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Abstract: This work presents a comprehensive numerical study for designing a lead-free, all-inorganic,
and high-performance solar cell based on Cs2TiI6 halide perovskite with all-inorganic carrier transport
layers. A rigorous ab initio density-functional theory (DFT) calculation is performed to identify the
electronic and optical properties of Cs2TiI6 and, upon extraction of the existing experimental data of
the material, the cell is designed and optimized to the degree of practical feasibility. Consequently,
a theoretical power conversion efficiency (PCE) of 21.17% is reported with inorganic TiO2 and CuI
as carrier transport layers. The calculated absorption coefficient of Cs2TiI6 reveals its enormous
potential as an alternative low-bandgap material for different solar cell applications. Furthermore,
the role of different point defects and the corresponding defect densities on cell performance are
investigated. It is found that the possible point defects in Cs2TiI6 can form both the shallow and deep
defect states, with deep defect states having a prominent effect on cell performance. For both defect
states, the cell performance deteriorates significantly as the defect density increases, which signifies
the importance of high-quality material processing for the success of Cs2TiI6-based perovskite solar
cell technology.

Keywords: Cs2TiI6; DFT; point defect; lead-free; inorganic; perovskite solar cell

1. Introduction

Perovskite solar cell (PSC) technology is promising a breakthrough in the solar cell
industry with the potential for thin-film processing, flexibility, and low-cost commer-
cialization due to the simple solution process used in the chemical preparation of the
perovskites [1–3]. The lead-based halide perovskites, e.g., methylammonium lead halide
(MAPbX3) and formamidinium lead halide (FAPbX3), have already exceeded the recorded
power conversion efficiencies of CIGS and CdTe-based solar cells [4] and, recently, a FAPbI3
perovskite solar cell has obtained a record power conversion efficiency (PCE) of 25.6% [5].
On the other hand, a PCE of 26.3%± 0.5% hysteresis [6] was reported for silicon-based solar
cells. As a result, perovskite solar cell technology will soon possess the potential to become
a serious competitor of the well-established silicon-based solar cell technology. Presently,
perovskite solar cells with higher efficiencies are mainly lead (Pb)-based due to the excellent
optoelectronic properties like high carrier mobilities, long carrier lifetimes, high absorption
coefficients, and direct bandgaps [7–11]. However, the higher efficiencies are accompanied
by serious drawbacks like the toxicity of lead, reduction in the perovskite compound shelf
life, and the unstable nature of device performance due to the hygroscopic and volatile
organic cations [12–15]. Therefore, finding a suitable alternative for the lead (Pb)-based
halide perovskites has become necessary, and extensive research is ongoing to find new
perovskite materials that might yield the same high PCE or even better. Recent studies
show that MA+ and FA+ can be replaced by Cs+ cation, leading to enhanced thermal and
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moisture stability [16]. Also, the toxic Pb2+ can be replaced by non-toxic cations like Bi3+,
Ag+, Ge2+, Sn2+, In+, and Sb3+ [17–19]. However, the proposed lead-free perovskites suffer
from very low power conversion efficiencies. In one study [17], a fabricated Cs2AgBiBr6-
based perovskite solar cell could only reach an efficiency of 2.43% due to the high bandgap
of the perovskite, which restricted further performance enhancement. Similar performance
was observed in another [20], where an efficiency of 2.23% was achieved for the same
perovskite. In a study by Chen et al. [21], the authors presented a CsSnGeI3-based solar cell
with up to 7.11% efficiency. In another study [22], a CsSnI3-based solar cell achieved 6.08%
efficiency, and in another [23], an efficiency of 7.5% was achieved with the incorporation of
N, N′-methylenebis(acrylamide) (MBAA) with CsSnI3. However, the metallic conductivity
of CsSnI3 seriously restricts the development of the solar cell [24,25], and Sn2+ being highly
sensitive to ambient moisture and oxygen [24] makes it difficult to prevent the degradation
of the solar cell.

