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Abstract: Unusual optical properties of laser-ablated metal surfaces arise from the excitation of local
plasmon resonances in nano- and microstructures produced by laser-processing and from the mutual
interaction of those structures through surface plasmon polariton (SPP) waves. This interaction
provides a synergistic effect, which can make the optical properties of the composite nanostructure
drastically different from the properties of its elements. At the same time, the prediction and analysis
of these properties are hampered by the complexity of the analytical solution to the problem of SPP
excitation by surface objects of arbitrary configuration. Such a problem can be reduced to a simpler
one if one considers the geometry of a structured surface as a superposition of harmonic Fourier
components. Therefore, the analytical solution to the problem of surface plasmon polariton excitation
through the scattering of light by a sinusoidally perturbed plasmonic metal/vacuum boundary
becomes very important. In this work, we show that this problem can be solved using a well-known
method for calculating guided-mode amplitudes in the presence of current sources, which is used
widely in the waveguide theory. The calculations are carried out for the simplest 2D cases of (1) a
sinusoidal current of finite length and (2) a finite-length sinusoidal corrugation on a plasmonic metal
surface illuminated by a normally incident plane wave. The analytical solution is compared with
the results of numerical simulations. It is shown that, in the first case, the analytical and numerical
solutions agree almost perfectly. In the second case, the analytical solution correctly predicts the
optimum height of the corrugation xopt, providing the maximum SPP excitation efficiency. At the
same time, the analytical and numerical values of the SPP amplitude agree very well when the
corrugation height x turns out to be x � xopt or x � xopt (at least up to 3xopt); at x = xopt, the
mismatch of those does not exceed 25%. The limitations of the analytical model leading to such
a mismatch are discussed. We believe that the presented approach is useful for modeling various
phenomena associated with SPP excitation.

Keywords: surface plasmon polaritons; SPP; SPP excitation; nanostructured substrates

1. Introduction

Nanomaterials require a specialized toolkit to construct on-chip electronics and de-
velop highly efficient devices capable of concentrating light at the nanoscale. To overcome
the limitations of traditional dielectric waveguide nanotechnology, one promising approach
involves the utilization of metallic structures that support plasmon modes. The field of
plasmonics offers a compelling solution by harnessing the collective oscillations of elec-
trons at the surface of these metallic nanostructures. This allows for intense light–matter
interactions and enables the precise manipulation and control of light [1].
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Nowadays, the field of plasmonics is a rapidly growing area of research that has
gained significant attention in recent years due to its potential applications in various fields,
including biosensing [2–4], fiber sensing [5,6], imaging [7–9], data storage [10], and energy
conversion [11,12]. The field of plasmonics focuses on the interaction between electromag-
netic radiation and free electrons in metal structures, known as surface plasmon polaritons
(SPPs), which can lead to unusual optical properties and strong light–matter interaction.

The history of plasmonics dates back to the early 20th century, when SPPs were first
discovered as anomalies in the reflectance spectra [13]. However, it was not until the
1950s that researchers started to study the interaction between light and metal surfaces
and realized the potential of surface plasmons for enhancing the absorption and scattering
of light. Since then, the field of plasmonics has evolved rapidly, with numerous studies
exploring the properties and applications of SPPs in various structures, including metallic
nanoparticles [14], thin films [15], and nanostructures created by laser ablation [16,17].

Optical phenomena involving SPPs can occur at subwavelength scales and are not
limited by the diffraction limit. Therefore, one of the most promising applications of
plasmonics is in the field of nanophotonics, which involves the manipulation of light
at the nanoscale. This field has been driven by the need to develop smaller and more
efficient optical components for a wide range of applications, from telecommunications [18]
to medical imaging and drug delivery [19]. Plasmonic coupling between nanoantennas
over a conductive surface is the basis for the design of highly sensitive sensors [20] and
thermoplasmonic devices [21].

However, the design and optimization of plasmonic nanostructures for specific appli-
cations can be challenging, as it requires a deep understanding of the complex interactions
between light and matter at the nanoscale. The excitation of SPPs in these structures is par-
ticularly important, as it can enhance the local electromagnetic field and lead to increased
light–matter interactions. Therefore, there is a need for accurate and efficient computational
tools for modeling the behavior of SPPs in plasmonic nanostructures, which can aid in the
design and optimization of these structures for various applications.

The study and analysis of nanostructured plasmonic surfaces raise even broader ques-
tions. In addition to the excitation of SPPs in individual structures, the mutual interactions
between neighboring structures can also lead to novel optical effects. This interaction arises
from the coupling of SPPs between adjacent structures, which can result in the formation
of new modes with different spectral and spatial properties. The resulting composite
structures exhibit a synergistic effect that is not present in the individual structures, leading
to significant changes in the optical properties.

In this work, we extend the approach initially suggested by us in [22,23] for a de-
scription of SPP excitation by confined nanoantennas to the case of SPP excitation by
nanostructured substrates. While modern manufacturing techniques, including laser abla-
tion, allow the creation of arbitrarily shaped profiles, we investigate the simplest case of a
sinusoidally perturbed surface because the general scattering problem can be decomposed
into the set of Fourier components. We pay extra attention to properly accounting for SPP
radiation losses and the impact of the finite length of the profiled area. All the analytical
results are confirmed by the numerical calculations.

2. Results and Discussion
2.1. Excitation of SPP within Born Approximation

First, we are going to determine the efficiency of the induced SPP wave based on the
Lorentz reciprocity theorem [24]. Suppose we have a finite-length grating on the metal–air
interface under the plane wave illumination (Figure 1a).
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Figure 1. Geometry of surface plasmon polariton (SPP) excitation. (a) SPP excitation by a sinusoidally
perturbed boundary. The amplitude of the forward-propagating plasmon polariton is calculated at
point z = 0, directly after the excitation zone. (b) Excitation of the SPP by a surface current.

