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Abstract: Chitosan, a biomass raw material, was utilized as a carbon skeleton source and served
as a nitrogen (N) atom dopant in this study. By co-doping phosphorus (P) atoms from H3PO4 and
nitrogen (N) atoms with a carbon (C) skeleton and hybridizing them with Mn3O4 on a carbon fiber
cloth (CC), an Mn3O4@NPC/CC electrode was fabricated, which exhibited an excellent capacitive
performance. The N, P-codoped carbon polycrystalline material was hybridized with Mn3O4 during
the chitosan carbonization process. This carbon polycrystalline structure exhibited an enhanced
conductivity and increased mesopore content, thereby optimizing the micropore/mesopore ratio in
the electrode material. This optimization contributed to the improved storage, transmission, and
diffusion of electrolyte ions within the Mn3O4@NPC electrode. The electrochemical behavior was
evaluated via cyclic voltammetry and galvanostatic charge–discharge tests using a 1 M Na2SO4

electrolyte. The capacitance significantly increased to 256.8 F g−1 at 1 A g−1, and the capacitance
retention rate reached 97.3% after 5000 charge/discharge cycles, owing to the higher concentration of
the P-dopant in the Mn3O4@NPC/CC electrode. These findings highlight the tremendous potential
of flexible supercapacitor electrodes in various applications.

Keywords: chitosan; carbon skeleton; Mn3O4; N, P-codoped carbon polycrystalline; supercapacitor

1. Introduction

Supercapacitors (SCs) have emerged as promising energy storage devices due to their
durability, rapid charge and discharge rates, high power density, good reversibility, low
maintenance cost, and environmental friendliness [1,2]. Typically, carbon materials are used
as the electric double-layer capacitor material to provide power, while pseudo-capacitance
materials are employed to enhance the energy storage capacity and expand the potential
window of capacitors [3–5].

Among the various supercapacitor electrode materials, MnOx is particularly attrac-
tive [6]. Manganese ions, including Mn2+, Mn3+, and Mn4+, are present in different man-
ganese oxides, such as MnO, MnO2, Mn2O3, and Mn3O4 compounds [7]. Specifically,
Mn3O4 (Mn2+(Mn3+)2O4) adopts a spinel structure (AB2O4) and encompasses multiple
oxidation states of Mn2+ and Mn3+ [8]. Furthermore, Mn3O4 exhibits a high theoretical
capacitance and the lowest oxygen evolution reaction activity among the MnOx materi-
als [9]. In a recent study, Sahoo et al. [10] demonstrated the utilization of rGO@Mn3O4
electrodes, which enabled the exploration of multivalent redox states (+2, +3, and +4) of Mn
and achieved a wide operating potential of 1.2 V (vs. Ag/AgCl). These excellent properties,
including a wide potential window and pseudo-capacitive behavior, make Mn3O4 highly
promising for the development of flexible aqueous asymmetric supercapacitors (FAASs).

Carbon materials, such as porous carbon, graphene, and carbon nanotubes, have
limitations in terms of their specific capacitance [11–13], while manganese oxides suffer
from a low conductivity [14]. Moreover, the development of wearable and flexible electronic
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devices has emphasized the need for flexible and portable energy storage devices [15]. To
overcome these challenges, hybrid nanostructured electrodes combining manganese oxides
and carbon materials have been extensively researched. In such hybrid systems, carbon
materials not only contribute to the electric double-layer capacitance, but also enhance the
conductivity of manganese oxides [16].

To improve the electrochemical performance, various approaches have been explored,
including the combination of Mn3O4 with conductive substrates such as activated car-
bon [17]. Furthermore, the combination of graphene nanosheets with Mn3O4 has been
investigated as a hybrid electrode [18]. Jiang et al. [19] successfully synthesized self-
assembled Mn3O4/carbon cloth (Mn3O4/CC) electrodes using a two-step hydrothermal
method. These Mn3O4/CC electrodes were tested in a three-electrode system using Na2SO4
and KOH as electrolytes. It was observed that Mn3O4/CC exhibited a higher specific
capacitance and lower internal resistance in the KOH electrolyte. In order to achieve high-
performance electrodes for supercapacitors, carbon materials are commonly hybridized
with high-capacity metal oxides as substrates [20]. It is recognized that the introduction of
heteroatoms (such as N, S, O, B, and P) into carbon-based materials has a significant impact
on the conductivity, wettability, and pseudo-capacitance of electrode materials [21]. More-
over, the synergistic effect of multi-heteroatom-doped carbon materials on electrochemical
performance has been found to be superior to that of single heteroatoms [22].

Various zero-, one-, or two-dimensional heteroatom-doped carbon materials and
metal oxide composites have been reported [23]. However, these materials often suffer
from weak mechanical properties, a low specific surface area, and a low porosity, which
hinder the penetration of electrolytes and the diffusion of ions into the internal structure of
electrode materials. To address these challenges, recent research has highlighted the use of
heteroatom-doped porous carbon materials with a 3D interconnected network structure.
Such a 3D network possesses a highly open structure and abundant pores, facilitating
rapid electron transfer and electrolyte ion penetration into electrode materials, thereby
enhancing the overall reaction kinetics. Additionally, a 3D structure can effectively absorb
external strain and reduce resistivity during mechanical deformation, making it suitable
for flexible energy storage devices [24]. However, the simple combination of carbon and
Mn3O4 often leads to the aggregation of Mn3O4 nanoparticles, resulting in sluggish electron
and ion migration kinetics [17]. Therefore, it is crucial to optimize the microstructure and
morphology of a composite to improve the Faradaic response in the surface and near-
surface regions of an electrode [25].