In recent times, a new series of Ti-based lead-free vacancy-ordered halide double
perovskite was proposed by Ju et al. [26] with a chemical formulation of Cs2TiIxBr6-x
(x = 0, 2, 4, 6). The bandgap tunability (~1.02 to ~1.78 eV) of this particular type of per-
ovskite and the stable and nontoxic nature of Ti make them an ideal candidate for highly
stable and environment-friendly single-junction as well as tandem solar cell applications.
Until now, most studies have been conducted on solar cells based on Cs2TiBr6 (Cs2TiIxBr6-x;
x = 0). Chen et al. [27] fabricated a Cs2TiBr6-based solar cell for the first time with an absorb-
ing Cs2TiBr6 layer thickness of ~200 nm. They reported a bandgap of ~1.8 eV, consistent
with the previous report [26], and the carrier-diffusion length was more than 100 nm. The
solar cell exhibited high stability and the sustainability of high thermal stress in ambient
conditions. However, the fabricated PSC could only achieve a stable PCE of 2.15%, which
was increased to 3.22% by incorporating a C60 layer. To increase the PCE, a few numerical
studies have been carried out [28–36], where different carrier transport materials were
proposed for better device performance.

In the case of Cs2TiI6 (Cs2TiIxBr6-x; x = 6)-based solar cells, the number of studies is
very limited and most of the studies lack consistency with experimental data. Previously,
in one study [37], a PCE of 15.06% was reported for a Cs2TiI6 PSC with CdTe as the hole
transport layer (HTL), and in another [38], a PCE of 16.31% was reported with CuSCN
as HTL. However, the used bandgaps of Cs2TiI6 for these two numerical simulations are
vastly inconsistent with the measured bandgap of ~1.02 eV [26], and the proposed absorber
defect densities will be hard to achieve experimentally. Recently, Zhao et al. [39] provided
a numerical study on Cs2TiI6 for solar cell and alpha-particle detection applications with
organic PEDOT:PSS and C60 as carrier transport layers. They found high retainability of
PCE after a very high proton fluence level and reported a PCE of 22.7% for single-junction
and 26.78% for tandem solar cells. However, the high numerical PCE level was achieved
for a very low defect density (1010 cm−3) of the Cs2TiI6 absorbing layer, which might be
very difficult to replicate in practice because, for this family of material, the defect density
level can be found in the region of 1014 to 1016 cm−3 and it was close to ~1015 cm−3 for the
fabricated Cs2TiBr6 PSC [27,35]. Also, their simulated output of 22.7% PCE is for abnormally
high electron mobility (µn = 2.26× 104 cm2/Vs) and hole mobility (µp = 7.38× 103 cm2/Vs),
which the authors declare as an ideal case. However, these values are multiple orders of
magnitude higher than what was found in practice for the same family of perovskite [27,35].
Therefore, this calls for a further investigation into the possible utilization of Cs2TiI6 as an
active layer in PSCs considering the practical realizability of the device itself, and it includes
making a proper choice of the carrier transport layers to maximize cell performance, even
with the relatively higher defect density found in this family of perovskites. Also, Cs2TiI6-
based perovskite solar cells with all-inorganic charge transport materials can be explored
due to the low cost, excellent physicochemical stability, and proper photovoltaic properties
of the inorganic charge transport materials [40,41]. Although the effects of different point
defects on the performance of relatively high bandgap Cs2TiBr6-based PSC has been
studied previously [35], there is no detailed report for the low-bandgap Cs2TiI6-based
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PSC. Therefore, additional insight into the existing point defects in Cs2TiI6, and the overall
impact of the possible shallow and deep defect states on the performance of Cs2TiI6-based
PSC, can aid experimentalists in fine-tuning material processing prior to device fabrication.

This article proposes a novel lead-free Cs2TiI6 PSC with all-inorganic carrier transport
materials and an n-i-p type FTO/TiO2/Cs2TiI6/CuI/Au structure. At first, a first principles
density-functional theory (DFT) calculation is performed to evaluate the electrical and
optical properties of Cs2TiI6 and its suitability in PSC applications. Then, the device is
designed using experimentally extracted data and optimized to the degree of practical
feasibility. Furthermore, we analyze the impacts of existing point defects in Cs2TiI6, and
their charge transition levels on the device performance and find the keys to designing
highly efficient Cs2TiI6 PSCs. We also discuss the morphological features of the material and
potential ways to achieve high-quality thin films and consequently realize the full potential
of the material for PSC applications. Our results demonstrate valuable insights into PSC
performance, and we believe the study can accelerate/aid the practical implementation
and testing of highly efficient Cs2TiI6 PSCs for different real-world applications.

