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Abstract: The present study applied a nano-synergistic approach to enhance besifloxacin’s potency via
nano-formulating besifloxacin on gold nanoparticles (Besi-AuNPs) and adding quercetin as a natural
synergistic compound. In fact, a one-pot AuNP synthesis approach was applied for the generation of
Besi-AuNPs, where besifloxacin itself acted as a reducing and capping agent. Characterization of
Besi-AuNPs was performed by spectrophotometry, DLS, FTIR, and electron microscopy techniques.
Moreover, antibacterial assessment of pure besifloxacin, Besi-AuNPs, and their combinations with
quercetin were performed on Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. UV-
spectra showed a peak of AuNPs at 526 nm, and the electron microscopy-based size was estimated to
be 15 ± 3 nm. The effective MIC50 concentrations of besifloxacin after loading on AuNPs were reduced
by approximately 50% against the tested bacterial strains. Interestingly, adding quercetin to Besi-
AuNPs further enhanced their antibacterial potency, and isobologram analysis showed synergistic
potential (combination index below 1) for different quercetin and Besi-AuNP combinations. However,
Besi-AuNPs and quercetin combinations were most effective against Gram-positive S. aureus in
comparison to Gram-negative P. aeruginosa and E. coli. Their potent activity against S. aureus has its
own clinical significance, as it is one the main causative agents of ocular infection, and besifloxacin is
primarily used for treating infectious eye diseases. Thus, the outcomes of the present study could be
explored further to provide better medication for eye infections caused by resistant pathogens.

Keywords: besifloxacin; eye infection; gold nanoparticles; quercetin; resistant pathogens; synergistic
effect

1. Introduction

The extensive evidence of rising resistance in bacterial pathogens poses a serious clini-
cal concern for the worldwide population. Bacterial pathogens are so sagacious that they
could develop different mechanisms of resistance even toward new classes of antibiotics.
To tackle these resistance issues, researchers have developed various approaches, including
nano-formulations of ineffective antibiotics and adding a resistance mechanism inhibitor or
synergistic molecule(s). Recently, gold nanoparticles (AuNPs) have been widely explored
for the purpose of converting ineffective antibiotics into effective nano-antibiotics [1–5]. In
fact, there are several advantages of applying AuNPs as a delivery tool, which includes the
multi-valent antibacterial action of AuNPs and the ability of AuNPs to overcome most of
the bacterial resistance mechanisms [6,7]. Thus, AuNPs are a delivery vehicle that could
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effectively deliver the antibiotic(s) or molecule(s) attached onto it, and at the same time
provide an additional combat force against the bacterial pathogen. In addition, AuNPs are
considered relatively less toxic than other metallic nanoparticles. However, reports suggest
that AuNPs’ toxicity mainly depends on the shape, size, charge, and, most importantly,
surface chemistry of AuNPs [6]. Some reports have shown that antibiotic-loaded AuNPs
are non-toxic to normal human cells [4,6]. In the present study, AuNPs loaded with besi-
floxacin (Besi-AuNPs) were developed, characterized, and tested against different bacterial
pathogens. In addition, quercetin (a natural compound) was added in combination with
Besi-AuNPs and besifloxacin (alone) to observe the synergistic effect on bacterial pathogens.

Quercetin has enormous therapeutic potential against different diseases, including bac-
terial infections. Indeed, there are a plethora of reports that suggest the synergistic potential
of quercetin when combined with antibiotics against different bacterial pathogens [8–11].
The findings suggest that quercetin in combination with antibiotics shows synergistic effects
via inhibition of peptidoglycan, damaging cell membrane permeability, affecting fatty acids,
deteriorating nucleic acids, decreasing the ATP level, increasing antibiotic uptake, inhibiting
quorum sensing, and blocking resistance enzyme (b-lactamase) [8–10,12,13]. Importantly,
quercetin significantly potentiates the effect of the combined antibiotic(s) against the re-
sistant bacterial pathogens and reduces the effective dosage. Moreover, different in vivo
and in vitro cytotoxicity analyses have shown that the addition of quercetin improves the
safety profile of antimicrobial drugs [8,12–14]. Thus, the present study used quercetin as
a plausible synergizer compound to evaluate its potentiating ability for besifloxacin and
Besi-AuNPs against different pathogenic bacterial strains.