Chitosan, as a highly abundant biomass material, possesses an internal, intercon-
nected network nanostructure that holds great potential for practical applications. Chi-
tosan contains -NH2, -OH, and a small amount of acetamide groups, as shown in
Figure S1 (Supplementary Materials). The carbonyl group (-COOH) contained in acetic acid
can combine with -NH2 to promote the solubility of chitosan. At the same time, in acidic
conditions, chitosan has a positive ion charge of -NH3

+, which can be chemically combined
with anion-bearing metal ions, such as PO4

3−, for chemical modification [26]. In addition,
phosphoric acid is an activator in the carbonization process of chitosan, which greatly
increases the specific surface area of the resulting carbon material. However, phosphoric
acid is a strong acid and can only be a dopant source of P in small amounts. Excessive
amounts will easily cause the dissolution of the chitosan and Mn(OH)2.

Wei et al. [27] reported that a sandwich-like chitosan porous carbon sphere/MXene
composite possesses a high specific capacitance and rate performance as a supercapacitor.
Ding et al. [28] conducted N and P co-doping into the carbon framework of chitosan to
enhance its electrical conductivity and improve the compatibility of carbon materials with
Mn3O4 and electrolytes. The fabricated Mn3O4 nanosheets provided abundant active
regions, while the C-O-Mn bonds formed with N, P-codoped carbon (NPC) facilitated
fast electron transfer kinetics. The intercalation pseudocapacitive mechanism involving
Mn3+/Mn4+ conversion in Mn3O4@NPC not only extended the potential window to 0–1.3 V
(vs. Ag/AgCl), but also significantly enhanced the pseudo-capacitance. Sun et al. [20]
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employed manganese nitrate (Mn(NO3)2) as a raw material to prepare a 3D N, P-codoped
hierarchical porous carbon framework using a one-step method. They embedded Mn3O4
nanoparticles in situ to obtain an Mn3O4@NPC material as a supercapacitor electrode,
which exhibited an excellent capacitance performance and cycle stability. Additionally,
they reported a direct heat treatment method utilizing inexpensive melamine sponge,
manganese nitrate (Mn(NO3)2), and biomass salt. The resulting Mn3O4-embedded N,
P-codoped carbon sheets demonstrated an outstanding electrochemical performance [21].

Graphene and carbon nanotubes have been found to enhance the dispersion of Mn3O4
powder effectively. However, graphene materials are expensive and the preparation of
doped materials requires additional dopant sources, thereby increasing the complexity
and cost. On the other hand, chitosan, a cost-effective material, contains heterogeneous
impurity elements such as N. Therefore, utilizing chitosan as a framework for Mn3O4
carbon composite electrodes has garnered attention among researchers. It is worth noting
that the research in this area is relatively limited compared to graphene-based studies.
Thus, investigating the use of chitosan as a skeleton for Mn3O4 carbon composites holds
significant potential and is an interesting research topic. The novelty of this study is its
investigation, in detail, of the effect of the doping amount of P on the crystalline phase,
microstructure, and powder properties of a prepared N, P-codoped carbon hybridized with
Mn3O4 (Mn3O4@NPC) electrode material. As a result, the electrochemical performance of
the electrode was greatly improved by the amount of P-dopant.

In this study, carbon fiber cloth (CC) was used as the substrate, H3PO4 was used as the
P doping source, chitosan was used as the N doping source, and Mn3O4 was hybridized on
the chitosan-carbonized hierarchical porous carbon skeleton to prepare the Mn3O4@NPC
electrode material. Due to the bendability of CC, the prepared Mn3O4@NPC/CC electrode
could be applied to flexible supercapacitors.

2. Materials and Methods
2.1. Synthesis of Mn3O4@NPC/CC Hybrid Electrode

First, carbon fiber cloth (CC) was cut into a size of 2 cm× 2 cm to serve as the substrate.
It was then soaked in deionized (DI) water and cleaned for 10 min using an ultrasonic
cleaner. Subsequently, the CC was taken out and soaked in ethanol, followed by another
10 min of cleaning using an ultrasonic oscillator. This cleaning process was repeated twice
to ensure the removal of debris and dirt from the CC. The cleaned CC was placed in a
tubular furnace and heated at 10 ◦C min−1 to 400 ◦C for 3 h to increase its roughness and
introduce oxygen-containing functional groups onto the CC surface. Afterward, the heated
CC was cleaned in alcohol again using an ultrasonic oscillator for 10 min. Finally, the CC
was taken out and placed in a vacuum drying oven.

For the synthesis of the Mn3O4@NPC/CC hybrid electrode, 1.0 g of chitosan was
dissolved in 20 mL of DI water. A small amount of acetic acid was added to promote
dissolution, and then 20 mL of 0.1 M manganese nitrate solution was slowly added to the
chitosan solution, with stirring for 1 h to produce a complex of chitosan and Mn(OH)2
(precursor of Mn3O4). The CC substrate was immersed in the solution to ensure the direct
growth of Mn3O4 on its surface. Next, 20 mL of a 1.0 M NaOH solution was gradually
added to the solution in batches, and stirring was continued for 1 h. Subsequently, 1.0 M
dilute H3PO4 (2 mL, 5 mL, or 10 mL) was added as a source of P-dopant, and the solution
was stirred at room temperature for 2 h. Three different amounts of H3PO4 were used to
prepare the N, P-codoped carbon materials, which were designated as NPC(L), NPC(M),
and NPC(H), respectively.

