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Abstract: It is of great significance to recycle the silicon (Si) kerf slurry waste from the photovoltaic
(PV) industry. Si holds great promise as the anode material for Li-ion batteries (LIBs) due to its
high theoretical capacity. However, the large volume expansion of Si during the electrochemical
processes always leads to electrode collapse and a rapid decline in electrochemical performance.
Herein, an effective carbon coating strategy is utilized to construct a precise Si@CPPy composite
using cutting-waste silicon and polypyrrole (PPy). By optimizing the mass ratio of Si and carbon, the
Si@CPPy composite can exhibit a high specific capacity and superior rate capability (1436 mAh g−1

at 0.1 A g−1 and 607 mAh g−1 at 1.0 A g−1). Moreover, the Si@CPPy composite also shows better
cycling stability than the pristine prescreen silicon (PS-Si), as the carbon coating can effectively
alleviate the volume expansion of Si during the lithiation/delithiation process. This work showcases
a high-value utilization of PV silicon scraps, which helps to reduce resource waste and develop green
energy storage.

Keywords: waste recycling; silicon scraps; carbon coating; Si/C composites; anode materials

1. Introduction

With the development of the global economy, non-renewable resources such as oil
and natural gas can no longer meet people’s needs. Therefore, the development of a series
of renewable resources has gradually become a research hotspot, and among them, solar
energy has attracted much attention [1]. In recent years, the photovoltaic industry, as
the core of solar cells, has mainly developed silicon-based solar cells, meaning that the
large-scale photovoltaic (PV) industry inevitably produced abundant silicon (Si) kerf slurry
waste, causing the waste of resources and environmental pollution issues [2,3]. Therefore,
it is important to find a method that can not only recover the silicon powder in the waste
residue of the PV industry, but also to discover anode materials for lithium-ion batteries
with excellent electrochemical performance.

LIBs are widely used as energy storage devices in daily life, and their advantages are
having a high energy density and a long cycle life. With the increasing energy density of
LIBs, the supply of traditional carbon-based materials has fallen short in the energy market.
Therefore, the development of rationally designed new anode materials has become a
core research topic [4–8]. Much research has focused on the development of high-capacity
active materials and components to improve the energy density and performance of next-
generation LIBs. Among them, silicon has a high theoretical specific capacity, which is
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ten times that of graphite. Silicon-based materials, which are more prominent among
non-carbon-based materials, have become the most promising candidates for the new
generation of lithium-ion battery anodes due to their high specific capacity [9,10], abundant
natural reserves, and environmental friendliness [11]. Conversely, despite the advantages
mentioned above, in the process of lithiation/delithiation, the volume of silicon inflate
will reach 120–400% [4], resulting in the crushing of silicon particles, the splitting and
dispersion of electrode materials, and the damage of electrode structure, thus affecting the
long-term cycle stability of lithium-ion batteries. Meanwhile, the volume effect will cause
the rupture of silicon and the continuous formation of new solid electrolyte interphase
(SEI) layers [12], resulting in a decline of Coulombic efficiency (CE), an increase in battery
internal resistance, poor rate performance, poor conductivity, and battery failure, thus
limiting the commercial application of silicon anodes. Therefore, it is still a huge challenge
to design silicon composites [13].

For the practical application of power batteries to meet the requirements of higher
energy density and fast charging of batteries, it is required that the design of Si/C materials
should fully consider the specific capacity per unit volume and the structural stability of
the material under high current impact [14,15]. At the same time, attention should be paid
to improving the cycle life and poor conductivity of silicon anode materials. Although it is
an effective way to slow down the volume expansion by adjusting the pore structure, it will
also lead to low tap density and thus low battery volume capacity [16]. Therefore, carbon
coating becomes an effective method to alleviate the stress caused by volume expansion
and increase the conductivity of silicon materials [17–26]. In addition, the first step towards
commercialization is to reduce costs so that they can be used in production. Consequently,
it is essential to seek simple, inexpensive, and pollution-free silicon raw materials and to
develop simple and effective preparation processes.