Besifloxacin antibiotic is a fourth-generation fluoroquinolone that is applied for oph-
thalmic infections. In fact, ophthalmologists usually prefer fluoroquinolones over other
classes of antibiotics to treat ophthalmic infections due to their efficient ocular penetra-
tion and broad-spectrum activity. However, the rising number of resistance cases toward
fluoroquinolones has raised a grave concern for the scientific community [15]. Thus, it is
wiser to be prepared with an alternative option(s) rather than spending huge efforts on a
newer generation of antibiotics. In the present study, besifloxacin was nano-formulated
using AuNPs, and quercetin was added as a synergistic molecule to provide a better option
to tackle resistance in the bacterial pathogens responsible for ophthalmic infections. It is
noteworthy to mention that the applicability of both AuNPs and quercetin in ophthalmic
infections is widely accepted [16,17].

The major cause of ophthalmic infections is the Gram-positive pathogen Staphylo-
coccus aureus; however, some Gram-negative pathogens, i.e., Pseudomonas aeruginosa and
Escherichia coli, have also been implicated in ocular infection in the past decade [18–20].
Hence, the prepared preparations were tested against S. aureus, P. aeruginosa, and E. coli.
We expect to provide a formulation of besifloxacin that could be applied for ophthalmic
infections with minimum concern of acquiring resistance in the near future.

2. Materials and Methods
2.1. Materials

Besifloxacin, quercetin, bacterial media, gold (III) chloride trihydrate salt, and chemi-
cals were obtained from Sigma Aldrich (St. Louis, MO, USA).

2.2. Synthesis of Besi-AuNPs

A 3 mL reaction mixture was prepared by adding besifloxacin antibiotic (at 250 µg)
with 1 mM gold chloride salt solution using the protocol of Alshammari et al. [4]. The
reaction mixture was further kept for 48 h at 40 ◦C, and the change in color from light
yellow to wine red visibly confirmed Besi-AuNP synthesis. The reaction mixture after the
color change was centrifuged (at 30,000× g) for 30 min. Pellets containing synthesized
Besi-AuNPs were collected and rinsed with milli-Q water followed by 50% ethanol.
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2.3. Besi-AuNPs Characterization

Besi-AuNPs were characterized by UV-Vis spectrophotometry, dynamic light scatter-
ing (DLS), Fourier transform infrared (FTIR) spectrophotometry, and transmission electron
microscopy (TEM).

2.3.1. UV-Vis Spectrophotometry

A scan was performed from 250 to 700 nm using a UV-visible spectrophotometer
(UV-1601, Shimadzu, Tokyo, Japan) to observe the transformation of gold (III) chloride
trihydrate salt into Besi-AuNPs and the peaks of besifloxacin alone [21].

2.3.2. Zeta Size and Zeta Potential Measurement by DLS

Besi-AuNPs were sonicated for 1 min and then filtered through a (0.45 µm) mem-
brane filter prior to zeta size and potential measurement using a Malvern Nano Zetasizer
(ZEN3600, Malvern Instrument Ltd., Malvern, UK). A disposable cuvette DTS0112 was
used for measurement of the hydrodynamic diameter (zeta size) of Besi-AuNPs, whereas a
disposable cuvette DTS1070 was used to estimate the surface zeta potential [22].

2.3.3. FTIR Analysis

The binding conformation and structural changes of besifloxacin after attachment to
AuNPs were observed using FTIR (Shimadzu FTIR-8201 PC, PerkinElmer Inc., Waltham,
MA, USA). To attain effective signal-to-noise ratios, the diffuse (reflectance) mode was used
to run the FTIR at a 4 cm−1 resolution. Scans of Besi-AuNPs and besifloxacin alone were
recorded for a range from 400 to 4000 cm−1.