2. Ab Initio DFT Calculation and Cell Modeling
2.1. First Principles Calculation of Cs2TiI6 Perovskite

The electronic properties of Cs2TiI6 were calculated using the first principles DFT
framework implemented in the open-source code Quantum Espresso [42]. Norm-conserving
PBE pseudopotentials [43] were utilized, and the cutoff energy was set to 100 Ry. Brillouin
zone sampling used an 11 × 11 × 11 k-mesh. A schematic of the crystal structure of
Cs2TiI6 is shown in Figure 1a. The atomic positions were relaxed to obtain the maximum
force < 0.005 eV/Å on each atom, yielding a lattice constant of 11.829 Å. The band structure
of the crystal is depicted in Figure 1c. A direct bandgap of 0.9 eV was observed at the Γ
point, which is slightly lower than the experimental value of ~1.02 eV [26]. However, it
is worth noting that PBE is known to underestimate the bandgap, which has contributed
to this discrepancy [44,45]. Also, a similar discrepancy was found for the DFT calculation
of Cs2TiBr6 using PBE (Eg∼1.5 eV) and its experimental bandgap value (Eg∼1.8 eV) [27].
Figure 1d shows the density of states (DOS) and the projected DOS of Cs2TiI6. The analysis
reveals that the orbitals of Ti and I atoms mainly contributed to the conduction band’s
lowest energy states and the valence band’s highest energy states. Notably, the DOS of Cs
atoms did not exhibit significant contributions in these energy ranges.

Optical absorption properties were essential in evaluating the suitability of materials
for photovoltaic applications. The optical absorption coefficient can be determined through
the calculation of the dielectric function using Equation (1) [46]:

α(ω) =
ωε2

nc
=
√

2
ω

c

(√
ε2

1 + ε2
2 − ε1

)1/2

(1)

where ω is the frequency of the incident light, c is the speed of light, n is the refractive index,
and ε1 and ε2 are the real and imaginary parts of the dielectric function, respectively. Silicon
(Si), a low bandgap material, has been the conventional material of choice for photovoltaic
applications. Figure 1b shows the calculated absorption coefficient of Cs2TiI6 and Si. For
lower photon energies, Cs2TiI6 possesses a promising optical absorption and should be able
to absorb light with wavelengths beyond the visible spectrum. Also, in the visible spectrum
[inset of Figure 1b], Cs2TiI6 showed a promising absorption for longer wavelengths. A
possible implication is that Cs2TiI6 can be used as the bottom cell in tandem solar cell
structures, where Si or other lead-based or organic perovskites currently find application.
Thus, Cs2TiI6 has the potential to be an alternative material for highly efficient, lead-free,
all-inorganic perovskite–perovskite tandem solar cell technology.
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Figure 1. DFT calculation of Cs2TiI6: (a) Graphical representation of crystal structure, (b) computed
optical absorption coefficient of Cs2TiI6 and Si, (c) band structure of Cs2TiI6 and (d) projected density
of states (DOS) and total DOS of Cs2TiI6.

2.2. Cs2TiI6 Perovskite Solar Cell

We utilized the widely known Solar Cell Capacitance Simulator (SCAPS-1D 3.3.07)
software developed by the Department of Electronics and Information Systems (ELIS),
University of Gent, Belgium [47–49]. Section S1 of the Supplementary Information discusses
the numerical techniques and Poisson’s equations used in SCAPS-1D. The section also
discusses mathematical equations to derive other important material parameters to design
solar cells in SCAPS-1D.

In Section S2 of the Supplementary Information, we validated the simulation tool’s
accuracy and the reliability of the meticulously chosen device parameters by replicating
the performance of an existing fabricated device of the same Cs2TiIxBr6-x family. This
provided the required credibility to the numerical setup as well as the numerically predicted
device performance.

Figure 2a is the graphical representation of different layers of the proposed device,
and Figure 2b shows the corresponding energy levels. Table 1 provides the material
parameters and their values used for the device modeling. The parameter values were
chosen meticulously from various sources, and emphasis was given to experimentally
derived data in order to design a practically realizable device. The hole transport layer
(HTL) and electron transport layer (ETL) thicknesses were chosen carefully to ensure
adequate light transmission through FTO onto the absorber layer. Where a thick layer
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might prevent enough light transmission and generation of adequate electron-hole pairs,
a very thin layer might create a leakage path due to various voids and pinholes created
during thin film processing, and the device would possess poor stability due to some
chemisorbed hydroxides [50].

Table 1. Related material parameters and their corresponding values.