To calculate the amplitude of the excited plasmon polaritons, we use the expression
following the unconjugated form of the Lorentz reciprocity theorem [24]

aSPP = − 1
4N0

∫
(V)

(eSPP · J) e−ikSPPzdV, (1)

where eSPP = eSPP
x nx + eSPP

z nz is the SPP mode’s electric field with eSPP
z (x) = e0e−γ(x)|x| and

eSPP
x (x) = e0

√
εMe

εS(x) e−γ(x)|x|; e0 = −h0
ρV√

εMe+1 ; ρV =
√

µ0
ε0

; hSPP = hSPP
y ny is the SPP mode’s

magnetic field with hSPP
y = h0e−γ(x)|x| ; εS(x) =

{
1, x > 0
εMe, x < 0

; γ(x) =

{
γVac, x > 0
γMe, x < 0

;

h0 is the arbitrary constant of dimension A/m; N0 = 1
2

∣∣∣∫(S) eSPP × hSPP · nz dS
∣∣∣ ; γVac =

k0
i√

εMe+1 ; γMe = −k0
iεMe√
εMe+1 ; kSPP = k0nSPP; nSPP =

√
εMe√

εMe+1 ; nx, ny are the unit vectors
in the X and Y directions, respectively; J is the excitation current density distribution; and
k0 = 2π/λ is the vacuum wavenumber.

Let us assume that this grating represents a corrugation with periodically varying
height xg = x0 cos kgz and total length z0 (Figure 1a), and the height of the corrugation x0
is small compared to its period Λ = 2π/kg. Suppose that a plane electromagnetic wave
with a wavelength λ not too different from the period Λ falls normally on this corrugation
from the vacuum (see Figure 1a). The density of the equivalent current, due to the presence
of the corrugation, can be described as in [24]:

Jg = −ik0(ε(x, z)− εs(x))
E

ρV
, (2)

where E is the electric field amplitude, the dependencies ε(x, z) and εs(x) set the modulation
of the dielectric permittivity of the layer of the considered plasmonic metal with corrugated
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and initial flat surfaces, respectively. The field E is a superposition of the incident wave and
that reflected from the metal surface with some additional contribution associated with
light scattering.

While the E itself depends on the SPP field and the latter is described by the aSPP
amplitude, (1) defines a self-consistent problem. In order to simplify the problem, we
consider using the first Born approximation [25]. For this purpose, we will ignore all the
scattering terms in (2), and assume that

E = E0_insnz

{
eik0x + re−ik0x, x > 0
(1 + r)eγ0

Mex, x < 0
, (3)

where E0_ins is the incident wave field amplitude, r =
(
1−√εMe

)
/
(
1 +
√

εMe
)

the reflec-
tion coefficient from the flat metal surface, and γ0

Me = ik0
√

εMe.
Once J is set, the integral (1) can be evaluated analytically, provided that x0 � λ by a

power decomposition of a small parameter k0x0. After taking into account the linear terms
only, one can obtain the following expression for the Z component of the electric field right
after the end of the grating:

E0z =
1√

1 + εMe

k3
SPPkg

k0(k2
SPP − k2

g)
(1 + r)x0(1− e(−kI+i∆k)z0)E0_ins, (4)

where kSPP = kR + ikI , kR = Re kSPP, kI = Im kSPP, ∆k = kR − kg.
One can find a derivation of (4) for the case when the total length of the grating

possesses the form z0 =
(

n + 1
2

)
Λ (where n is an integer) from the Lorentz reciprocity

theorem in Appendix A.
To verify the analytical results obtained, we performed numerical simulations using

the commercial software COMSOL Multiphysics. In this subsection, we create a two-
dimensional numerical model simulating half of a grating with a total length of (2n+ 1/2)Λ
(with the perfect electric conductor boundary condition to ensure mirror symmetry; n is con-
sidered an integer) surrounded by a perfectly matched layer. The solution to the Maxwell
equation was obtained using the finite-element method in the frequency domain (FEFD).
The SPP contribution was determined from Equation (1) with the calculated electric field
distribution substituted into (2). Integration in Equation (1) was performed along a vertical
line perpendicular to the interface, positioned after the sinusoidal perturbation. We chose
the simulation area size and mesh size to ensure that the results did not change significantly
under small variations of the model’s parameters.

Figure 2 compares the analytical calculations according to (4) and the results of full-
wave numerical calculations for different grating periods. Hereinafter, we consider gold as a
plasmonic metal (dielectric permittivity of gold is taken from [26]). The figure demonstrates
that, overall, (4) agrees with the results of the simulations for relatively low gratings (namely,
for grating heights up to 30 nm). As the length of the grating increases, the distinction
of the dependencies grows stronger. Moreover, the degree of divergence depends on the
grating period. When the difference between the resonant period and the actual one (red
color in Figure 2; the period equals 778 nm) suppresses the SPP generation, the analytical
expression describes the behavior of the numerical results even for longer grating lengths of
up to 300 µm. However, while the grating period approaches the resonance, the divergence
becomes more pronounced. One can explain it as follows. The Born approximation assumes
that the background field largely determines the total electric field value. If this condition
is met, the additional terms related to the “self-action“ of the SPP field are negligible In the
case of resonant excitation, the SPP field is compatible in strength with the background
field; therefore, the approximation is less accurate.
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Figure 2. Comparison of the analytically calculated Z component of the electric field at the end of the
gold grating and the results of the full-wave numerical simulations. The grating amplitude is 10 nm;
the solid lines represent the analytical results while the dotted ones correspond to the numerical
simulations; the vacuum wavelength is 800 nm.

Another factor limiting the accuracy of the described approach is the grating amplitude.
Indeed, the background field decays as it penetrates the metal. By contrast, the total
electric field is essentially non-zero near the grating, even for the larger values of x0. Thus,
the background field is no longer the dominant contribution to the total field.

Figure 3 supports this conclusion. Indeed, (4) adequately describes the numerical
experiment for small grating heights (up to 5 nm). A further increase in the grating
amplitude leads to a divergence of the numerical results from the analytically predicted
ones. Importantly, the difference is retained even when the next orders of magnitude of the
parameter k0x0 are taken into account, despite the corresponding expressions becoming
more complicated.

0.5

0
0 10 20 30

1.0

1.5

2.0
|E0z|/E0_ins

x0, nm

Figure 3. Dependence of the normalized Z component of the electric field near the end of the grating
on the grating amplitude x0 for the resonant SPP excitation, λ = 800 nm. The dashed line shows the
analytical dependence; the dots represent the numerical calculations. For both cases, the total length
of the grating is kept constant and equal to 400.5 grating periods (≈313 µm).

Therefore, there is a need for another approach, which will better describe the SPP
generation for larger grating amplitudes, as well as the case of resonant SPP excitation.