2.3.4. TEM Analysis

Besi-AuNP samples were fixed on (carbon-coated) copper grids prior to analysis by
a transmission electron microscope (Tecnai G2 Spirit) that was fitted with a BioTwin lens
(Hillsboro, OR, USA). An 80 kV accelerating voltage was applied during the analysis.

2.4. Calculation of the Loading Efficiency of Besifloxacin on AuNPs

The besifloxacin loading amount was estimated using a UV-Vis spectrophotometer
as described by Rizvi et al. [5]. The 3 mL reaction mixture after Besi-AuNP synthesis
was centrifuged at 30,000× g for 30 min, and the supernatant was collected into a fresh
tube. The concentration of unbound besifloxacin in the supernatant was estimated using
a calibration curve prepared using the λmax peak [21] of pure besifloxacin at different
known concentrations. Moreover, the following formula [23] was applied to calculate the
percentage of loading efficiency of besifloxacin onto AuNPs:

Percentage loading efficiency of besifloxacin = [(A − B)/A] × 100 (1)

where A is the initial concentration of besifloxacin added for AuNP synthesis in the
reaction mixture, and B is the besifloxacin remaining or the unbound concentration in
the supernatant.

2.5. Antibacterial Assessment
2.5.1. Bacterial Strains

Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 19429), and Es-
cherichia coli (ATCC 25922) were procured from NCL (National Chemical Laboratory), Pune,
India. A fresh culture of each bacterial strain was prepared in Luria–Bertani (LB) broth by
incubating at 37 ◦C for 18 h. However, before experimental application, the turbidity of the
bacterial culture was maintained to 0.5 McFarland standard (1.5 × 108 CFU/mL).
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2.5.2. Qualitative Antibacterial Assessment by Well Diffusion

Qualitative assessment was performed using the agar well diffusion method [24]. The
activity of Besi-AuNPs (AuNPs loaded with besifloxacin), pure besifloxacin, quercetin, a
combination of quercetin with pure besifloxacin, and a combination of quercetin with Besi-
AuNPs were estimated against S. aureus, P. aeruginosa, and E. coli. The 0.5 McFarland dilution
of each strain was inoculated on Mueller–Hinton agar plates, and holes of 6 mm diameter
were aseptically punched onto each plate. Then, 100 µL of Besi-AuNPs (7.2 µg/well; as de-
termined by the loading efficiency), pure besifloxacin (7.2 µg/well), quercetin (7.2 µg/well),
Besi-AuNPs (3.6 µg)/quercetin (3.6 µg), and besifloxacin (3.6 µg)/quercetin (3.6 µg) were
poured into the wells. Plates after inoculation were incubated at 37 ◦C overnight. Triplicate
experiments were performed, and an inhibition zone in millimeters was estimated as the
mean ± standard deviation.

2.5.3. Quantitative Antibacterial Assessment by Broth Dilution

The antibacterial effects of Besi-AuNPs, pure besifloxacin, and quercetin against
S. aureus, P. aeruginosa, and E. coli were quantified alone and through a combinatorial
approach using the broth dilution method [25]. Initially, serial dilutions of Besi-AuNPs,
pure besifloxacin, and quercetin were prepared in 96-well microplates to obtain different
concentrations from 2.343 to 150 µg/mL. However, combinations at a 1:1 ratio of quercetin
with Besi-AuNPs and pure besifloxacin, respectively, were used to obtain a concentration
range from 2.343 to 150 µg/mL. Then, 10 µL of the tested bacterial strains (1 × 108 CFU/mL)
was inoculated in each well and incubated for 18 h at 37 ◦C. The MIC50 was estimated
for each test sample and their combination based on the minimum concentration that
prevented the bacterial growth.