Parameter Cs2TiI6 n-TiO2 p-CuI FTO

Layer thickness, d (nm) 200 50 50 150
Bandgap, Eg (eV) 1.02 3.2 3.1 3.5
Electron affinity, χ (eV) 4.0 4.1 2.1 4.4
Relative permittivity, εr 5.36 9 6.5 9
Conduction band density of states, Nc (cm−3) 4.96 × 1019 1 × 1021 2.8 × 1019 2.2 × 1018

Valence band density of states, Nv (cm−3) 1.75 × 1019 2 × 1020 1 × 1019 1.8 × 1019

Electron mobility, µn (cm2/V s) 0.236 20 100 20
Hole mobility, µp (cm2/V s) 0.171 10 43.9 10
Donor concentration, ND (cm−3) 3 × 1019 1 × 1019 0 1 × 1019

Acceptor concentration, NA (cm−3) 3 × 1018 0 3 × 1018 0
Thermal velocity of electron, Vth(n) (cm/s) 1 × 107 1 × 107 1 × 107 1 × 107

Thermal velocity of hole, Vth(h) (cm/s) 1 × 107 1 × 107 1 × 107 1 × 107

Reference [26,27] [27,51] [52,53] [54,55]
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Figure 2. Cs2TiI6-based perovskite solar cell: (a) constituent layers and (b) corresponding energy levels.

To create a more realistic device, we applied defects in all the layers as well as in
the absorber/carrier transport layer interfaces, as provided in Tables S2 and S3 of the
supplementary Information. Figure 3 shows the current density (J) versus the voltage (V)
output, and Figure 4 depicts the quantum efficiency (QE) versus the wavelength curve.
For a high absorber defect density of 4.16 × 1015 cm−3, the device still possessed a decent
PCE of 7.07% with an average quantum efficiency of ~30% for the visible spectrum. The
relatively improved device performance compared to Cs2TiBr6 [27] can be attributed to
the choice of hole transport material, with CuI having a very small valence band offset
of ~0.18 eV and good carrier mobility that allows proper extraction and transportation
of holes from the perovskite to the anode. Also, the low bandgap of Cs2TiI6 aids the
creation of electron–hole pairs as it can absorb photon energy in a wide spectrum and
leads to a high current density of the device. The overall impact of different inorganic hole
transport layer (HTL) materials on the device’s performance is described in Section S3 of
the Supplementary Information.
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3. Cell Optimization

The proposed solar cell with existing experimentally derived parameters has already
provided us with promising results. Therefore, it is necessary to extend the study further
and ascertain the optimum device parameters within practically feasible limits in order to
propose an optimized device to aid the experimental realization of Cs2TiI6-based perovskite
solar cells.

3.1. Optimization of Defect Density

We considered interfacial defects at the electron transport layer (ETL)/absorbing
perovskite and absorbing perovskite/hole transport layer (HTL) interfaces as well as
defects within the perovskite. The defect density within these regions is crucial for device
performance. We studied the device for an interfacial defect density in the range of 1010
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to 1014 cm−2. Figure 5 shows the corresponding J-V performance. Above 1012 cm−2, the
effect of interfacial defect density became prominent with performance degradation and,
below this, there was little to no change in output. The decline in performance can be
attributed to the increase in the number of traps at the recombination centers [56]. For
a defect density of 1012 cm−2, the device possessed power conversion efficiency (PCE)
of 7.35%, fill factor (FF) of 81.25%, open-circuit voltage (Voc) of 0.706 V, and short-circuit
current density (Jsc) of 12.82 mA/cm2. With an optimum interfacial defect density of
1012 cm−2, we studied the effect of absorbing perovskite’s (Cs2TiI6) defect density in the
range of 1013 to 2.5 × 1015 cm−3. It is quite clear from Figure 6 that the device performance
relied heavily on the absorber defect density, and it was crucial to maintain an optimum
defect density of this layer to achieve a high-performance PSC. Above 1014 cm−3, the device
started to underperform with deterioration in performance due to the sudden expansion
of recombination rate within the absorber layer [57] and, below 1014 cm−3, there was an
enhancement in performance but not a substantial one. Also, we need to keep in mind the
practical feasibility of achieving a certain defect profile. All aspects considered, we thus
chose an absorber defect density of 1014 cm−3 as an optimum value and, with this defect
profile, the device possessed Jsc of 31.31 mA/cm2, Voc of 0.79 V, FF of 81.59%, and PCE
of 20.22%.
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3.2. Optimization of Cs2TiI6 Perovskite Layer