Crystalline silicon cutting waste silicon raw-Si from Shangrao Jinko Photovoltaic
Power Generation Co, Ltd, Jiangxi Province, China (particle size is 1–100 µm) was ball-
milled, pickled, and calcined to remove the organic compounds in the waste silicon powder,
and the structure remained unchanged, small particle flakes of prescreen silicon (PS-
Si) with micron/irregular superimposition were presented. The long-cycle performance
and stability of raw-Si and PS-Si as LIBs anode materials at 0.1 A g−1 for 300 cycles
were investigated. The charge–discharge specific capacities of the waste silicon before
treatment were 356 mAh g−1 and 1073 mAh g−1, respectively. After pretreatments such as
pickling and ball milling, the charge–discharge specific capacities were 1397 mAh g−1 and
3106 mAh g−1, respectively, and the ICE was also increased from 33% to 44%. The content
of impurities such as metal elements and organics was high in the waste silicon before
being treated, which reduced the capacity of silicon (theoretical capacity is 4200 mAh g−1),
and after 20 cycles, the specific capacity of both dropped to about 50 mAh g−1. However,
after pretreatment, the first charge–discharge specific capacity and ICE were improved. The
main reason for the low capacity is due to the significant volume expansion in the process
of silicon lithiation; during the continuous cycle of lithiation/delithiation in LIBs, silicon
repeatedly expands and contracts, and the electrodes are pulverized, which eventually
leads to the attenuation of the lithium storage capacity. This work not only increases the
value of waste silicon and reduces the resource waste, but also promotes the development
of high-capacity anode materials for green energy storage.

2. Experimental
2.1. Synthesis of Silicon Hydroxylation

As shown in Figure S1, 15 mL of H2O2 was slowly added to 45 mL of concentrated
H2SO4, and then placed in an oil bath and heated to 80 ◦C. Afterward, prescreen silicon
(PS-Si) suspension was hydroxylated on its silicon surface, then washed with water and
dried to obtain PS-Si-OH with hydroxyl groups attached to the surface.
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2.2. Synthesis of Mesoporous Silicon/Carbon Composites

An appropriate amount of PS-Si-OH powder was dissolved in deionized water, and
then 200 µL, 400 µL, and 800 µL of polypyrrole (PPy) were added into the above solution,
respectively. After cooling for 30 min, 100 mg, 200 mg, and 400 mg of ammonium persulfate
were poured into the above solution, respectively. After stirring in the ice bath for 12 h,
the products were obtained and named Si@PPy-1, Si@Ppy-2, Si@Ppy-3, respectively. The
Si@Ppy were centrifugally washed with water and alcohol, and then dried. Finally, Si@Ppy
were heated to 400 ◦C for 1 h under an N2 atmosphere. The Si@CPpy-1, Si@CPpy-2, and
Si@CPpy-3 composites were obtained.

Detailed descriptions about characterization methods and electrochemical measure-
ments are given in the supplementary material.

3. Results and Discussion

The morphology of Si@CPpy composites were examined by scanning electron mi-
croscopy (SEM). As shown in Figure S2a–c, Si@CPpy-1, Si@CPpy-2, and Si@CPpy-3 present
nanosheet-like structures. Compared with the SEM image of PS-Si (Figure S3), the carbon
material is coated on the surface of silicon nanosheets and maintains a sheet-like structure.
To better understand the structure of Si@CPpy-2 composites, high-resolution TEM and
energy dispersive X-ray spectroscopy (EDX) tests were carried out. As shown in Figure 1b,
the Si nanoflakes are coated with an amorphous carbon layer from the carbonization of
Ppy, which reduces the volume expansion of Si. In addition, as shown in the EDX element
mapping (Figure 1c–f), the uniform distribution of Si and C is consistent with the uniform
carbon layer coated on the surface of Si nanosheets.
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Figure 1. (a) TEM, (b) HRTEM, (c) HAADF, and (d–f) elemental mapping images of Si@CPpy-2.