Furthermore, the efficiency of quercetin combined with Besi-AuNPs and quercetin
combined with pure besifloxacin against the tested strains was estimated by calculating the
combination index (CI) using the following formula:

CI = (D)1/(Dx)1 + (D)2/(Dx)2

where (Dx)1 and (Dx)2 are the doses for quercetin and Besi-AuNPs (or pure besifloxacin),
respectively (without combination), providing 50% inhibition. Meanwhile, (D)1 and (D)2
are the doses of quercetin and Besi-AuNPs (or pure besifloxacin) in combination that
showed 50% inhibition. CI > 1, CI = 1, and CI < 1 indicate antagonistic, additive, and
synergistic effects, respectively [26]. Moreover, CompuSyn Version 1.0 software (Combosyn,
Paramus, NJ, USA) was also applied to conduct synergy and isobologram analysis of
combination [27].

2.5.4. Statistical Analysis

Each experiment was run in triplicate and the outcomes are shown as the mean ± standard
deviation.

3. Results and Discussion

The new emerging resistant strains of bacterial pathogens have raised a grave concern
for the community in the past few decades. Bacterial pathogens have gained resistance to-
ward new classes of antibiotics by different mechanisms, including efflux, uptake reduction,
inactivation, and altering targets [28]. Besifloxacin is a new-generation fluoroquinolone
antibiotic that shows potent activity against different pathogens responsible for ocular
infections [29,30]. However, the growing ability of pathogens to acquire resistance toward
fluoroquinolone antibiotics over time [15] requires researchers to be well prepared for
besifloxacin resistance. Thus, in the present study, two approaches were used to increase
the potency of besifloxacin: (1) Gold nano-formulations of besifloxacin were developed and
(2) quercetin was added as a synergistic compound. Furthermore, these formulations were
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tested against the pathogens responsible for ocular infections to evaluate their potency
(Figure 1).
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3.1. Synthesis of Besi-AuNPs and Their Characterization

There are various approaches applied by researchers to synthesize AuNPs of desired
sizes and to attach drugs onto their surface. However, among the different approaches, the
one-pot synthesis approach, where the drug itself could synthesize and cap AuNPs, has
been widely used nowadays to ease the process of drug loading and reduce the application
of harmful chemicals [1,4]. Similarly, in the present study, besifloxacin was applied as
a reducing and capping agent to synthesize besifloxacin-loaded AuNPs. Recently, Abu
Lila et al. [2] also used a fluoroquinolone antibiotic (delafloxacin) to synthesize and cap
AuNPs using the same approach. Here, piperazinyl group nitrogen of besifloxacin might
have played a crucial role in the interaction with the surface of AuNPs, similar to earlier
studies conducted on fluoroquinolone antibiotic-capped AuNPs [2,31,32].
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3.1.1. UV-Visible Spectrophotometry

AuNPs show characteristic surface plasma resonance in the visible range of 500–600 nm
that can be estimated by the UV-visible spectrophotometry technique [33]. In the present
study, the peak was observed at 526 nm for the synthesized Besi-AuNPs (Figure 2), which
falls under the characteristic peak range, suggesting successful AuNP synthesis. More-
over, additional peaks at 289 and 340 nm were observed for besifloxacin [21], indicating
the loading of besifloxacin onto AuNPs. Pure besifloxacin was also scanned to observe
and confirm the peaks for the pure drug under UV-visible spectrophotometry (Figure 2).
Similarly, an additional peak for delafloxacin (a fluoroquinolone antibiotic) was observed
at 290 nm when loaded on AuNPs [2]. However, the color change to characteristic wine
red from pale yellow also confirmed the successful synthesis of Besi-AuNPs. Thus, it could
be inferred from the results that besifloxacin can effectively reduce gold salt to AuNPs and
further stabilize it by capping.
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Figure 2. UV-visible spectrophotometry scan of Besi-AuNPs and pure besifloxacin.