The stirred solution was transferred to a Teflon-lined stainless-steel autoclave and sub-
jected to a hydrothermal process at 180 ◦C for 10 h. After the hydrothermal treatment, the
sample was freeze dried for 24 h to obtain Mn3O4@NPC/CC. The dried Mn3O4@NPC/CC
was then annealed in a tube furnace at 10 ◦C min−1 to 600 ◦C for 1 h under a N2 atmosphere,
followed by natural cooling to room temperature. The mass of Mn3O4 in each sample was
0.01 (±0.001) g; if the mass difference was too large, it would affect the specific capacitance.
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Therefore, this study set the quantity within a fixed range to restrain its error. Scheme 1.
illustrates the fabrication process of the Mn3O4@NPC/CC hybrid electrode.
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Scheme 1. The fabrication process of the Mn3O4@NPC/CC hybrid electrode.

In this study, 15 mL, 20 mL, and 25 mL of H3PO4 were added to the colloidal pre-
cipitate containing Mn(OH)2 and chitosan and stirred for 2 h. It was obvious that the
dissolution of the mixtures occurred, and the volume of the colloidal precipitate reduction
was approximately 15–20 vol.%. Thus, the mass of the active material (Mn3O4) was greatly
reduced after adding 15 mL of H3PO4 for the fabrication of Mn3O4@NPC. Moreover, its
specific capacitance value was also seriously attenuated (Figures S2–S4, Supplementary
Materials). Therefore, the addition of 10 mL of H3PO4 was the maximum amount.

2.2. Characterization

Several characterization techniques were employed to examine the properties and
microstructures of the Mn3O4-based materials.

Field-emission scanning electron microscopy (FESEM), using a JEOL6330 (Tokyo,
Japan) instrument with an acceleration voltage of 80 kV, was utilized to examine the
microstructures of the as-prepared Mn3O4-based materials. This technique provided a
detailed analysis of the surface morphology of the materials. Additionally, for a higher mag-
nification and more detailed microstructural analysis, high-resolution transmission electron
microscopy (HRTEM), using a JEOL TEM-3010 (Tokyo, Japan) instrument with an accel-
eration voltage of 80 kV, was employed. The crystal phases present in the materials were
identified using an X-ray diffraction (XRD) analysis. A Bruker D8 ADVANCE (Karlsruhe,
Germany) instrument, equipped with Cu as the anode (Cu Kα radiation, λ = 1.5406 Å) and
tungsten (W) filament as the cathode, was used for the XRD measurements. The Shirley
baseline was applied to fit the baseline of the diffraction spectrum. This technique allowed
for a determination of the crystal structure and phase composition of the materials.

X-ray photoelectron spectroscopy (XPS) was conducted to determine the surface
composition and binding energy of the Mn3O4-based materials. A PHI 5000 VersaProbe
(Tokyo, Japan) instrument was used for the XPS measurements. The binding energy of C at
284.6 eV was used as a reference for calibrating the charge-shifted energy scale. Gaussian
peak deconvolution was performed to identify the chemical components in the spectra.

The specific surface area of the Mn3O4-based materials was determined using the
Brunauer–Emmett–Teller (BET) method. The mesopore area was analyzed using the
Barrett–Joyner–Halenda (BJH) method. Additionally, the t-plot method was employed
to determine the micropore area. N2 adsorption–desorption isotherms were obtained
using a Micrometrics ASAP 2020 instrument (Micrometrics, Atlanta, GA, USA) for the
characterization of the as-obtained Mn3O4-based materials. The contact angle of the
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Na2SO4 aqueous electrolyte on the electrode surface was measured using a contact angle
goniometer (NBSI OSA60, Ningbo, China). The powder (Mn3O4 or Mn3O4@NPC) was
formulated into a uniform dispersion according to a certain proportion (5 wt.%), and then
the dispersion was dropped on a watch glass and placed in a vacuum oven. After the
water was removed, the measured liquid (Na2SO4 electrolyte) was dropped on the powder,
and the contact angle between the powder and electrolyte was measured. This provided
information about the wettability and surface properties of the as-prepared electrodes.

These characterization techniques provided valuable insights into the microstructures,
crystal phases, surface properties, and pore characteristics of the Mn3O4-based materials,
contributing to a comprehensive understanding of their properties and performance.

2.3. Electrochemical Properties of Mn3O4@NPC/CC Hybrid Electrode

All the electrochemical characteristics were determined using a three-electrode elec-
trochemical cell setup. The Mn3O4/CC hybrid electrode (2.0 cm × 2.0 cm) fabricated in
this study served as the working electrode, while an Ag/AgCl electrode was used as the
reference electrode. A platinum plate (2.0 cm × 2.0 cm) was employed as the counter
electrode. The electrolyte used was a 1.0 M Na2SO4 aqueous solution. Cyclic voltammetry
(CV) and galvanostatic charge–discharge (GCD) tests were conducted using a CHI 760D
electrochemical workstation.

The specific capacitance (Cm) was calculated based on the discharge curve obtained
from the GCD test, using Equation (1) [29]:

Cm =
i× ∆t

∆V×m
(1)

Here, i (A) represents the discharge current, ∆t (s) denotes the discharge time, ∆V (V)
represents the potential difference during the discharge, and m (g) is the mass of the loaded
active material (Mn3O4).

3. Results
3.1. The Physical Properties of N, P-Doped Mn3O4 Material

Figure 1 shows the SEM analysis of the Mn3O4-based powders prepared under various
conditions. The SEM image of Mn3O4 reveals irregularly shaped particles that were stacked
on crystal grains and formed a porous nanostructure (Figure 1a). When chitosan was added
as the carbon precursor to prepare Mn3O4@C, the SEM observations show the presence of
flaky and irregular particles in Mn3O4@C (Figure 1b). The distinct shapes and structures
observed in the prepared Mn3O4 and carbon materials will be further analyzed using
HRTEM in subsequent studies.