For perovskite solar cells, the perovskite itself is the device’s active layer which absorbs
photon energy and generates electron–hole pairs. That is why the physical properties of
this layer are crucial to the overall device performance. Figure 7 shows our device’s power
conversion efficiency (PCE) as a function of perovskite layer thickness and signifies the
importance of having an optimized thickness. We have investigated the PCE of the device
for a thickness range from 50 nm to 750 nm. For a very thin layer of perovskite, the
photons with longer wavelengths face difficulties in being absorbed by the active layer [58]
and, as the thickness increases, the effective bandgap withers, which aids the photon
absorption [59]. In the case of a very thick layer, electrons and holes find a longer route to
travel to reach the electrodes, which increases the probability of carrier recombination [52]
and, as a result, the photocurrent decreases and we find a steep nature in the performance
curve. The device possessed ~21% PCE when the perovskite thickness was around 300 nm,
and the highest PCE was 21.18% for 290 nm. The already fabricated cell (Cs2TiBr6) of the
same family had a thickness ~200 nm [27], and thus, we can choose a practically realizable
thickness of 300 nm as the optimum thickness for this device with a PCE of 21.17%, Jsc of
32.93 mA/cm2, Voc of 0.79 V, and FF of 81.42%.
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3.3. Optimum Solar Cell Performance

After the careful optimization of different device parameters, we achieved the opti-
mum performance for a Cs2TiI6 perovskite solar cell (PSC). Figure 8 provides insight into
the performance enhancement compared to the initially unoptimized state of the cell. A
PCE of 21.17% with an implemented absorber defect density of 1014 cm−3 and a perovskite
thickness of 300 nm was really promising. It suggests that the material processing and
corresponding morphology of Cs2TiI6 thin film will be fundamentally crucial in achieving
highly efficient Cs2TiI6 PSC. Figure 9 shows the quantum efficiency (QE) comparison, and
Figure 10 provides the dark current comparison of the optimized final cell and the initially
unoptimized cell. It can be seen that the solar cell possessed excellent QE with close to
~80% output around the visible spectrum. Also, owing to its narrow bandgap, the QE
output of Cs2TiI6 existed for a wide range of wavelengths, supporting the calculation from
Figure 1b, and it could have absorption cutoff up to ~1200 nm, and everything indicated
that it could be a very good option as an active layer of the bottom cell in tandem solar
cells. Table 2 provides a performance comparison with related numerical works on Cs2TiI6,
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and Table 3 shows a comparison with other PSCs from the Cs2TiIxBr6-x family. As Table 2
suggests, we achieved a competitive perovskite solar cell performance despite keeping
defect density and perovskite thickness within a practically realizable range.

Table 2. Overall comparison of related numerical reports on Cs2TiI6 PSCs.

Cell Structure
Absorber

Defect
Density (cm−3)

Absorber
Thickness

(nm)
PCE (%) Jsc (mA/cm2) Voc (V) FF (%)

CuSCN/Cs2TiI6/CdS/Si [28] - 1500 3.13 4.6 - -
ITO/TiO2/Cs2TiI6/CdTe/Au [37] - 7830 15.06 25.08 1.39 43.17
FTO/TiO2/Cs2TiI6/CuSCN/Ag [38] 1010 1000 16.31 22.74 1.74 41
FTO/PEDOT: PSS/Cs2TiI6/C60/Ag [39] 1010 50 22.70 39.5 0.685 83.7
FTO/TiO2/Cs2TiI6/CuI/Au [This Work] 1014 300 21.17 32.93 0.79 81.42

Table 3. Comparison with some other numerical reports on Cs2TiIxBr6-x family of PSCs.