3.1.2. Zeta Size and Zeta Potential Measurement by DLS

Dynamic light scattering (DLS) is a widely applied approach to determine the size
of nanoparticles and their distribution in a dispersion medium [34]. The modulation
of light intensity scattered by nanoparticle dispersion was used to estimate the size of
nanoparticles. Figure 3a shows the DLS results of Besi-AuNPs, depicting the hydrodynamic
diameter as 62 nm. In addition, the zeta potential is another important parameter for the
characterization of nanoparticles that estimates the surface charge [35]. In fact, the zeta
potential represents the degree of electrostatic repulsion among the same charge particles
in dispersion, indicating the stability of the colloidal preparation. Figure 3b represents
the zeta potential of Besi-AuNPs, estimating it to be −12 mV, which indicates the stability
of the synthesized Besi-AuNPs. The zeta potential provides information about the shield
or exposure of charged surface molecules, adsorption, ionization, and distribution of
nanoparticles [36]. It is suggested that particles with a higher positive/negative zeta
potential repel each other and do not aggregate easily [37]. However, we cannot rely only
on zeta potential data for ensuring the stability, as it is dependent mainly on repulsive
electrostatic forces like Van der Waals forces. Thus, the Besi-AuNPs were visually re-
examined after six months of preparation, where they were kept at room temperature. No
aggregation was detected, which confirms the stable nature of the synthesized Besi-AuNPs.
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3.1.3. FTIR Analysis of Besi-AuNPs

FTIR analysis has been used in the past to identify the interaction of antibiotics/drugs
with AuNPs and to confirm the efficient capping/stabilization of AuNPs [2,3,38]. In the
present investigation, FTIR analysis was used to confirm besifloxacin attachment onto the
surface of AuNPs. Here, pure besfloxacin and Besi-AuNPs were both subjected to scanning
by FTIR to compare and confirm the attachment (Figure 4). The main peaks recorded for
pure besifloxacin correspond to the functional groups –O–H stretching (3259 cm−1), aro-
matic –C–H stretching (3044 cm−1), aliphatic –C–H stretching (2926–2853 cm−1), and –C=O
stretching (1609 cm−1), which are characteristic peaks of besifloxacin [39–41]. However,
after Besi-AuNP synthesis, a strong –O–H stretching peak at 3449 cm−1 was observed,
along with minor changes in the aromatic –C–H, aliphatic –C–H, and –C=O stretch peaks
pertinent to besifloxacin, which suggests efficient loading of besifloxacin onto AuNPs.
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3.1.4. TEM Analysis

TEM analysis was used to depict the nanoparticles’ morphology, inorganic core
size, and size distribution. Figure 5 shows the TEM micrograph of Besi-AuNPs, where
spherically shaped monodispersed nanoparticles can be observed with an average size of
15 ± 3 nm. Interestingly, no aggregation was evident in the TEM images, indicating the ef-
fective stabilization of AuNPs by besifloxacin. However, the size by DLS was larger (62 nm)
than the size suggested by TEM. These size variations were due to different principles
behind the estimation of size by DLS and TEM. DLS measures the size when the sample is in
a colloidal form, while TEM measures the size of the sample in a dried environment. Thus,
DLS determines the hydrodynamic diameter of nanoparticles, which includes information
on the dispersant solvent layer adhered to it, and TEM measures only the inorganic core
without the solvent layer. A similar phenomenon of size differences of nanoparticles by
TEM and DLS has been observed by several researchers in the past [3,22,38].
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Figure 5. TEM micrograph image of Besi-AuNPs.