The morphology of the prepared Mn3O4 was closely related to the amount of H3PO4
added during the preparation, as shown in Figure 1c–e. The SEM image of the Mn3O4
prepared with a lower amount of H3PO4 reveals a flower-like arrangement and a sheet-like
structure. In the SEM image of the Mn3O4 obtained with a moderate amount of H3PO4
(Figure 1d), the sheet structure exhibits curly edges, along with some strip-shaped crystal
structures. Figure 1e displays the image of the Mn3O4 prepared with a higher amount
of H3PO4. The SEM analysis reveals an increased thickness in the flakes with curled
edges and the formation of strip-like structures. Figure 1f–h depict the SEM analysis of
the Mn3O4@NPC/CC electrode prepared by adding different amounts of H3PO4. The
SEM image of the Mn3O4 obtained with a lower amount of H3PO4 (Mn3O4@NPC(L)/CC)
electrodes shows regularly arranged flower-like and sheet-like structures on carbon fibers
(Figure 1f). The fabricated Mn3O4@NPC(M)/CC electrode demonstrates sheet-like and
strip-like structures with curled edges, which are evenly adhered to the carbon fiber cloth
(Figure 1g). Similarly, the Mn3O4@NPC(H)/CC electrode exhibits sheet-like and strip-like
structures of Mn3O4 attached to the carbon fiber cloth, which are uniformly distributed (as
shown in Figure 1h).
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Figure 2 shows the XRD patterns and contact angles (CA) of the various Mn3O4-based
materials. From the XRD diffraction peaks of the carbonized chitosan, broad and low
diffraction peaks were observed at 23.65◦ and 44.04◦, corresponding to the (002) and
(100) crystal planes of the carbon. This confirms the successful conversion of chitosan
into an amorphous (very low crystalline) carbon material. In contrast, the XRD exhibits
sharp and narrow diffraction peaks with few impurity phases of Mn3O4, revealing that
the prepared Mn3O4 powder had a good crystallinity, but the powder particles were
relatively coarse (consistent with the SEM results in Figure 1). The diffraction peaks were
observed at 18.13◦, 29.05◦, 31.2◦, 32.5◦, 36.24◦, 38.19◦, 44.53◦, 50.91◦, 58.67◦, 60.01◦, and
64.8◦, corresponding to the (101), (112), (200), (103), (211), (004), (220), (204), (321), (224),
and (400) crystal planes of the Mn3O4, respectively (according to the JCPDS card No.
24-0734) [30].

However, after chitosan was added to prepare the Mn3O4@C material and underwent
carbonization, the diffraction peaks of the Mn3O4@C hybrid material became boarder and
shifted a little to a lower 2θ, indicating that the Mn3O4@C electrode material had smaller
particle sizes. There were no distinct diffraction peaks corresponding to the carbon crystals,
indicating that carbon also existed in an almost amorphous form in the Mn3O4@C hybrid
material. The Mn3O4@NPC materials also exhibited weaker and broadened diffraction
peaks of the Mn3O4. However, in a distinct difference, the diffraction peaks of the carbon
appeared at (002) and (100), indicating that a N, P-codoped carbon (NPC) polycrystal was
established by the introduction of phosphorus dopants. With an increase in the amount of P
doping, the peaks of the N, P-codoped carbon became stronger and narrower. On the other
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hand, the diffraction peaks of the Mn3O4 (on Mn3O4@NPC) were broadened and shifted a
little to a lower 2θ, similar to the XRD of Mn3O4@C (Figure 2a). The XRD diffraction peak
of the Mn3O4 material was broadened and slightly shifted, showing that the particle size of
the powder was smaller, which is also consistent with the SEM analysis in Figure 1.
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Based on the above XRD and SEM analyses, it is speculated that the mixture of chitosan
and Mn(OH)2 (the precursor of Mn3O4) was based on the N atom in the amino group (-NH2)
of chitosan chelating with the manganese ions in Mn(OH)2. This enabled the heat-treated
Mn3O4 to be fully dispersed in amorphous carbon (derived from chitosan carbonization)
and produced smaller sizes of the Mn3O4@C material. In addition, phosphoric acid was
not the only source of P-dopant; phosphoric acid also played the role of activator in the
process of chitosan carbonization, thus making the prepared carbon more active in the
carbonization, greatly increasing the specific surface area of the NPC and promoting the
transformation of the NPC from the original amorphous carbon into a polycrystalline
structure. Moreover, the H3PO4 dissolved Mn3O4 into smaller particles. As a result, it can
be anticipated that Mn3O4@NPC would possess a larger specific surface area.

The contact angles of the Na2SO4 electrolyte on Mn3O4/CC and Mn3O4@NPC(H)/CC
were 40.1◦ and 20.6◦, respectively (Figure 2b). This discrepancy can be attributed to the
presence of Mn3O4@NPC(H)/CC, where the carbon skeleton offered numerous N active
sites and co-doped P atoms, leading to a synergistic effect. Additionally, the inclusion of
P-O bonds within the carbon skeleton remarkably enhanced the wettability between the
material and electrolyte.