Cell Structure
Absorber

Defect
Density (cm−3)

Absorber
Thickness

(nm)
PCE (%) Jsc (mA/cm2) Voc (V) FF (%)

CuSCN/Cs2TiBr6/CdS/Si [28] - 1000 6.68 8.9 - -
FTO/TiO2/Cs2TiBr6/NiO/Au [29] - 300 8.51 10.25 1.12 73.59
FTO/SnO2/Cs2TiBr6/MoO3/Au [30] 1014 130 11.49 8.66 1.53 86.45
FTO/TiO2/Cs2TiBr6/Cu2O/Au [31] 1015 800 14.68 25.82 1.10 51.74
ITO/NPB/Cs2TiBr6/PCBM/BCP/Ag [32] 1017 350 16.85 16.66 1.29 78.10
AZO/TiO2/Cs2TiBr6/PEDOT:PSS/Au [33] - 200 17.83 18.20 1.38 71.00
CeOx/Cs2TiBr6/NPB [34] 1015 200 17.94 15.37 1.33 87.00
FTO/ZnO/Cs2TiBr6/MoO3/Au [35] 1014 400 18.15 13.60 1.53 87.23
FTO/BaSnO3/Cs2TiBr6/CuSbS2/Au [36] 1013 1000 29.13 29.60 1.11 88.58
FTO/TiO2/Cs2TiI6/CuI/Au [This Work] 1014 300 21.17 32.93 0.79 81.42
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In contrast, the previous works on this material were carried out using very low defect
densities and unrealistic carrier mobilities to achieve high performance, as discussed in
detail in the introduction. We achieved excellent cell performance due to our meticulous
approach regarding extracting device parameters from existing experimental data, careful
choice of carrier transport layers to minimize band-offset, and optimization within a
feasible range. Even with a practically feasible (relatively high) defect density and standard
perovskite thickness, the performance can be competitive with proper optimization of all
other essential design parameters. Also, it can be easily noticed from Table 3 that most of
the works on the Cs2TiIxBr6-x family of perovskites are carried out using defect densities
close to experimental values, and most of the absorbers’ thicknesses are around the range
of ~200 nm to 400 nm with few below and above this range. Furthermore, based on the
material processing, the carrier mobility might vary as well, and the possible impact of
it is illustrated in Section S4 of the Supplementary Information. Figure S4 shows that
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the device’s PCE can vary within a range of ~19% to 24.5% for a change of one order
of magnitude in carrier mobility. It is possible to enhance carrier mobility by producing
high-quality thin films and, therefore, during material processing, much concentration is to
be given to achieving high-quality films that might help yield even higher PCE.

4. Effects of Point Defects on Cell Performance

The material synthesis of Cs2TiI6 can give rise to different intrinsic point defects having
defect formation energy within the material’s bandgap and acting as shallow or deep defect
states. These point defects can cause performance degradation by acting as recombination
centers for photogenerated charge carriers. Cs2TiI6 can have twelve possible point defects
like vacancies (VCs, VTi, and VI), cation substitutions (CsTi, Tics), antisite substitutions (CsI,
ICs, ITi, and TiI), and interstitials (Csi, Tii, and Ii) [26]. These point defects can act as single,
double, or multilevel donors or acceptors and can be located within the material’s bandgap
with high or low formation energies. Ju et al. [26] calculated the formation energies of these
point defects for two different cases, i.e., I-lean/Ti-rich and I-rich/Ti-lean, and identified a
standard chemical potential region to have thermodynamical stability of Cs2TiI6. Table S6 in
Section S5 of the Supplementary Information provides these point defects’ charge transition
levels and approximate locations. In terms of formation energy, they found that under
two different conditions, there were differences in the formation energies of these point
defects, and there were different point defects with the lowest formation energy in each
case. Under I-rich/Ti-lean conditions, VI possessed the lowest energy and had a defect
position (~0.57 eV) near the middle of the bandgap. This can be detrimental to the device’s
performance by creating a deep defect state. Under I-lean/Ti-rich conditions, Tii possessed
very low formation energy, most of its transition levels being within the mid-region of the
bandgap (~0.35 eV, 0.45 eV, 0.73 eV, 0.92 eV), and can easily form a deep defect state and
thus can cause some serious degradation to the device performance. There are other point
defects like CsTi, which have higher formation energy in both conditions, and their defect
position lies at the edge of the bandgap (~0.02 eV), and defects like these are likely to form
shallow defect states and are less detrimental to the device.