2.2. Excitation of SPP by a Flat Harmonic Current

Now, we will explore a slightly different approach. Firstly, let us consider the problem
of plasmon excitation by a harmonic current distributed on a flat metal–dielectric interface.
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The current density possesses the form Jsurf = Jsurf · nz, where nz is a unit vector in the
Z-axis direction,

Jsurf = δ(x)Isurf cos kgz, (5)

δ(x) is the Dirac delta function, kg = 2π
Λ , Isurf is the current amplitude, which implicitly

includes the time dependence exp(iωt), Λ is the current modulation period along the
Z-axis (Figure 1b). The current is not infinite in this direction, and its range is limited by
the length z0.

Assuming in (1) that J = Jsurf, we note that of the two terms, exp(ikgz) and exp(−ikgz),
which are in the Euler representation for the function cos kgz, defining the spatial modula-
tion of the excitation current density in relation (5), only the former one makes a significant
contribution to the amplitude of the forward-propagating (i.e., in the Z axis direction)
SPP, while the contribution of the second one is negligibly small. The situation is the
opposite for the back-propagating plasmon. Taking into account only the main contribution
to the amplitude of the forward-propagating SPP, the Z component of its electric field
Ez = aSPPeSPP

z can be written as Ez = E0ze−γ(x)|x|, where

E0z = iγI
1

∆k + ikI
(1− e−z0kI+i∆kz0)ρV Isurf, (6)

and γI =
k0n2

SPP
2εMe

∣∣∣∣ ε3/2
Me

ε2
Me−1

∣∣∣∣.
The results of calculations for the amplitude of this component, as carried out by

expression (6) for various excitation current parameters when the plasmonic metal is gold,
are shown in Figure 4; the current amplitude Isurf is assumed constant within its range and
equal to 1 A/m.

Under these conditions, Figure 4a illustrates the dependence of the SPP amplitude E0z
on the spatial modulation period when the wavelength of SPP remains constant. The vac-
uum wavelength is set to be λ = 0.8 µm, which yields the corresponding plasmon wave-
length λSPP = 0.783 µm with its typical propagation length lSPP = 1/kI = 92 µm. Figure 4a
demonstrates that when the values of λSPP and Λ are inconsistent, the plasmon polariton
amplitude oscillates as z0 increases. These oscillations decay when z0 � lSPP, then the
amplitude reaches the stationary value. If λSPP = Λ, the stationary value is the largest and
reached without oscillations.

The behavior of the curves can be interpreted as a result of excitation in the current
zone of the “free” and “forced” SPP waves with the wave numbers kSPP and kg, respectively.
These two waves have opposite-signed amplitudes, so at the beginning of the excitation
current zone, at z = −z0 (Figure 1b), the amplitude of the total right-propagating wave is
zero. At the end of this zone, at z = 0, the total wave is the sum of the beats of the “free”
and “forced” waves, the first of which gradually decays due to the non-zero imaginary
part of the plasmon polariton propagation constant kSPP. It is possible to show that, in
this representation, the total field is proportional to 1− e−z0kI+i∆kz0 , i.e., as it is assumed in
expression (6). It gives the initial amplitude for an SPP wave that is free from the external
action excited outside the current range at z > 0. If λSPP 6= Λ, fluctuations in the amplitude
of the excited SPP are consequences of the beats mentioned above. In resonance, there is no
beating due to the equality of the propagation constants of “free” and “forced” SPP waves.

Figure 4b shows the results of calculations of the dependence of the SPP amplitude
on the current modulation period. The current amplitude and plasmon parameters are
the same as in the previous example. The curves obtained for z0 < lSPP have pronounced
traces of “free” and “forced” waves’ beats. As the length z0 increases, the beats disappear,
and the frequency response narrows and acquires the Lorentzian profile with a half-width
equal to λ2

SPP(πlSPP)
−1.

To illustrate the case when the current modulation period can go beyond the 770–800 µm
range, as assumed in Figure 4a,b, Figure 4c presents the results of calculations of the de-
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pendence of the SPP resonant amplitude on the sinusoidal current zone length z0 over a
broader range of Λ.
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(c)
Figure 4. Dependence of plasmon amplitude on the excitation current parameters. The solid curves
are the results of analytical calculations, the dotted ones are the results of numerical calculations.
(a) Dependence of the SPP amplitude on the length of the sinusoidal current when the SPP parameters
(λSPP = 0.783 µm, lSPP = 92 µm, λ = 0.8 µm) remain unchanged and the current modulation period
Λ varies. (b) The dependence of the SPP amplitude (λSPP = 0.783 µm, lSPP = 92 µm, λ = 0.8 µm) on
the current modulation period, with variation in the current zone’s length. (c) Dependence of the SPP
resonance amplitude on the length of the sinusoidal surface current for different grating periods Λ.
A vacuum wavelength λ is chosen to provide the resonance condition λSPP = Λ. Curve 1: Λ = 568 nm
(λ = 0.6 µm, lSPP = 9.6 µm). Curve 2: Λ = 687 nm (λ = 0.7 µm, lSPP = 52 µm). Curve 3: Λ = 783 nm
(λ = 0.8 µm, lSPP = 92 µm). Curve 4: Λ = 886 nm (λ = 0.9 µm, lSPP = 147 µm). Curve 5: Λ = 988 nm
(λ = 1.0 µm, lSPP = 183 µm).

Figure 4 also contains the results of the numerical calculation of the SPP-wave am-
plitude excited by a sinusoidal longitudinal current on the metal surface, obtained by the
FEFD method implemented in COMSOL Multiphysics. The mesh and simulation area’s
size in the numerical model were chosen so as not to affect the simulation results under its
minor variation. To extract the initial amplitude of the excited SPP wave from the entire
electromagnetic field generated by the source current, we used the fact that sufficiently far
from the excitation current, the longitudinal electric field at the interface decays exponen-
tially along the Z-axis with a damping constant corresponding to kSPP, which indicates
the dominant contribution of the SPP wave to the total field. Considering this, the initial
amplitude of the SPP wave was taken from the extrapolation from the distant point to z = 0
using the known exponential law of SPP attenuation. This extraction method provides
the same results compared to the one used in the first subsection despite being based on a
slightly different approach.
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One can see that the numerical and analytical results agree well with each other. There-
fore, we argue that the considered approach describes well the process of SPP generation by
a surface current. Thus, the problem of plasmon polariton excitation due to the sinusoidal
perturbation of the metal boundary (i.e., grating) reduces effectively to the appropriate
choice of the current density. Of course, one can later introduce additional adjustments
for better agreement with the experimental data since the current distribution may not be
purely surface.