To prove that the carbon was successfully coated on the silicon surface, XRD and
Raman tests were performed. Figure 2a and Figure S4a show five peaks at 2θ = 28◦, 47◦,
56◦, 69◦, and 76◦, corresponding to (111), (220), (311), (400), and (331) of Si, respectively [27].
Additionally, the peak at 32◦ is assigned to SiO2 caused by surface oxidation. The D
and G peaks are characteristic Raman peaks at 1300 cm−1 and 1580 cm−1; among them,
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the D peak represents the defect degree of carbon itself, and the G peak represents the
degree of graphitization and the stretching vibration of the carbon material. The larger
ID/IG value shows the lower degree of graphitization [28–32]. As displayed in Figure 2b
and Figure S4b, the ID/IG values of Si@CPpy-1, Si@CPpy-2, and Si@CPpy-3 composite are
1.03, 0.97, and 1.06, respectively, showing that the Si@CPpy-2 material has a higher degree
of graphitization and the existence of amorphous carbon [33], which can provide more
reactive sites for Li+ and enhance electronic conduction, and thus improve the ability to
store Li+. To estimate the carbon content in the composites, thermogravimetric analysis
(TGA, Figure 2c) was performed in air. The weight of the composites starts to decrease
at 300 ◦C and decreases by 42 wt.% at 600 ◦C, corresponding to the carbon content of
Si@CPpy-2. A large amount of Ppy carbon material is successfully coated on the surface of
silicon waste by simple chemical oxidative polymerization. To optimize the carbon content,
Si@CPpy-1 and Si@CPPy-3 composites were synthesized. In comparison to the Si@CPpy-2
composite, Si@CPpy-1 and Si@CPpy-3 composites exhibit similar morphologies (Figure
S2a,c), but have different carbon weight ratios (10.12 wt.% for Si@CPpy-1 and 32.2 wt.% for
Si@CPpy-3, Figure S5). After carbon coating of PS-Si, the type of N2 adsorption/desorption
curve for Si@CPpy-2 is type IV, indicating that there are a large number of mesoporous
structures (Figure 2d and Table S1). Mesopores can alleviate the volume change of Si by
strain relaxation to ensure the structural integrity, thus improving the cycle stability [34].
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Figure 2. (a) XRD patterns, (b) Raman spectra, (c) TGA curves, and (d) N2 adsorption–desorption
isotherms with the pore size distribution of PS-Si and Si@CPpy-2.

To verify the electrochemical performance of composites, lithium-ion half-cells were
assembled with Si@CPpy-1, Si@CPpy-2, and Si@CPpy-3 anode materials, respectively. The
charge–discharge tests of Si@CPpy and PS-Si anode materials were carried out at the same
current density. As shown in Figure 3a, the Si@CPpy-2 composite can maintain a high
specific capacity of 335 mAh g−1 and a coulombic efficiency of 99% after 200 cycles. Further-
more, the Si@CPpy-2 composite has a high specific capacity of 1436 mAh g−1 at 0.1 A g−1,
and a high capacity of 607 mAh g−1 even at 1.0 A g−1. At a higher current density, the
discharge capacity of Si@CPpy is higher than that of PS-Si, indicating a better rate per-
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formance of Si@CPpy. In addition, when the current density is restored to 0.1 A g−1, the
specific capacity of Si@CPpy-2 can still reach 778 mAh g−1, showing its excellent structural
stability. Compared with silicon anode materials, the carbon-coated silicon composites
achieve higher reversible capacity and CE values, which can be attributed to the improved
mechanical stress and the stability of SEI layers.
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To further study the electrical resistance and lithium diffusion kinetics of Si@CPpy-
2 composites, EIS tests were performed. The equivalent circuit and Nyquist plots are
shown in Figure 3b. The Nyquist diagrams include a semicircle and an oblique line in the
high-frequency and low-frequency regions, respectively, which correspond to the charge
transfer resistance (Rct) and the Warburg impedance, respectively [35,36]. As shown in
Table S2, the Rct value of Si@CPpy-2 (38.85 ohm) is relatively low, indicating the strong
charge transfer ability of Si@CPpy-2. In addition, by fitting Z′ to ω−1/2 in a low-frequency
Zw region (Figure 3c), the Warburg factor (σ) for PS-Si, Si@CPpy-1, Si@CPpy-2, and Si@CPpy-
3 is 48.2 ohm s−1/2, 65.0 ohm s−1/2, 30.8 ohm s−1/2, and 62.0 ohm s−1/2, respectively. The
ion diffusion coefficient is further calculated by σ, and its calculation formula is as follows:

DLi+ =
R2T2

2A2n4F4C2σ2 (1)

where σ, ω, R, T, A, n, F, and C stand for the Warburg factor, angular frequency, gas constant,
absolute temperature, electrode surface area, transfer electron number per molecule, Fara-
day constant, and Li+ molar concentration, respectively. The DLi

+ of Si@CPPy-2 electrode
material is about 39.56 times that of Si@CPPy-1 and 4.45 times that of Si@CPPy-3, respectively,
showing that the Li+ diffusion time of the Si@CPPy-2 electrode is shorter than that of the
Si@CPPy-1 and Si@CPPy-3 composites. The electron transfer speed and ion diffusion kinetics
of Si@CPPy-2 are faster than other electrodes, which indicates that the addition of a suitable
amount of carbon can improve the rate performance of Si-based electrodes.

The electrochemical performance of Si@CPPy-2 was explored using cyclic voltammetry
(CV) curves. Figure 4a shows the first three CV curves of Si@CPPy-2 composites with a scan
rate of 0.1 mV s−1 and a voltage window of 0.01−1.5 V. There is a wide reduction peak at
0.2V in the first cathodic scan due to the formation of SEI layer [31]. Moreover, there may be
some side reactions between the electrolyte and electrode materials, leading to the increase
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in irreversible charging capacity in the first cycle. In the subsequent cycles, the reduction
peak at 0.2 V represents the alloying process of crystalline silicon to lithium silicon, while
the two oxidation alloying peaks near 0.3 V and 0.5 V represent the de-alloying process of
the LixSi phase as follows [34–36]:

Si + xLi+ + xe−
 LixSi (2)
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Figure 4b and Figure S6 exhibit the galvanostatic discharge–charge (GCD) profiles of
Si@CPPy composites for the initial three cycles measured at a current density of 0.1 A g−1

between 0.01 and 1.50 V (vs. Li/Li+). The first discharge specific capacity is 2083, 2433,
and 1950 mAh g−1 for Si@CPPy-1, Si@CPPy-2, and Si@CPPy-3, respectively. Meanwhile,
the first charge capacities of 1259, 1431, and 1083 mAh g−1 were obtained for Si@CPPy-1,
Si@CPPy-2, and Si@CPPy-3, respectively. Si@CPPy-1, Si@CPPy-2, and Si@CPPy-3 composites
achieve an ICE of 60.4%, 58.8%, and 55.5%, respectively. It is known that the theoretical
capacity of amorphous carbon is around 600 mAh g−1, suggesting that the addition of a
moderate amount of slightly graphitized carbon could suppress the fracture of silicon by
increasing the electronic conductivity and deactivation of silicon anode materials. Hence,
the Si@CPPy-2 composite delivers a higher specific capacity.