The structure of Mn3O4@NPC(H)/CC was further examined using TEM and the
results are illustrated in Figure 3. Figure 3a shows the interlaced structure of the flakes and
strips in Mn3O4@NPC(H)/CC, which resulted from the higher amount of the P-dopant.
Compared to the SEM and XRD studies, the sheet-like structure of the material appears
relatively loose, potentially due to the N/P atom doping. The electron diffraction images
exhibit blurry diffraction rings, indicating that the prepared Mn3O4@NPC(H) possessed a
poor crystallinity (shown in the bottom right corner of Figure 3a). This finding aligns with
the XRD analysis results. Additionally, the HRTEM image reveals that a few of the outer
layers of Mn3O4 were covered by the NPC phase, as depicted in Figure 3b. Furthermore,
the lattice spacing region in the HRTEM image (Figure 3b) was subjected to fast Fourier
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transform (FFT), resulting in the diffraction pattern displayed in Figure 3c. The diffraction
pattern of Mn3O4@NPC(H) exhibits ring-like patterns that closely resemble the diffraction
diagram shown in Figure 3a. This confirms that the Mn3O4@NPC(H) possessed a lower
relative crystallinity compared to the Mn3O4@C.

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

The presence of heteroatoms embedded in the carbon skeleton to form NPC polycrys-
tals affected the growth morphology and arrangement of Mn3O4. The incorporation of the 
NPC phase enhanced the structural stability of the electrode, shortened the transfer path, 
and increased the contact area between the electrode and electrolyte [31,32]. Additionally, it 
introduced new electroactive sites into the hybrid material, leading to an improved electro-
chemical performance of the Mn3O4@C/CC electrode. The inverse fast Fourier transform 
(IFFT) power spectrum was obtained from the lattice spacing region in the HRTEM image 
(Figure 3b). The response peaks in the spectrum correspond to the characteristic lengths of 
each lattice spacing in Figure 3d,e. By measuring the lattice spacing of the rod-shaped 
Mn3O4, it was determined to be 0.24 nm and 0.276 nm, respectively. This finding further 
confirms that the crystal phases correspond to the XRD patterns described in the previous 
section (Figure 2a). The diffraction peaks of this crystal aligned with Mn3O4@NPC(H), with 
characteristic peaks appearing at approximately 2θ = 36.41° and 32.55°. Based on Bragg’s 
Law, the interlayer spacing of the crystal planes was calculated to be 0.276 nm and 0.248 nm, 
respectively. Furthermore, according to the Miller index equation for the tetragonal crystal 
phase [33], 

( )
= + , the diffraction peaks corresponded to the (211) and (103) 

planes of Mn3O4. Simultaneously, the IFFT also clearly reveals that part of the Mn3O4 was 
covered by the NPC sheet. These results are consistent with the TEM analysis mentioned 
above. The observations indicate that Mn3O4@NPC(H), prepared with a higher amount of 
H3PO4, exhibited a poor crystallinity with broad and weak peaks. It can be concluded that 
Mn3O4@NPC(H) contains nanocrystals with less complete crystallization. 

 
Figure 3. The HRTEM images of Mn3O4@NPC(H)/CC: (a) TEM image of Mn3O4@NPC(H)/CC, (b) 
HRTEM image of Mn3O4@NPC(H)/CC, (c) FFT on the la ice spacing region in the HRTEM image, 
(d) IFFT of the la ice spacing of plane (211) in Mn3O4, and (e) IFFT of the la ice spacing of plane 
(103) in Mn3O4. 

In Figure 4, the XPS analysis of the Mn3O4@NPC(H) material is presented. The full-
range survey of XPS reveals the presence of five elements on the surface of the sample: 
Mn (10.8 at.%), O (25.4 at.%), C (61.4 at.%), N (2.3 at.%), and P (0.2 at.%). The characteristic 

Figure 3. The HRTEM images of Mn3O4@NPC(H)/CC: (a) TEM image of Mn3O4@NPC(H)/CC,
(b) HRTEM image of Mn3O4@NPC(H)/CC, (c) FFT on the lattice spacing region in the HRTEM image,
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(103) in Mn3O4.

The presence of heteroatoms embedded in the carbon skeleton to form NPC polycrys-
tals affected the growth morphology and arrangement of Mn3O4. The incorporation of
the NPC phase enhanced the structural stability of the electrode, shortened the transfer
path, and increased the contact area between the electrode and electrolyte [31,32]. Ad-
ditionally, it introduced new electroactive sites into the hybrid material, leading to an
improved electrochemical performance of the Mn3O4@C/CC electrode. The inverse fast
Fourier transform (IFFT) power spectrum was obtained from the lattice spacing region
in the HRTEM image (Figure 3b). The response peaks in the spectrum correspond to the
characteristic lengths of each lattice spacing in Figure 3d,e. By measuring the lattice spacing
of the rod-shaped Mn3O4, it was determined to be 0.24 nm and 0.276 nm, respectively.
This finding further confirms that the crystal phases correspond to the XRD patterns de-
scribed in the previous section (Figure 2a). The diffraction peaks of this crystal aligned with
Mn3O4@NPC(H), with characteristic peaks appearing at approximately 2θ = 36.41◦ and
32.55◦. Based on Bragg’s Law, the interlayer spacing of the crystal planes was calculated
to be 0.276 nm and 0.248 nm, respectively. Furthermore, according to the Miller index
equation for the tetragonal crystal phase [33], 1

d(hkl)
= h2+k2

a2 + l2

c2 , the diffraction peaks

corresponded to the (211) and (103) planes of Mn3O4. Simultaneously, the IFFT also clearly
reveals that part of the Mn3O4 was covered by the NPC sheet. These results are consistent
with the TEM analysis mentioned above. The observations indicate that Mn3O4@NPC(H),
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prepared with a higher amount of H3PO4, exhibited a poor crystallinity with broad and
weak peaks. It can be concluded that Mn3O4@NPC(H) contains nanocrystals with less
complete crystallization.

