction process, NaCl can be added in order to promote the formation
of a monolayer of molybdenum disulfide film and the increase of film area. Studies have
shown that mixing metal oxides with salts can generate droplets or metal chloride oxides,
which increase the mass flux and vapor pressure of the Mo source as well as the reaction
and nucleation rate [18]. However, it does not affect the resulting molybdenum disulfide
film. The boat configuration has a certain influence on the uniformity of the molybdenum
disulfide film. It has been also found that the heating rate of the reaction is closely related
to the pressure in the quartz boat during the reaction. If these two parameters are trained
in learning, the reliability of the model will be reduced, which will affect the model
evaluation index and prediction results. The environmental conditions of the laboratory,
mainly those related to temperature and humidity, can also have a certain impact on the
experimental results,. However, in the process of preparing molybdenum disulfide with
CVD method, the whole experiment was carried out in a CVD furnace, and the synthesis
of molybdenum disulfide was less affected by laboratory environmental conditions. Due to
the large amount of literature exploring the influence of the four characteristic quantities
on the prepared thin film area, no other characteristic parameters were selected to describe
this experiment. Although these feature parameters were not selected to explore their
impact on the experimental results, controlling the consistency of other variables during
the experimental process could reduce the impact of the experimental results.
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The molybdenum source commonly used for preparing MoS2 is molybdenum trioxide
powder, and the sulfur source is sulfur powder. The schematic diagram of the experimental
boat is shown in Figure 4. The positions of the precursor molybdenum source and sulfur
source are at the center of the quartz boat, and the substrate material is SiO2. The carrier
gas is the inert gas argon. The cooling method is natural cooling. By fixing the above
parameters to reduce the parameters in the training process of the model, we could shorten
the training time of machine learning.
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2.3. Model Establishment

Gaussian process regression (GP_R) is a regression model based on the Gaussian
process. This model obtains a Gaussian distribution function by fitting the data to obtain ac-
curate prediction results [19]. Gaussian process (GP) is a commonly used stochastic process
model. In the field of machine learning, GP is a machine learning method developed on the
basis of the Gaussian stochastic process and Bayesian learning theory. It is strictly anchored
in statistical learning theory and has a good adaptability in dealing with complex problems,
such as high dimensions, small samples, nonlinearity, etc. The Gaussian regression model
has greater flexibility and prediction accuracy than does traditional regression, and it can
adapt to different data distributions and model complexity with more accurate prediction
results than can traditional regression (linear or quadratic). Therefore, the Gaussian regres-
sion model was deemed highly suitable for the data set collected. GP has also become a
research hot spot in the field of machine learning and been successfully applied in many
fields [20–24].

There is a complex correlation between the experimental results and the selected
feature parameters, but the number of datasets obtained was relatively small. Hence, cross-
validation was conducted on the established regression model to verify its performance [25].
The principle of this process is to divide the dataset into two parts: a training set and a test
set. The model was trained through the training set, and the performance of the model
was verified using the testing set. During the model training process, GridSearchCV, only
applicable to small datasets, was used to automatically adjust the relevant parameters.
This method is highly suitable for our dataset although it is more time-consuming [26,27].
Cross-validation can effectively evaluate model performance and avoid overfitting and
underfitting problems. In terms of model performance evaluation, four indicators were
selected to obtain the conditions for the best model, including goodness of fit (r2), mean
squared error (MSE), Pearson correlation coefficient and p-value of Pearson correlation
coefficient [28]. Among these, goodness of fit (r2) and mean-squared error (MSE) were
used to evaluate the model training process. Pearson correlation coefficient and p-value
of Pearson correlation coefficient were used to determine the correlation between feature
parameters. Goodness of fit reflects the extent to which the model fits the data, with values
ranging from 0 to 1: the closer to 1, the better the model fits the data. r2 equal to 1 indicates
that the model fits the data perfectly, while r2 equal to 0 indicates that the model is unable
to explain the variance of the data. Mean squared error (MSE) reflects the gap between the
predicted and actual values of the model: the smaller the value, the better the prediction
performance of the model. Pearson correlation coefficient is an indicator used to measure
the degree of linear correlation between two variables, with values ranging from −1 to 1:
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the closer to 1, the higher the positive correlation between the two variables; the closer to
−1, the greater the negative correlation between the two independent variables; the closer
to 0, the less linear the relationship between the two variables. The p-value of Pearson
correlation coefficient is used to test whether the linear correlation between two variables
is significant: the smaller the value, the more significant the linear correlation between the
two variables.