Figure 11 shows an overview of the device PCE depending on the relative positions of
the defects and the corresponding defect density within the perovskite. Figure S5 in the
Supplementary Information shows the corresponding workflow for the calculation. We
can find deep defect states within ~0.25–0.75 eV and quasi-shallow or shallow defect states
around 0.0 eV (valence band maximum) and 1.02 eV (conduction band minimum). The
device produced excellent PCE when the defect density was within the 1014 cm−3 mark or
below, and the PCE started to decrease when the density increased towards 1015 cm−3. It
still possessed a decent PCE of 11.47% around the deep defect region and 14.35% around the
shallow defect region for Nt = 1015 cm−3. However, above 1015 cm−3, the degradation was
drastic, and PCE reached as low as 2.15% around the deep defect region and 3.15% around
the shallow defect region for Nt = 1016 cm−3. Therefore, it is rather easy to understand that
the overall defect density within the perovskite is a crucial measure for the performance of
Cs2TiI6-based PSCs, and anything above 1015 cm−3 will hamper the device performance
significantly. The effect of deep and shallow defect states created by the point defects can
be evaluated better from Figure 12. Here, we considered CsTi with transition level ε (0/1−)
at 0.02 eV as the shallow defect state and VI with transition level ε (0/1+) at 0.57 eV as
the deep defect state. Assuming I-lean/Ti-rich conditions are to be avoided in favor of
the I-rich/Ti-lean conditions during the synthesis of Cs2TiI6 in order to suppress harmful
Tii interstitial defects with very low formation energy, Figure 12 shows that, even under
I-rich/Ti-lean conditions, there will be different impacts of shallow and deep defect states.
With the increase in defect density, the impact becomes prominent as a higher number
of VI defects will act as recombination centers causing a smaller number of electron–hole
pairs to reach the electrodes and, in doing so, diminishing the device performance. For
example, the device PCE gets reduced by almost 3% from a PCE of 14.35% to PCE of 11.47%
at 1015 cm−3 defect density when there is a presence of a deep defect state of VI. Therefore,
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we can say that the device performance heavily relies on the defect density parameter
within the active layer as well as the type of point defects formed within the layer. So, the
defect engineering of Cs2TiI6 will be key for the success of Cs2TiI6 PSC technology.
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5. Discussion

The computational results suggest that defect engineering will be crucial for the suc-
cess of Cs2TiI6 PSC technology. Currently, the experimental reports on the synthesis and
thin film formation of Cs2TiI6 are very limited. As the defect profile is closely related to the
fabrication method and the derived morphology of the thin film, it calls for concentrated
experimental investigation into different morphological features and techniques to produce
higher-quality thin films to suppress the negative impacts of several defects. At present,
techniques like melt-crystallization [26] and inverse temperature crystallization [60] have
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been utilized for producing Cs2TiI6 powder and thin film (~16 µm), respectively. However,
for the thin film, Cs2TiI6 solution was unevenly distributed throughout the substrate and
consisted of broken cube-shaped crystals instead of a bulk perovskite layer, a representa-
tive morphology for highly efficient perovskite solar cells [61]. Another study [62] tried
to generate Cs2TiI6 nanocrystals from Cs2TiBr6 nanocrystals via a post-anion exchange
reaction using the hot-injection method but could not succeed. Therefore, it is evident that
Cs2TiI6 has a long way to go before it can truly live up to its full potential (as expected
from the theoretical study) as a high-efficiency PSC material. One important step would
be to realize a stable and uniform bulk Cs2TiI6 perovskite layer, and techniques like vapor
deposition [27] and fast crystallization-deposition (FDC), also known as the anti-solvent
method [61], can be explored to achieve that. Extensive engineering of the experimental
parameters (e.g., reaction time and temperature of vapor deposition) could lead to high-
quality thin film with reduced defect profile, and further engineering of different device
parameters might pave the way for Cs2TiI6 PSC technology to reach its full potential for
real world applications.

6. Conclusions

To conclude, we have numerically demonstrated the possibility of utilizing Cs2TiI6 as
an active layer in perovskite solar cell (PSC) applications with competitive cell performance.
At an unoptimized state, the cell exhibits a theoretical power conversion efficiency (PCE) of
7.07% with CuI and TiO2 as the carrier transport layers, which is substantially increased
to 21.17% for an optimum absorber defect density of 1014 cm−3 and thickness of 300 nm.
Our study further highlights the importance of material processing and choosing appropri-
ate carrier transport layers for high-performance Cs2TiI6 PSC. We have computationally
demonstrated that, even with a relatively high defect density and deep defect states due
to several existing point defects in Cs2TiI6, it is still possible to reach a competitive cell
performance via the proper optimization of essential design parameters, subject to further
enhancement depending on the improvement in defect profiles by advanced thin film pro-
cessing techniques. Also, the computed electronic and optical properties of Cs2TiI6 show its
great potential as an alternative low-bandgap material for different solar cell applications.
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