2.3. SPP Excitation by a Plane Wave Illumination

We are now ready to describe the SPP excitation with the approach developed in the
previous section. We will start with the same corrugation as in Section 2.1, but introduce
another approximation for E in (2), namely E = (1+ r)E0_insnz. Like in the previously inves-
tigated case, E0_ins is the incident wave field amplitude, and r =

(
1−√εMe

)
/
(
1 +
√

εMe
)

is the reflection coefficient from the flat metal surface. While the grating’s amplitude is
chosen to be much less than the vacuum wavelength, it suggests to be a more accurate ap-
proximation.

Note that the current density Jg will be zero everywhere except in the corrugated re-
gions highlighted in Figure 1a in orange and blue, where it is Jg0nz and−Jg0nz, respectively,
and Jg0 = −ik0(εMe − 1) (1+ r)ρ−1

V E0_ins. This gives the corresponding limits of integration
over the variable x in (5), when substituted into it Jg as the excitation current J. After per-
forming the substitution, the expression for the SPP amplitude will include integrals

of the form
0∫
−z0

exp
(
−γV x0cos+(kgz)

)
e−ikSPPz dz and

0∫
−z0

exp
(
γMex0cos−(kgz)

)
e−ikSPPz dz,

where the half-wave rectified cosine functions cos+x and cos− x are given by cos+x ={
cos x, cos x > 0
0, cos x < 0

and cos−x =

{
0, cos x > 0
cos x, cos x < 0

, so that the half-wave rectified cosine

functions keep their sign for all x. The analytical calculation of these integrals becomes
possible by decomposing exponents containing half-wave rectified cosine functions into a
power series. If we limit the accuracy of such an expansion to the quadratic terms in x0,
after integration, the amplitude Z component of the SPP field turns out to be

E0z =
iγE

∆k + ikI
(1− e−z0kI+i∆kz0)E0_ins, (7)

where

γE = γ0

(
x0 − i

2
3π

k0x2
0

√
εMe + 1

)
(8)

with

γ0 = −i(εMe − 1)(1 + r)
k2

SPP
2εMe

∣∣∣∣∣ ε3/2
Me

ε2
Me − 1

∣∣∣∣∣. (9)

Let us add that we could use a less accurate way to account for the excitation current
in the grating, which consists of first summing this current along the vertical axis (the X
axis in Figure 1a) and then representing it in a purely surface form (5). Later, we will refer
to this approach as the “flat current” approximation. It is not difficult to show that the
amplitude of such a current will be Isurf = −ik0(εMe − 1) (1 + r)x0E0_ins/ρV . Substituting
it into (6) gives almost the same result as (7), except for the absence of a quadratic term
in the parameter x0 in (8). It is not difficult to understand that this term disappears in
the flat current approximation because one does not consider the plasmonic mode’s finite
depth of penetration into metal and air when integrating in (6). The power expansion of
the exponents in the transverse SPP mode accounts for this feature. However, the necessity
of introducing the terms of the third or higher degree of x0 to improve the accuracy of the
SPP amplitude calculation, as compared to the flat current approximation, is still obscure.
We will address these questions when comparing the analytical and numerical calculations.
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So far, we have not discussed the impact of radiation losses introduced by the scattering
of the SPP wave on the grating. We will account for them in the following considerations.
Let us differentiate expression (7) with respect to z0. We obtain that dE0z

dz0
= −γEE0_ins −

(kI − i∆k) E0z. The last expression is a differential equation for the plasmon amplitude,
in which the energy dissipation is given by the terms kI E0z. It is reasonable to assume
that the radiative losses, as well as thermal losses, are proportional to the SPP amplitude.
Adding the corresponding term transforms the considered differential equation to the
following form:

dE0z

dz0
= −γEE0_ins − (kI + γrad − i∆k) E0z. (10)

One should also make a corresponding substitution into (7):

E0z = iγE
1

∆k + i(kI + γrad)
(1− e−z0(kI+γrad)+i∆kz0)E0_ins, (11)

which, consequently, becomes an exact solution of Equation (10). Note that the introduction
of radiation losses increases

zsat = (kI + γrad)
−1, (12)

which is the typical grating length at which the SPP amplitude reaches saturation, which
now turns out to be smaller than lSPP. Hereafter, we will refer to the case where the grating
length is much greater than zsat as the long grating case. The value of zsat also specifies the
half-width of the resonance contour formed by the dependence of the SPP intensity on the
period of the long grating, according to the expression

FWHM = λ2
SPP(πzsat)

−1. (13)

2.4. Evaluation of γrad

Despite the fact that (11) takes proper account of the impact of losses on the SPP
amplitude, the value of γrad remains unknown. Note that the differential Equation (11)
turns out to be very similar to the one considered in [27], although the latter was obtained
from different considerations. Using the approach proposed in the mentioned paper, let
us add to the differential equation one more relation for the field intensity of the reflected
light:

Eref = Er + Elkg, (14)

where
Er = rE0_ins (15)

is the electric field intensity of the wave reflected directly from the flat metal surface, and

Elkg = κE0z (16)

is the electric field intensity of the wave arising as a result of plasmon energy leakage with
κ as a coefficient characterizing this leakage.

When analyzing the resulting system of Equations (10) and (14), one should ensure
that the grating length is sufficient to consider the incident and reflected waves as plane
waves. In this case, they may not be separated into separate spatial Fourier components,
as was done in [27]. Otherwise, the approach to solving the system of equations remains
the same as in the above work. Using the transformations based on energy conservation,
time-reversal, and geometry mirror symmetry [27], and the results for the lossless case
(kI = 0), we find that the parameters γE, γrad, and κ are connected by the following relation:

γrad =
|κ|2
2N1

=
N1

2
|γE|2, (17)
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where N1 = 1
2k

∣∣∣∣(εMe + 1) ε2
Me−1

ε3/2
Me

∣∣∣∣. This relation differs from the similar one given in [27]

mainly due to the presence of the normalization factor N1, which appears due to the change
in the approach to the description of the spatial frequency spectrum of radiation. Assuming
that this relationship remains valid in the lossy case, we then obtain the expression for the
electric field of reflected light Eref = ρE0_ins, where ρ is the light reflection coefficient from
the grating, which, if z0 > zsat, is equal to

ρ = eiφ i∆k + γrad − kI
i∆k− γrad − kI

, (18)

where φ is the phase shift in the reflection from a flat metallic surface. Finally, the expression
for the SPP amplitude is obtained by substituting the value of the parameter γrad found
from the relation (17) into expression (11).