In Figure 4, the XPS analysis of the Mn3O4@NPC(H) material is presented. The full-
range survey of XPS reveals the presence of five elements on the surface of the sample: Mn
(10.8 at.%), O (25.4 at.%), C (61.4 at.%), N (2.3 at.%), and P (0.2 at.%). The characteristic
peaks of the Mn elements indicate that the Mn 3s and Mn 3p peaks were satellite peaks
of Mn 2p (Figure 4a). Two prominent binding energy peaks were observed at 654.06 eV
and 642.26 eV, corresponding to the Mn 2p1/2 and Mn 2p3/2 peaks, respectively [34]. These
peaks suggest the presence of Mn2+ and Mn3+ species (Figure 4b).
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Figure 4c displays the binding energy spectrum of O 1s on the surface of the Mn3O4@NPC(H)
material. The sharp peaks were analyzed using Gaussian deconvolution and divided into
three peaks: 529.6 eV, 531.2 eV, and 533.0 eV. These peaks correspond to the binding
energies of Mn-O-C/Mn-O-Mn [35–37], -OH of Mn-O-H [38], -C-O [39], and H-O-H [40],
respectively. The clear Mn-O-C bond indicates the presence of a stable covalent bond
between Mn3O4 and the carbon skeleton.

The results of the XPS region C 1s are shown in Figure 4d, which exhibits binding
energy centered at 284.5 eV, 285.4 eV, and 288.7 eV, attributed to the C-C/C=C, C-N/C=O,
and O-C=O bonding, respectively [41]. Among them, the stable bond between C and N
can be known from the high bonding ratio of the C-N bond. In summary, the XPS analysis
of Mn3O4@NPC(H) reveals the presence of nitrogen-containing functional groups from
chitosan, providing a N source for the synthesis of Mn3O4, and demonstrates the hybridiza-
tion of the P atoms with the carbon skeleton, indicating the successful incorporation of P
into the Mn3O4@NPC electrode material.
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To further investigate the powder properties of the porous, hierarchical, nanostruc-
tured Mn3O4@NPC, the BET specific surface area and pore size distribution of the fabricated
Mn3O4 materials were analyzed. The N2 absorption/desorption isotherms of all the sam-
ples exhibited a typical type IV curve, indicating the presence of both mesopores and
micropores in the materials’ structures (Figure 5a) [42]. The adsorption isotherm curve
showed a steep rise at high relative pressures, and at a relative pressure of approximately
0.8~1.0, an H3-type desorption hysteresis loop was observed, indicating the presence of
irregularities in the pore structure of the prepared Mn3O4@NPC material [43]. The in-
complete closure of the curve’s tail can be attributed to the addition of chitosan as the
carbon-based precursor. The Mn3O4@NPC materials prepared with different amounts of
H3PO4 as the P-dopant source exhibited specific surface areas of 49.83 m2 g−1, 48.18 m2

g−1, and 86.16 m2 g−1, with corresponding pore sizes of 17.95 nm, 14.93 nm, and 8.31 nm,
respectively (Table 1). Furthermore, an analysis of the pore size distribution reveals that
the pore volume of the small-diameter pores in the Mn3O4@NPC increased with additional
amounts of H3PO4 as the P-dopant source (Figure 5b). In fact, the introduced H3PO4 not
only acted as the P-dopant source, but also acted as an activating agent, thereby increasing
the porosity of the as-obtained materials.

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

curve’s tail can be attributed to the addition of chitosan as the carbon-based precursor. The 
Mn3O4@NPC materials prepared with different amounts of H3PO4 as the P-dopant source 
exhibited specific surface areas of 49.83 m2 g1, 48.18 m2 g1, and 86.16 m2 g1, with corre-
sponding pore sizes of 17.95 nm, 14.93 nm, and 8.31 nm, respectively (Table 1). Further-
more, an analysis of the pore size distribution reveals that the pore volume of the small-
diameter pores in the Mn3O4@NPC increased with additional amounts of H3PO4 as the P-
dopant source (Figure 5b). In fact, the introduced H3PO4 not only acted as the P-dopant 
source, but also acted as an activating agent, thereby increasing the porosity of the as-
obtained materials. 

 
Figure 5. The BET specific surface area and pore size distribution of MnO2-based materials: (a) N2 
isotherm adsorption/desorption analysis, and (b) pore distribution analysis. 

Table 1. The BET powder properties of Mn3O4-based materials. 

 Mn3O4@NPC(L) Mn3O4@NPC(M) Mn3O4@NPC (H) 
Surface Area (m2/g) 49.83 48.18 86.16 

Micropore Area (m2/g) 33.42 29.07 52.46 
Pore Volume (cm3/g) 0.134 0.246 0.179 

Pore Size (nm) 17.95 14.93 8.31 

Among the Mn3O4@NPC/CC electrode materials prepared with different amounts of 
H3PO4 as the P-dopant source, the Mn3O4@NPC(H)/CC electrode material exhibited the 
highest micropore area and pore volume. Additionally, it had the highest proportion of 
mesopore properties, thus enabling faster ion transport through the material. 

Among the Mn3O4@NPC/CC electrode materials prepared with different amounts of 
H3PO4 as the P-dopant source, the Mn3O4@NPC(H)/CC electrode material exhibited the 
highest micropore area and pore volume. Additionally, it had the highest proportion of mes-
opore properties, thus enabling faster ion transport through the material. Moreover, the 
Mn3O4@NPC(H)/CC electrode material also possessed the highest specific surface area, 
which enhanced its capacitive performance [44]. 