3.2. Antibacterial Assessment

Qualitative antibacterial assessment of Besi-AuNPs was performed on S. aureus,
P. aeruginosa, and E. coli using the well diffusion method. The antibacterial activity of
pure besifloxacin was compared with Besi-AuNPs to evaluate the potency of besifloxacin
after loading to AuNPs. Moreover, quercetin was used alone and in combination (1:1 ratio)
with pure besifloxacin and Besi-AuNPs, respectively, to observe the synergistic potential of
quercetin. Table 1 and Figure 6 show the inhibitory potential in terms of the inhibition zone
for all of the tested formulations against S. aureus, P. aeruginosa, and E. coli. It is evident from
the results that besifloxacin after loading onto AuNPs (Besi-AuNPs) became more potent
against the tested strains, and that quercetin could effectively potentiate the antibacterial
effect of Besi-AuNPs and pure besifloxacin. However, the combination of Besi-AuNPs
and quercetin appeared to be most potent among the tested formulations, and it showed
more potency toward Gram-positive S. aureus (31 ± 2 mm inhibition zone) as compared to
Gram-negative P. aeruginosa and E. coli. Furthermore, to confirm the qualitative findings
and calculate the MIC50, the broth dilution approach was applied.

Table 1. Zone of inhibition of besifloxacin, Besi-AuNPs, and their combination with quercetin.

Pathogen
Zone of Inhibition

Besi-AuNPs Quercetin Besi-AuNPs + Quercetin Pure Besi Pure Besi + Quercetin

S. aureus 22 ± 2 mm 17 ± 1 mm 31 ± 2 mm 16 ± 2 mm 20 ± 1 mm
P. aeruginosa 21 ± 2 mm 19 ± 1 mm 25 ± 2 mm 15 ± 1 mm 20 ± 2 mm
E. coli 20 ± 3 mm 19 ± 2 mm 23 ± 2 mm 17 ± 2 mm 21 ± 2 mm
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Figure 6. Qualitative antibacterial assessment of pure besifloxacin, Besi-AuNPs, quercetin,
quercetin + pure besifloxacin, and quercetin + Besi-AuNPs against (a1,a2) S. aureus; (b1,b2) P. aerugi-
nosa, and (c1,c2) E. coli.

Quantitative antibacterial assessment of besifloxacin, besifloxacin after loading on
AuNPs (Besi-AuNPs), and their combination (1:1) with quercetin was carried out to cal-
culate the MIC50 values against the tested strains (Table 2; Figures 7a, 8a and 9a). In
addition, the combination index and synergistic potential of the quercetin combinations
were also evaluated. Table 2 shows the MIC50 values of the tested formulations against
S. aureus, P. aeruginosa, and E. coli. The results indicate that loading besifloxacin onto AuNPs
reduced the effective (MIC50) dosage of besifloxacin by ~2 fold against the tested strains.
On the contrary, quercetin further reduced the effective dosage of Besi-AuNPs and pure
besifloxacin (when used in a fixed constant ratio of 1:1). Overall, Besi-AuNPs combined
with quercetin showed the most potent effect compared to all other tested formulations.
Moreover, S. aureus was found to be the most sensitive, followed by P. aeruginosa, and the
formulations were least effective against E. coli.
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Table 2. MIC50 values of besifloxacin, Besi-AuNPs, and their combination with quercetin.