It is important to note that application of the “lossless” relation (17) to the system
of Equations (10) and (14) in the lossy case is an approximation that is justified only at
sufficiently small values of parameter kI , and which, otherwise, can lead to errors in
calculating the SPP amplitude, which will be discussed later. Hereafter, we will refer to this
approximation as the “kI → 0 approximation”.

Note that within this approximation, provided the dissipative and radiative losses
of SPP are equal, the output of the long resonant (∆k = 0, Λ = λSPP) grating achieves the
maximum possible SPP amplitude

∣∣∣E(SUP)
0z

∣∣∣. The reflection coefficient in this case, as (18)
suggests, becomes zero. The height of the grating profile, ensuring that γrad = kI , as follows
from (8) and (17), can be calculated as

xopt =
(√

1 + 4bx1 − 1
)

/2b, (19)

where x1 =
√

2kI/N1/|γ0|, b = 4 Re(−i
√

εMe + 1)/3λ. The data obtained by calculating
the values xopt and

∣∣∣E(SUP)
0z

∣∣∣ for some wavelengths of the optical range are presented in
Table 1.

Table 1. Key parameters of the long gold grating and the amplitude of the excited SPP wave.

λ, µm Analytical Calculations Numerical Calculations
xopt, nm xR=0, nm |E(SUP)

0z | xopt, nm xR=0, nm |E(SUP)
0z |

0.6 26.3 26.3 1.96E0_ins 26 20 1.55E0_ins
0.7 17.4 17.4 2.72E0_ins 17 12 2.23E0_ins
0.8 17.7 17.7 2.53E0_ins 18 14.5 2.053E0_ins
0.9 18.4 18.4 2.33E0_ins 18 15 1.90E0_ins

xopt is the grating’s height of the profile where the SPP resonant amplitude reaches a maximum; xR=0 is the height

of the profile where the grating reflection coefficient is zero;
∣∣∣E(SUP)

0z

∣∣∣ is the maximum resonant amplitude of the
longitudinal component of the SPP electric field at z0 > zsat and x0 = xopt.

The results of the calculations of the SPP amplitude dependence on the parameters of
the gold grating, carried out following expressions (11) and (17) for the case of a normal
incidence of a plane wave with λ = 0.8 µm, are shown in Figure 5.

Figure 5 also illustrates the dependence of the SPP amplitude on the grating length z0
when the height of its profile is x0 = 5 nm. Note that the magnitude of the resonant grating
period coincides with the SPP wavelength equal to λSPP = 0.783 µm. As one would expect,
the curve corresponding to this period in Figure 5a exhibits monotonic growth up to the
saturation value. The oscillations in non-resonant curves are similar to those in Figure 4a
for the SPP current excitation case.

Figure 5b shows the dependence of the resonant (Λ = λSPP) SPP amplitude E(rns)
0z on

the grating length z0. Note that the saturation length zsat for these dependencies is no
longer constant. It is nearly constant as long as the grating profile height remains much
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smaller than xopt = 17.7 nm (solid curves at x0 = 1, 2, 4 nm). Otherwise, it decreases sharply
due to an increase in radiation damping (solid curves at x0 = 25 and 75 nm), as follows
from expression (12).
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Figure 5. Dependence of SPP amplitude on the grating parameters. The solid curves are the results of
analytical calculations, the colored dots and dashed lines are the numerical results. (a) Dependence
of the SPP amplitude on the grating length z0 with variation in the latter’s period. The height of
the grating profile x0 = 5 nm. The wavelength of radiation incident on the grating is λ = 0.8 µm
(λSPP = 0.783 µm). (b) Dependence of the SPP amplitude on the length z0 in the resonant case
(Λ = λSPP = 0.783 µm, λ = 0.8 µm). (c) Dependence of the SPP amplitude on the grating period
for long (z0 � zsat) gratings of different heights. (d) Dependence of the SPP parameters on the
height x0 of the long (z0 � zsat) grating (Λ = λSPP = 0.783 µm, λ = 0.8 µm). Curves 1 and 3:
analytical calculation of the SPP amplitude in the quadratic and linear (“flat”) surface current model,
respectively; curve 2: numerical calculation of the SPP amplitude; curve 4: analytical calculation of full
width at half maximum (FWHM) and full width of the resonance at half its depth (FWHD) for the SPP
amplitude; curve 5: numerical calculation of the FWHM of SPP amplitude resonance dependencies;
curve 6: numerical calculation of the FWHM of the grating resonant reflection dependencies.

Figure 5c shows the dependence of the amplitude E(sat)
0z of the SPP excited by the long

grating on its period. As expected, these curves have a Lorentzian profile similar to that for
SPP excitation by a surface current. The resonance period, equal to 0.783 µm, is constant for
all dependencies because the used model does not allow variation in the SPP wavelength
as the height of the corrugation changes.

In Figure 5d, which shows the dependence of the amplitude E(sat+rns)
0z of the plasmon

excited by the long resonant grating on the height of its profile (curve 1), one can see the
presence of a maximum at x0 = xopt with the highest amplitude value

∣∣∣E(SUP)
0z

∣∣∣.
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The nature of the dependence of the SPP amplitude on the grating parameters does not
change for other wavelengths of the optical range compared to the one in Figure 5; there-
fore, these dependencies are not given. Of course, the values xopt and

∣∣∣E(SUP)
0z

∣∣∣ for other
wavelengths are different, as supported by Table 1.