3.2. Electrochemical Properties of Mn3O4@NPC/CC Electrodes 
In the electrochemical characterization, a 1 M Na2SO4 aqueous solution served as the 

electrolyte, an Ag/AgCl electrode functioned as the reference electrode, and a Pt sheet was 
used as the counter electrode. The impact of varying the amounts of the P-dopant in the 
Mn3O4 electrode materials on their electrochemical properties was examined in this study. 
Figure 6 illustrates the CV curves obtained from the Mn3O4-based/CC electrodes. Figure 6a 
depicts the CV curve of the Mn3O4/CC electrode. The curve exhibits an asymmetric profile, 

Figure 5. The BET specific surface area and pore size distribution of MnO2-based materials: (a) N2

isotherm adsorption/desorption analysis, and (b) pore distribution analysis.

Table 1. The BET powder properties of Mn3O4-based materials.

Mn3O4@NPC(L) Mn3O4@NPC(M) Mn3O4@NPC (H)

Surface Area (m2/g) 49.83 48.18 86.16
Micropore Area (m2/g) 33.42 29.07 52.46
Pore Volume (cm3/g) 0.134 0.246 0.179

Pore Size (nm) 17.95 14.93 8.31

Among the Mn3O4@NPC/CC electrode materials prepared with different amounts of
H3PO4 as the P-dopant source, the Mn3O4@NPC(H)/CC electrode material exhibited the
highest micropore area and pore volume. Additionally, it had the highest proportion of
mesopore properties, thus enabling faster ion transport through the material.

Among the Mn3O4@NPC/CC electrode materials prepared with different amounts of
H3PO4 as the P-dopant source, the Mn3O4@NPC(H)/CC electrode material exhibited the
highest micropore area and pore volume. Additionally, it had the highest proportion of
mesopore properties, thus enabling faster ion transport through the material. Moreover, the
Mn3O4@NPC(H)/CC electrode material also possessed the highest specific surface area,
which enhanced its capacitive performance [44].
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3.2. Electrochemical Properties of Mn3O4@NPC/CC Electrodes

In the electrochemical characterization, a 1 M Na2SO4 aqueous solution served as the
electrolyte, an Ag/AgCl electrode functioned as the reference electrode, and a Pt sheet was
used as the counter electrode. The impact of varying the amounts of the P-dopant in the
Mn3O4 electrode materials on their electrochemical properties was examined in this study.
Figure 6 illustrates the CV curves obtained from the Mn3O4-based/CC electrodes. Figure 6a
depicts the CV curve of the Mn3O4/CC electrode. The curve exhibits an asymmetric
profile, indicating the electrode’s instability. Furthermore, as the scan rate increased, this
instability became more pronounced, emphasizing the need for further investigation and
optimization. As depicted in Figure 6b–d, two pairs of redox peaks were observed in the
CV curves of the Mn3O4@NPC/CC electrodes at low scan rates. These peaks corresponded
to the redox reactions of Mn2+/Mn3+ and Mn3+/Mn4+ of the Mn3O4@NPC/CC electrodes,
respectively [45,46]. Even at higher scan rates, the CV curves maintained a non-rectangular
shape with distinct redox peaks, indicating pseudocapacitive behavior [47]. Comparing the
Mn3O4/CC electrode (Figure 6a) with the Mn3O4@NPC/CC electrode, it is evident that
the area under the CV curve at a low scan rate was significantly enhanced. This confirms
that the incorporation of the NPC polycrystalline phase into the Mn3O4-based electrode
effectively enhanced the capacitance performance of the electrode.

Figure 7 shows the GCD curves of the various Mn3O4-based/CC electrodes at a
current density of 1 A g−1. From the charge–discharge curve of the Mn3O4/CC electrode,
the discharge time was found to be 78.5 s. Based on this discharge time, the specific
capacitance was calculated to be 39.4 F g−1 (Figure 7a). In Figure 7b–d, it is observed that
the charge–discharge time of the fabricated Mn3O4@NPC/CC electrodes decreased as the
current density increased, indicating that a shorter time was required for the charging
and discharging processes. The shape of the charge–discharge curve resembles a triangle,
which indicates a better Coulombic efficiency [48]. At a current density of 1 A g−1, the
discharge times of the Mn3O4@NPC/CC electrodes prepared with low, middle, and high
P-dopant amounts were 382.8 s, 381 s, and 515.1 s, respectively (Figure 7e). The curves
showing the discharge behavior exhibit four distinct stages. The first stage corresponds to
the initial potential drop at the beginning of the discharge curve. The second stage shows
a linear change in the curve, indicating electrochemical double-layer capacitance (EDLC)
behavior. The third stage is characterized by a pull-off phenomenon in the curve, indicating
pseudo-capacitive behavior. Finally, the curve exhibits a drop, indicating redox reactions
during the electrochemical reaction [49]. These four stages of discharge behavior indicate
a combination of EDLC and pseudo-capacitive behavior within the Mn3O4@NPC/CC
electrodes, thereby contributing to their overall electrochemical performance.