To deeply study the storage kinetics of lithium ions, the CV curves of the three
composites at different scan rates were recorded. As shown in Figures 4c and S7, the CV
curves of the three samples were similar, with one reduction peak and two oxidation peaks
(from 0.1 to 2.5 mV s−1). The peak current (i) and the scan rate (v) have a relationship
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according to Equation (3), where i is the peak current, v is the scan rate, a and b are constants.
The b value can be calculated from the slope of log(i)–log(v) and reflect the electrochemical
reaction kinetics of Li-ion batteries.

i = avb (3)

log(i) = blog(v) + log(a) (4)

It is worth pointing out that b = 0.5 indicates diffusion-controlled reactions, while b = 1
means surface-controlled reactions. As shown in Figure 4d, the b value of the Si@CPPy-2
composite is 0.58, which is closer to 0.5, suggesting that the diffusion-dominating process
controls the lithium storage dynamics.

The galvanostatic intermittent titration technique (GITT) was applied to investigate
the diffusion coefficient of Li-ions (DLi

+) by applying a pulse current at 0.1 A g−1 for 10 min
and standing for 1 h (Figure 4e). The DLi

+ can be calculated by the formula as follows:

DLi+ =
4
πτ

(
mbVM

MBS

)2(∆ES

∆Eτ

)2
(5)

where mb and MB represent the active mass and molar mass, respectively. τ represents the
pulse time, and VM and S represent the molar volume of the electrode sheet and the surface
area of the active mass, respectively. Additionally, ∆ES and ∆Eτ represent pulse-induced
voltage changes and galvanostatic charge–discharge voltage changes, respectively [37].
As shown in Figure 4f, in the lithiation process, the DLi

+ of the Si@CPPy-2 composite
is 10−9.5−10−13 cm2 s−1. These values are 100 times that of PS-Si. It can be seen that
the Si@CPPy-2 composite has faster diffusion kinetics [38,39]. In short, the good electro-
chemical performance of the Si@CPPy-2 composite is attributed to its unique structural
features: (i) porous structure and protective carbon layer can help to slow down the volume
changes of silicon during lithiation/delithiation, and (ii) the large specific surface area (SSA)
can provide sufficient electrode/electrolyte contact area, while the porous structure facili-
tates electrolyte penetration and ion transport, thereby accelerating Li+ diffusion transfer
during the discharge-charge process. Therefore, carbon coating is beneficial for improving
the electrochemical performance of PS-Si and ensuring the integrity of the overall structure
of the anode electrode material, thereby achieving an excellent lithium storage capacity.

4. Conclusions

In summary, Si@CPPy composites are successfully fabricated by annealing PPy. The
carbon layer can alleviate the pulverization and expansion problem of Si during the lithia-
tion/delithiation process, leading to a stable electrochemical performance. In addition, the
carbon coating can increase the electrode/electrolyte contact area by increasing the SSA
of the anode material. Moreover, the Si@CPPy composites possess mesoporous structures
and excellent electrical conductivity, which can deliver an excellent cycling performance.
The Si@CPPy-2 composite can still exhibit a high specific capacity of 460 mAh g−1 after
100 cycles, while the specific capacity of PS-Si is only 18 mAh g−1. Hence, this work not
only provides an effective way for the high-value utilization of PV Si waste, but also opens
a new strategy for designing alloying-type anode materials for energy storage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13142142/s1. Figure S1: Illustration of the preparation
process of Si@CPPy materials; Figure S2: SEM of (a) Si@CPPy-1, (b) Si@CPPy-2, and (c) Si@CPPy-3;
Figure S3: SEM images of (a) Raw-Si and (b) PS-Si; Figure S4: (a) XRD patterns and (b) Raman spectra
of Si@CPPy-1 and Si@CPPy-3; Figure S5: TGA curves of PS-Si, Si@CPPy-1, and Si@CPPy-3; Figure S6:
(a,b) Discharge–charge profiles of Si@CPPy-1 and Si@CPPy-3 at 0.1 A g−1; Figure S7: (a,b) CV curves
of Si@CPPy-1 and Si@CPPy-3 at various scan rates; Table S1: BET specific surface area, pore volume,
and BJH pore size of PS-Si and Si@CPPy-2; and Table S2: Rs and Rct values of Si@CPPy-1, Si@CPPy-2,
and Si@CPPy-3.
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