Although this paper is devoted to the problem of SPP excitation by the grating and not
to the reflective properties of the latter, some intriguing features of SPP excitation, as we
will see later, are also apparent in the analysis of the grating reflection coefficient. In this
regard, Figure 6 presents the results of analytical calculations of the reflectance R = |ρ|2,
depending on the parameters of the long grating obtained per expression (18) at λ = 0.8 µm.
In this case, the solid curves in Figure 6a illustrate the dependence of the coefficient R
on the grating period, and Figure 6b shows the dependence of the resonance value of
this coefficient on the height of the grating. As the amplitude x0 increases, the presented
dependencies show first an increase in the depth of the dip in the grating reflection, up to
the case R = 0, which occurs when the condition x0 = xopt (γrad = kI) is satisfied.
After that, the dip depth decreases, and the dependence expands due to the rapid growth
of radiation attenuation.

x0=
4 nm

16 nm

30 nm
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0
782780 786784 788
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�, nm

x0=4 nm (1.87�rad)
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x0, nm

Rrsn
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(b)
Figure 6. Analytical (solid curves) and numerical (dotted and dashed curves) dependencies of the
reflectance on the parameters of a long grating in the case of a normal incidence of a plane light wave
with λ = 0.8 µm; (a) dependence of the reflection coefficient on the grating period; (b) dependence of
the resonance reflection coefficient on the height of the grating profile.

The results of numerical calculations of the SPP amplitude at λ = 0.8 µm performed
for the geometry shown in Figure 1a, with the same technique of extracting the plasmon
polariton contribution from the scattered field, as in the case of SPP wave excitation by
a surface current, are presented by dotted and dashed curves in Figure 5. As can be
seen, they agree fairly well with the analytical ones at sufficiently small (no more than
5 nm) values of the grating profile height. With a further increase in the profile height,
one can observe a mismatch between the numerical and analytical results. In particular,
in Figure 5c, the resonant wavelength shifts toward a shorter grating period, while for
the analytical dependencies, the value of the resonant period is constant. This difference
appears to be due to the effect of changes in the SPP mode propagation constant in the
perturbed waveguide [24], the consideration of which is beyond the scope of this paper.
However, we emphasize that we take the numerical values of the SPP resonance amplitude
as the maximum values of the dashed dependencies in Figure 5c. Figure 5b shows that
these values agree well with the analytical one, not only when x0 � xopt (curves at
x0 = 1, 2, 4 nm), but also at much higher than xopt heights (see the curve at x0 = 75 nm).
The differences, however, are mainly observed at x0 ≈ xopt (curve at x0 = 25 nm). This is
also clearly noticeable when comparing the numerical (curve 2) and analytical (curve 1)
results of calculations of the dependence of the SPP resonance amplitude on the height
of the long grating profile x0 in Figure 5d. This figure shows that the magnitude of the
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discrepancy between the analytical and numerical results reaches approximately 20% at
x0 = xopt (for other x0 up to 3xopt, the discrepancy does not exceed 25%). Despite this,
the positions of the maxima of the numerical and analytical curves visually coincide at
xopt ≈ 18 nm. The agreement between the analytical and numerical data at a high grating
height continues, at least up to the value of 100 nm (x0 ≈ 6xopt). The same picture is
observed for other calculated wavelengths, as illustrated by the results given in Table 1.

It is also interesting to compare the widths of the analytical and numerical resonance
dependencies presented in Figure 5c. When the height of the grating profile is low, these
curves virtually coincide in width (curves at x0 = 4 nm). However, as the height x0 in-
creases, the numerical resonance curves are narrower than the analytical ones. This feature
is illustrated by curves 4 and 5 in Figure 5d, the first of which represents the results of
analytical calculations of the FWHM value, according to (13), while the second is derived
from numerical simulations.

Considering the reasons for the discrepancy between numerical and analytical results,
we note that, in expression (8), if we reject the quadratic on the parameter x0 term and
pass to the “flat current” approximation, it leads to a much more pronounced difference
between analytical curve 3, obtained in the approximation, and numerical dependence 2
in Figure 5d. Such a mismatch occurs not only at x0 ≈ xopt, as it was when comparing
curves 1 and 2, but also if x0 > xopt, when it can reach 100% or more. In addition,
the maximum of curve 3 (“flat current” approximation) shifts to the right, and now its
position is remarkably different from the numerical value of xopt. The additional quadratic
term in (8) leads to a substantially better agreement between the corresponding analytic
curve 1 and the numerical curve 2. Although one would expect even better agreement
between the analytical and numerical results after introducing the cubic terms in (8),
direct analytical calculations show that taking this term into account practically does not
change the form of the analytical curve 1 in Figure 5d for heights in the range of 0–100 nm.
Therefore, one should look for another source of discrepancy between the analytical and
numerical calculations. Such a difference may be related to the limitations of the Born and
kI → 0 approximations.

A comparison of the results of numerical calculations of the grating reflectance, which
are presented as dashed curves, and in Figure 6 for the λ = 0.8 µm case, with solid analytical
curves, suggests the possible origins of this issue. The numerical results presented in the
figure were obtained in the approximation of an infinitely long grating illuminated by
an unbounded normal incident plane wave. Thanks to the periodicity, we performed all
calculations within one grating period with periodic boundary conditions along the Z axis
and a perfectly matched layer (PML) to absorb reflected light at the upper boundary of the
calculation domain.

Figure 6 demonstrates that the numerical values of the R coefficient tend to the value
of the reflectance from a flat gold surface, equal to 0.988, in two cases: at x0 → 0 and away
from resonance. The analytical value for R under the same conditions tends to 1. This
difference is an obvious consequence of the kI → 0 approximation since this approximation
ignores dissipative losses, without which a flat surface of any metal has R = 1.

Another consequence of using this approximation seems to be more significant. A
comparison of the analytical and numerical curves in Figure 6a exhibits a marked difference
in the dip depth even at x0 � xopt (the curve at x0 = 4 nm in Figure 6a). At the same time,
the results of numerical and analytical calculations of the SPP amplitude at this grating’s
height presented in Figure 5 agree well with each other, which advocates the hypothesis
that there is an error in the analytical calculation of the γrad value due to the kI → 0
approximation.