Pathogen
MIC50

Besi-AuNPs Quercetin Besi-AuNPs + Quercetin Pure Besi Pure Besi + Quercetin

S. aureus 9 ± 0.9 mg/mL 19 ± 1.8 mg/mL 7 ± 0.7 mg/mL 17 ± 1.4 mg/mL 12 ± 1.3 mg/mL
P. aeruginosa 10 ± 1.1 mg/mL 14 ± 1.3 mg/mL 8 ± 1.1 mg/mL 18 ± 1.9 mg/mL 13 ± 1.3 mg/mL
E. coli 21 ± 2.1 mg/mL 28 ± 2.2 mg/mL 19 ± 1.9 mg/mL 36 ± 2.4 mg/mL 25 ± 2.2 mg/mL
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Figure 7. (a) Percentage growth inhibition of S. aureus after treatment with pure besifloxacin, Besi-
AuNPs, quercetin, quercetin + pure besifloxacin, and quercetin + Besi-AuNPs. The experiment was
repeated in triplicate, and the data shown are the mean ± standard deviation. (b1) Combination index
plot (Fa-CI plot) of the interaction between quercetin and Besi-AuNPs against S. aureus. (b2) Com-
bination index plot (Fa-CI plot) of the interaction between quercetin and pure besifloxacin against
S. aureus. Here, Fa is the inhibitory effect and CI is the combination index, where, 0.5 Fa represents
50% inhibition of growth. (c1) CompuSyn-generated isobologram for the quercetin + Besi-AuNPs
combination. (c2) CompuSyn-generated isobologram for the quercetin + pure besifloxacin combina-
tion. Combination data points that fall above the line are antagonistic, on the line are additive, and
under the line are synergistic.

Moreover, to confirm the synergistic effect of quercetin with Besi-AuNPs and pure
besifloxacin on the tested strains, the combination index (CI) was estimated by considering
the MIC50 data of the tested compounds alone and in combination (Table 3). For the
quercetin and Besi-AuNPs combination (1:1), the CI values were estimated to be 0.573,
0.686, and 0.791 against S. aureus, P. aeruginosa, and E. coli, respectively. On the contrary,
the quercetin and pure besifloxacin combination (1:1) showed CI values of 0.669, 0.825,
and 0.793 for S. aureus, P. aeruginosa, and E. coli, respectively. As the value of CI for
both combinations against the tested strains was below 1, the synergistic effect of the
combinations is confirmed [26].
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Figure 8. (a) Percentage growth inhibition of P. aeruginosa after treatment with pure besifloxacin,
Besi-AuNPs, quercetin, quercetin + pure besifloxacin, and quercetin + Besi-AuNPs. The experiment
was repeated in triplicate, and the data shown are the mean ± standard deviation. (b1) Combination
index plot (Fa-CI plot) of the interaction between quercetin and Besi-AuNPs against P. aeruginosa.
(b2) Combination index plot (Fa-CI plot) of the interaction between quercetin and pure besifloxacin
against P. aeruginosa. Here, Fa is the inhibitory effect and CI is the combination index, where, 0.5 Fa
represents 50% inhibition of growth. (c1) CompuSyn-generated isobologram for the quercetin + Besi-
AuNPs combination. (c2) CompuSyn-generated isobologram for the quercetin + pure besifloxacin
combination. Combination data points that fall above the line are antagonistic, on the line are additive,
and under the line are synergistic.

Table 3. Combination index for quercetin combined with Besi-AuNPs and pure besifloxacin.

Pathogen
CI

Besi-AuNPs + Quercetin Pure Besi + Quercetin

S. aureus 0.573 0.669
P. aeruginosa 0.686 0.825
E. coli 0.791 0.793

In addition, CompuSyn software was used to depict the CI plot (Fa-CI plot) of the
combination against S. aureus (Figure 7b), P. aeruginosa (Figure 8b), and E. coli (Figure 9b).
The Fa-CI plot confirmed the synergistic effect (CI < 1) of all of the tested combinations
(quercetin with Besi-AuNPs and quercetin with besifloxacin) against the three tested strains.
Furthermore, isobologram analysis (Figures 7c, 8c and 9c) also confirmed the findings, and
the results depict the substantial synergistic effect of quercetin combined with Besi-AuNPs
and besifloxacin against the tested strains at concentrations between 1.171 and 18.75 mg,
as shown by the data points below the slope. Overall, the findings suggest that quercetin
acts as a strong synergistic compound to enhance the potency of besifloxacin, either in
nano-form or pure form against the tested bacterial strains.
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Figure 9. (a) Percentage growth inhibition of E. coli after treatment with pure besifloxacin, Besi-AuNPs,
quercetin, quercetin + pure besifloxacin, and quercetin + Besi-AuNPs. The experiment was repeated in
triplicate, and the data shown are the mean ± standard deviation. (b1) Combination index plot (Fa-CI
plot) of the interaction between quercetin and Besi-AuNPs against E. coli. (b2) Combination index plot
(Fa-CI plot) of the interaction between quercetin and pure besifloxacin against E. coli. Here, Fa is the
inhibitory effect and CI is the combination index, where, 0.5 Fa represents 50% inhibition of growth.
(c1) CompuSyn-generated isobologram for the quercetin + Besi-AuNPs combination. (c2) CompuSyn-
generated isobologram for the quercetin + pure besifloxacin combination. Combination data points
that fall above the line are antagonistic, on the line are additive, and under the line are synergistic.