3. Results and Discussion
3.1. Model Results and Analysis

In the established Gaussian regression model, a group of model conditions with the
best evaluation index was selected to predict the area of MoS2. Two performance indicators
under six different iterations were processed and statistically analyzed, and the mean
values of each evaluation indicator were obtained, as shown in Figure 5. Usually, the
increase of the number of iterations in cross-validation will continuously improve the
performance of the model, but setting the value of the number of iterations too large often
leads to the overfitting of the model. Research indicates that r2 continues to increase in
iterations from 5 to 15 and then begins to decrease as the number of iterations continues
to increase [29–31]. Moreover, when the number of iterations is 15, the MSE reaches its
minimum value, indicating that the model has good prediction performance. In summary,
it can be concluded that the optimal number of iterations is 15.
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3.2. Optimization of Synthesis Conditions

Synthesis conditions play a crucial role in the preparation of molybdenum disulfide
via CVD. However, in practical experiments, there are always cases where the reaction is
incomplete, the reactants do not react sufficiently, or the concentration of the reactants is
impure. The amount of reactants needed for the experiment is always more than the theoret-
ical amount. Therefore, in the actual experiment, the experimenter should select the dosage
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ratio of the two precursors most suitable for the preparation of molybdenum disulfide with
CVD according to the experimental conditions. In addition to this, the reaction temperature
(T) affects the growth rate of molybdenum disulfide. The temperature affects the rate of
gasification of precursor S and the reaction rate of preparing molybdenum disulfide with
CVD. Therefore, the reaction temperature should be considered. If the reaction temperature
is too high, a series of problems will occur. Firstly, the evaporation rate of precursor S source
is accelerated, which will lead to insufficient reaction of the molybdenum source. Secondly,
it can also cause excessive internal pressure in the quartz tube and require a long time
during the natural cooling process. Thirdly, this will have a certain impact on the service
life of the experimental device. If the reaction temperature is too low, the evaporation of
the S source and the flow rate of the carrier gas will decrease, which will result in a lower
growth rate of molybdenum disulfide and a longer reaction time. Therefore, whether in the
preparation of molybdenum disulfide with CVD in actual experiments or the conclusion
obtained through machine learning model training data, the reasonable selection of carrier
gas flow, molybdenum-to-sulfur ratio and reaction temperature during the reaction process
is of great significance to the formation of molybdenum disulfide. Additionally, it can
be stated that machine learning plays an important role in the analysis and selection of
characteristic parameters in the preparation of molybdenum disulfide with controllable
area in CVD.

In order to optimize the synthesized feature parameters, the SHAP (SHapley Additive
exPlanations) library in the XGBoost model was used to extract the feature importance from
the four selected feature parameters. SHAP is an explanatory technique used to explain
the effect of each feature parameter on the output in the model [32]. Feature importance
analysis provides an estimate of the predictive power of all the features used to train an ML
model. It can be seen from Figure 6 that the characteristic parameter that has the greatest
impact on the film area is the flow rate of the carrier gas (Fr), followed by the molybdenum
sulfur ratio (R), with the reaction time (Rt) having the smallest impact.
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With reference to a large number of literatures, a large area of MoS2 was defined as a
triangle with a size range greater than 30 µm, and further statistical analysis was conducted
on the predicted area to determine the optimal experimental conditions. This model
was used to predict the MoS2 size of a dataset composed of 185,900 virtual experimental
conditions data, 159,352 of which were located in a large area, accounting for 85.72%. Based
on the prediction results, the corresponding molybdenum-to-sulfur ratio, carrier gas flow
rate, reaction temperature and reaction time could be optimized. Therefore, the preparation
conditions for large area MoS2 were be optimized, as shown in Table 2.

Table 2. Optimization range of growth conditions for MoS2 generated with CVD.

Growth Parameter Min Max

Molybdenum-to-sulfur ratio, R (Mo:S) 0.02 1
Gas flow rate, Fr (sccm) 25 200

Reaction temperature, T (K) 850 1200
Reaction time, Rt (min) 8 75

3.3. Model Verification

The area of MoS2 predicted with machine learning might have contained a degree of
deviation, so the model needed to be verified. Firstly, four sets of experimental conditions
and results that were not used for model training were found from different literature
sources. The model was validated using the prediction results of the model under the
corresponding conditions, as shown in Table 3. The results from the literature were com-
pared with the predicted results of the model. It was found that the relative errors were
3.19%, 4.40%, 0.68% and 0.67%, respectively. In addition, the experiments were conducted
to further verify the reliability of the model. The SEM images of MoS2 prepared under
experimental conditions of R = 0.128, Fr = 175 sccm, T = 800 °C and Rt = 30 min, with a
measured edge length of 43.571 µm, are shown in Figure 7a. Under this condition, the
predicted edge length of the model was 42.302 µm. The relative error between the experi-
ment and prediction was 2.91%. The SEM images of MoS2 prepared under experimental
conditions of R = 0.01, Fr = 100 sccm, T = 800 °C and Rt = 15 min, with a measured edge
length of 35.869 µm, are shown in Figure 7b. The predicted edge length of the model
was 37.975 µm. The relative error was 5.87%. In summary, both literature validation and
experimental validation showed that the relative error did not exceed 6%, indicating high
reliability of the predicted results. These results prove that the trained machine learning
model can assist in the preparation of large-area molybdenum disulfide. To a certain extent,
it provides practical guidance for the growth of molybdenum disulfide in combination
with different growth parameters.

Table 3. Validation of the model with experimental conditions and results from the literature.

No. R(Mo:S) Fr(sccm) T(K) Rt (min) Size from
Literature (µm)

Predicted Size
(µm) Literature Source

1 0.05 50 1098.15 10 40.639 41.935 Senkić A et al. [33]
2 0.50 200 1123.15 15 39.252 40.980 Saenz G A L et al. [34]
3 0.02 10 923.15 10 37.975 38.235 Zhang X et al. [35]
4 0.02 50 1073.15 15 25.104 24.935 Yang S Y et al. [36]
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