Indeed, it follows from the relation (11) that the amplitude of the SPP excited by the
long resonant grating is limited by the sum of dissipative and radiative losses according to
the expression E(sat+rsn)

0z = γE
1

kI+γrad
E0_ins. At x0 � xopt, the radiative losses are negligible

compared to the dissipative losses. Therefore, the amplitude E(rsn)
0z weakly depends on

γrad and, thus, on the error of its calculation for small values of x0. It is not the case,
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however, for the reflected wave. The first term in (14) for the reflected wave amplitude
does not depend on the radiation losses, and the second term can be written as

∣∣∣Elkg

∣∣∣ =
−
√

2N1γradE0z, as in (17). Therefore, the inaccuracy of the calculation of the parameter
γrad will directly affect the value of this summand and, as a consequence, the intensity of
the reflected wave. Thus, the error in the calculation of the value of the coefficient R will
appear regardless of the fulfillment of the condition γrad � kI , or equivalently, whether or
not the grating’s height is relatively small.

Further discussing the source of the discrepancy between the analytical and numerical
calculations, we note that if we fix the height of the grating profile at 4 nm but increase
the value of γrad by a factor of 1.87, the corresponding analytical dependence for R(Λ)
in Figure 6a (grey dashed curve) will almost completely coincide with the numerical one.
With this modification of radiation attenuation, the analytical dependence E(rsn)

0z (z0) for the
resonant plasmon amplitude will shift slightly down in Figure 5b and coincide completely
with the dashed curve for x0 = 4 nm (not shown in this figure). One might expect that for
other grating heights, such a technique would help to eliminate the discrepancy between
the analytical and numerical dependencies for the SPP amplitude in Figure 5b. However,
the magnitude of this correction differs for different x0. Thus, in the case where x0 = xopt,
the coincidence of the analytical and numerical values of E(rsn)

0z (z0) is achieved when γrad
is 1.52 times larger, and when x0 > xopt no additional correction is required. One can
interpret these features as follows. As long as x0 � xopt, dissipative SPP losses dominate
and cannot be assumed to be small, thus reducing the accuracy of the γrad parameter
calculation within the kI → 0 approximation and, as a result, requiring the maximum value
of the correction factor. As the height of the grating profile increases, the contribution
of dissipative losses to the SPP attenuation gradually decreases and eventually becomes
negligibly small compared to radiation losses when x0 � xopt. In this case, the accuracy
of the approximation kI → 0 increases, leading to the complete coincidence of analytical
results with numerical ones.

Figure 6a shows that as the profile height continues to increase, the resonance position
shifts toward lower values of Λ (just as it does for the SPP resonance amplitude in Figure 5c).
Therefore, we take the minimum value of the numerical dependence R(Λ) as the numerical
value of the resonant reflection coefficient Rrns.

In Figure 6b, curve 2 shows the results of numerical calculations of Rrns as functions
of the profile height x0 of the long grating at λ = 0.8 µm. The minimum of this curve
is slightly shifted to the left, relative to the minimum of analytical dependence 1, and is
observed at the grating profile height xR=0 = 14.5 nm, which differs from xopt = 17.7 nm.
Note that the numerically calculated height xR=0 for other wavelengths of the optical range
also turn out to be smaller than xopt, which is illustrated by the data in the results of the
calculations of this height in Table 1.

The limitations of the kI → 0 approximation can partially explain the difference in
the position of the minimum of the analytical and numerical curves for Rrns. Indeed,
if one accepts the validity of the conclusion drawn above (that the maximum of the SPP
resonance amplitude observed when the condition x0 = xopt (γrad = kI) is satisfied),
then the reflectance Rrns cannot be zero at any kI 6= 0 for the real lossy metal. Indeed, it
follows from expressions (14)–(16) that γrad = kI provides

∣∣∣Elkg

∣∣∣ = |E0_ins|, |Er| = |rE0_ins|.
Within the kI → 0 approximation, |r| = 1, so the waves leaking out and reflected from the
interface have equal amplitudes

∣∣∣Elkg

∣∣∣ = |Er|. As a result, the destructive interferences of
Elkg and Er waves nullify the reflection coefficient. However, due to the dissipative losses

in a real metal, the value of |r| is always slightly less than 1, so
∣∣∣Elkg

∣∣∣ > |Er|, and there is
no complete mutual damping of the reflected and outgoing waves in the considered case.
Therefore, the reflectance from the lossy metal becomes zero at a slightly lower grating
height than xopt, when the amplitude of the outgoing wave Elkg equals Er, attenuated due
to the reflection losses. The value xR=0 calculated from these considerations at λ = 0.8 µm
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is 17.5 nm, which is still noticeably (by 3 nm) greater than the numerical value xR=0 for
this wavelength. This mismatch can seemingly no longer be attributed to the kI → 0
approximation and its source is in the limitations of the Born approximation. Indeed,
the accuracy of the latter should decrease in the presence of a strong SPP wave arising
at x0 ≈ xopt. Therefore, at x0 � xopt, when such a wave attenuates, the accuracy of the
kI → 0 approximation increases (as noted above), as well as the accuracy of the Born
approximation. As a consequence, the numerical and analytical dependencies for Rrns(x0)
at large values of the grating profile height converge to each other, as in Figure 6b (at least
while this height remains smaller than 6xopt).

Despite the difference in the dip depths, the widths of the analytical and numerical
dependencies R(Λ) are the same for the small grating heights (curves for x0 = 4 nm in
Figure 6a). However, as x0 increases, the numerical dependencies appear slightly wider
than the analytical dependencies. This feature is illustrated by curves 6 and 4 in Figure 5d,
the first of which represents the results of numerical calculations of the width of the
resonance at half its depth (FWHD), and the second one represents the results of the corre-
sponding analytical predictions, which, as expected, coincide with the same calculations
for the half-width of analytical dependencies E(sat)

0z (Λ). Surprisingly, the numerical curve 6
for FWHD is shifted in the opposite direction from analytical curve 4 compared to numer-
ical curve 5 for FWHM. This bidirectional shift most likely cannot be explained by the
limitations of the kI → 0 approximation due to the use of the Born approximation.

Thus, the analytical model considered in this paper describes generally well the
qualitative dependence of the amplitude of the excited SPPs on the parameters of the
sinusoidal corrugation on the plasmonic metal surface. The quantitative coincidence of
the analytical and numerical calculation results is observed for small (x0 � xopt) and
large (x0 > xopt) heights of the corrugation. However, for grating amplitudes in between,
the numerical value of the resonance period of the grating turns out to be somewhat
smaller than the analytical one, which requires further specification of the value of the
SPP propagation constant for this case. Nevertheless, the model under consideration
fairly accurately predicts the grating height xopt, at which it provides the maximal SPP
amplitude. However, the value of the amplitude differs in the analytical and numerical
calculations by less than 25%, which appears to be the result of the constraints of kI → 0
and Born approximations.