The results of the antibacterial assessment showed that when besifloxacin is loaded on
AuNPs, it could become more potent and effective, and adding quercetin could further syn-
ergistically enhance its potency. Thus, it could be inferred that the potency of besifloxacin
could be enhanced by gold nano-formulating it and adding quercetin as a synergistic
compound. However, a question arises about the applicability of AuNPs and quercetin in
ophthalmic preparation, as besifloxacin is an antibiotic for ophthalmic infection. In fact,
AuNPs have wide application in ophthalmology due to their strong stability, modulation
potential, and biocompatibility [16]. They have shown promising potential as ophthalmic
imaging agents because of their inertness, approachability toward the entire eye, and
clearance potential from the eye [42]. An earlier investigation [43] proved that AuNPs
20 nm in size have the ability to cross the blood–retina barrier without causing any damage
to the retina, and are distributed evenly in all retinal layers after intravenous injections.
In a recent investigation, it was observed that surface-modulated AuNPs can easily cross
the barrier of the eye and reach the retinal region, with the ability to deliver loaded drugs
onto its surface [44,45]. Additionally, AuNPs appear to be a strong tool to overcome antibi-
otic resistance in bacterial pathogens by modulating or defying their different resistance
mechanisms [6]. On the contrary, there are a plethora of reports suggesting the therapeutic
potential and applicability of quercetin in ophthalmic diseases [14,46,47]. In fact, several
eye drops have been formulated using quercetin as the main therapeutic molecule and
tested for ocular disease treatment [46,47]. Hence, enhancing the potency of besifloxacin,
either via AuNPs/quercetin or by both, has its own due clinical relevance. Interestingly,
the combined formulation tested in the present study was most active against the major
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causative agent of eye infection, i.e., S. aureus. Therefore, the findings of the present study
provide some hope against the increasing antibiotic resistance in the pathogens specifically
responsible for eye/ocular infections. However, its toxicity features and fate in the human
body are still a source of debate. It is noteworthy to mention that our research team is
trying to explore the toxicity mechanism and applicable dosage via in vitro and in vivo
experimental designs. The preliminary outcomes (data not shown) on some normal cell
lines suggest no toxicity of Besi-AuNPs at the tested dosage concentrations. The positive
outcomes prompted us to check the in vivo toxicity and toxicity parameters of the Besi-
AuNPs, which is currently in progress. Thus, our team strongly hopes to develop new gold
nano-formulations for ocular infection applicability in the near future.

4. Conclusions

In the present study, gold nano-formulations of besifloxacin (an antibiotic used for
ocular infections) were developed and used in parallel with quercetin as a synergistic
compound to enhance its potency against bacterial pathogens. The results showed a two-
fold dose reduction after nano-formulating besifloxacin against the tested pathogens, which
was further reduced when quercetin was used in combination. Notably, the besifloxacin
nano-formulation and its combination with quercetin showed substantial growth inhibition
of S. aureus, which is considered one of the major causative agents of ocular infection.
Thus, the combinatorial strategy used in the present study could serve as a baseline for the
preparation of a potent formulation for the treatment of eye infections caused by resistant
bacterial pathogens. However, in vivo investigations are warranted before establishing it
as a viable therapeutic strategy.
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