3. Conclusions

We presented an analytical description of SPP excitation by arbitrary configurations of
nanostructured surfaces using a well-known method for calculating guided-mode ampli-
tudes in waveguide theory. In this work, we focused on two cases: the case of a finite-length
sinusoidal flat current and the case of a finite-length sinusoidal corrugation on a plasmonic
metal surface under the normal incidence of a plane wave. For the first case, the described
approach perfectly agrees with the numerical experiment. For the second case, our model
correctly predicts the optimum amplitude of the corrugation to maximize the SPP excitation
efficiency. We compared our analytical solution with numerical simulations and found
excellent agreement between the two for non-resonant excitation and when the corrugation
height was much smaller or larger than the optimum grating height. When the grating
amplitude approaches the optimal value, the mismatch between the analytical and numeri-
cal values of the SPP amplitude was no more than 25%. We discussed the limitations of
our analytical model that led to this mismatch. We believe that our approach is useful
for modeling various phenomena associated with SPP excitation in metal nanostructures
fabricated by laser processing or other methods.
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Appendix A

We start with the Lorentz reciprocity theorem in its unconjugated form [24], which is
useful for describing lossy systems:

∇(E1 ×H2 − E2 ×H1) = E2J1 − E1J2 + iω(ε1 − ε2)ε0E1E2 + iω(µ2 − µ1)µ0H1H2, (A1)

where Ei and Hi are the solutions of Maxwell’s equations for a system with sub-index i,
defined by the spatial distribution of permittivity εi(r) and magnetic susceptibility µi(r); Ji
is the current density; ε0 and µ0 are the vacuum permeability and vacuum susceptibility, re-
spectively.

Let us choose a gold–vacuum interface in a current-free planar configuration, where
the back-propagating SPP is a system that corresponds to sub-index 1, so that

E1 = E←SPP, H1 = H←SPP, J1 = 0, (A2)

E←SPP = eikSPPz

{
1

ωε0ε1
(−iκ1nz + kSPPnx)e−κ1x, x > 0

1
ωε0ε2

(iκ2nz + kSPPnx)eκ2x, x < 0
(A3)

H←SPP = nyeikSPPz

{
e−κ1x, x > 0
eκ2x, x < 0

(A4)

where kSPP = k0
√

ε1ε2/(ε1 + ε2), κ1,2 =
√

ε1,2k2
0 − k2

SPP, k0 = 2π/λ.
For symmetrical reasons, the origin is chosen at the center of the grating (see Figure A1),

so that it would be useful for numerical simulations. Later, the origin can be moved to the
end of the grating to follow the main text’s thread.

x

z

�1

��

Figure A1. Geometry of the problem.

As the second system, we choose the same system as with sub-index 1 (with no grating),
but with the presence of the incident plane wave and all the reflected and scattered waves.
The grating is to be modeled with the non-zero current density J2, which eventually will be
chosen to be the Born-like current density.

E2 = AE→SPP + Ẽ2, H2 = AH→SPP + H̃2, J2 6= 0, (A5)



Nanomaterials 2023, 13, 2091 17 of 19

where E→SPP and H→SPP differ from (A3) and (A4) by the sign of kSPP, A describes the efficiency
of the SPP excitation, and Ẽ2 and H̃2 combine all the terms that do not include forward-
propagating SPP.

With all the considerations, the right-hand side of (A1) simplifies down to the only
term −E1J2. After integrating (A1) over the dashed region and exploiting the orthogonality
relations [24], one can express A in terms of J2:

A =
1
N

∫
(V)

E1J2 dV, (A6)

where
N =

∫ ∞

−∞
(E→SPP ×H←SPP − E←SPP ×H→SPP)nx dz (A7)

is the normalization constant.
Importantly, (A6) allows one to calculate the amplitude of the excited SPP for any given

current density distribution J2. Thus, the only issue here is to determine an appropriate
function J2(r).

As part of the straightforward approach, let us define J2 to be equal

J2 =
∂∆P
∂t

= iω∆P = iωε0∆εE ≈ iωε0∆εE0, (A8)

where E0 is the incident field

E0 = ez

{
e−ik1x + reik1x, x 6 0
(1 + r)e−ik2x, x < 0

(A9)

with k1,2 =
√

ε1,2k0, r = (
√

ε1 −
√

ε2)/(
√

ε1 +
√

ε2), and

∆ε = (ε2 − ε1)1−L/2<z<L/2


1, 0 < x < x0 cos kgz
−1, x0 cos kgz < x < 0
0, otherwise

(A10)

where L is the total length of the grating.
During the evaluation, there is a need to calculate the integrals of the following form:

∫
dz
∫ x0 cos kgz

0
dx (e−ik1x + r eik1x)e−κ1x or

∫
dz
∫ 0

x0 cos kgz
dx (1 + r)e−ik2xe−κ1x.

While the inner integration can be conducted rather easily, it results in the appearance
of “double exponents”, such as exp(a cos(bz)), with a and b being some combination of
the problem’s parameters. In order to acquire the compact and easy-to-use form of the
analytical expression, exp(a cos(bz)) should be decomposed in series by a parameter a:
exp(a cos(bz)) ≈ 1 + a cos(bz) + a2 cos2(bz)/2 + . . . . Taking the first two summands in
the series corresponds to the linear on the x0 order.

We will now focus on the specific case of L = (n + 1/2)Λ, provided that n is an integer.
After performing the corresponding calculations and substituting the found value of A
into (A5), one obtains the expression for the electric field component parallel to the interface

ESPP,z =
1√

ε1 + ε2

k3
SPPkg

k0(k2
SPP − k2

g)
(1 + r)x0(1 + eikSPP(n+1/2)Λ)). (A11)
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After substituting kSPP = (∆k + ikI) + kg and noting that kgΛ = 2π, one obtains the
ultimate form of the (A11):

ESPP,z =
1√

ε1 + ε2

k3
SPPkg

k0(k2
SPP − k2

g)
(1 + r)x0(1− e(−kI+i∆k)L). (A12)

While it is possible to derive a similar expression for the general case of z0, even the
considered case allows one to understand the limitations of this method. Examples of such
limitations are given in the main text of this article.
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