The specific capacitance values of the different electrodes were determined by ana-
lyzing the discharge curves obtained from the GCD tests, as depicted in Figure 7f. The
Mn3O4@NPC/CC electrodes, prepared with low, middle, and high amounts of P-dopant,
exhibited specific capacitance values of 191.8 F g−1, 190.9 F g−1, and 256.8 F g−1 at a
current density of 1 A g−1, respectively. The enhanced capacitance can be attributed to the
hybridization of Mn3O4 with the NPC polycrystalline phase, which was facilitated by the
introduction of N/P atoms. This doping altered the surface wettability of the Mn3O4-based
electrode, as demonstrated by the contact angle measurements (Figure 2b). Additionally,
the increased specific surface area and microporous area of the Mn3O4-based material
contributed to a higher ion storage capacity within the electrode’s pores. The greater the
storage capacity, the higher the observed capacitance value.

In order to evaluate the electrochemical performances of the Mn3O4@NPC/CC elec-
trodes, electrochemical stability and impedance analyses were conducted, as depicted
in Figure 8. The capacitance retention of the fabricated electrodes was compared after
5000 charge/discharge cycles at a current density of 4 A g−1.
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(c) the Nyquist plot of the electrodes.

It was observed that the Mn3O4/CC electrode experienced a significant decrease
in its capacitance retention to less than 50% after approximately 127 cycles of charging
and discharging. This decline can be attributed to the dissolution or detachment of the
Mn3O4 nanoparticles from the electrode surface or carbon fiber cloth in the electrolyte
(Figure 8a). In this study, the CC substrate was immersed in the Mn(OH)2 solution without
any adhesive material to obtain the Mn3O4/CC electrode. The Mn3O4 on the surface of
the electrode was easily peeled off during the cyclic stability test. However, after adding
carbon materials, the as-fabricated Mn3O4@NPC/CC electrode significantly improved this
situation. The initial capacitance retention rates of the Mn3O4/CC, Mn3O4/NPC(L)/CC,
Mn3O4/NPC(M)/CC, and Mn3O4@NPC(H)/CC electrodes were 42.3%, 91.3%, 89.3%,
and 97.3%, respectively. The Mn3O4@NPC(H)/CC electrode exhibited an excellent cycle
stability with a high initial capacitance retention rate. This improved stability can be
attributed to the utilization of chitosan as the carbon-based precursor, which imparted
stable chemical properties and electrical conductivity to the carbon material. The presence
of chitosan helped to prevent the continuous accumulation of Faradaic charges in the
composite nanomaterial, thereby maintaining its capacitance value and enhancing the
electrochemical stability of the material [50].

As shown in Figure 8b, the Coulombic efficiency of the Mn3O4@NPC(H)/CC electrode
hybrid electrode was excellent, as it was as high as 87.7%, revealing the reversibility of
the adsorbed and desorbed electrons on it. Electrochemical impedance spectroscopy (EIS)
was performed to investigate the electrochemical reaction kinetics of the Mn3O4-based/CC
electrodes, and the results are shown in Figure 8c. In the Nyquist plot, the impedance
curve exhibits a sharp increase and tends toward a vertical line in the low-frequency
region, indicating pure capacitive behavior [51]. In the high-frequency region (100 kHz
to 10 MHz), the intercept of the Z′ axis represents the equivalent series resistance (ESR),
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which encompasses the internal resistance of the electrode material, the ionic resistance of
the electrolyte, and the contact resistance at the active material/current collector interface.
The ESR values for the Mn3O4/CC, Mn3O4@NPC(L)/CC, Mn3O4@NPC(M)/CC, and
Mn3O4@NPC(H)/CC electrodes were 8.89 Ω, 5.48.5 Ω, 4.55 Ω, and 3.86 Ω, respectively.

In the middle-frequency region, a semicircle is observed on the plot, representing the
charge transfer resistance (Rct) at the electrode/electrolyte interface. The charge transfer
resistance (Rct) values for the Mn3O4/CC, Mn3O4@NPC(L)/CC, and Mn3O4@NPC(M)/CC
electrodes were 6.64 Ω, 0.74 Ω, and 0.59 Ω, respectively. Particularly, it was very hard to
find the semicircle on the plot of the Mn3O4@NPC(H)/CC electrode. These impedance
results provide insights into the electrochemical behavior of the electrodes. The lower
ESR and Rct values for the Mn3O4@NPC/CC electrode indicate improved charge-transfer
kinetics and a reduced resistance at the electrode/electrolyte interface. This suggests an
enhanced electrochemical performance and faster ion transport within the electrode [51].

The absence of a semicircle in the high-to-intermediate-frequency region for the
Mn3O4@C/CC and Mn3O4@NPC(H)/CC electrodes suggests a rapid reaction between
the electrode surface and the electrolyte. This behavior is indicative of improved ki-
netics and efficient charge transfer processes at the electrode/electrolyte interface. The
Mn3O4@NPC(H)/CC electrode exhibited the lowest ESR and Rct values, indicating a tight
connection between the electrode materials [52].

Table 2 shows a comparison of the electrochemical performances of the Mn3O4-based
hybrid electrodes in the literature [20,24,26,53,54]. The GCD test results show that the
composite with hybrid Mn3O4/NPC(H)/CC demonstrated a specific capacitance of
256.8 F g−1 at 1 A g−1 in 1 M Na2SO4 electrolyte and an excellent capacitance retention
of 97.3% at 5000 charge/discharge cycles. The electrochemical performance of the as-
prepared Mn3O4/NPC(H)/CC electrode was higher than that of previously studied
electrode materials.

Table 2. Comparison of electrochemical performances of Mn3O4-based hybrid electrodes in the literature.

Material Electrolyte Current Density (A/g) Capacitance
Retention (%) Specific Capacitance (F/g) Ref.

NPCM/Mn3O4 6 M KOH 0.5 99 (5000 cycle) 384 [20]
Mn3O4-Fe3O4@C 1 M Na2SO4 1 95 (1000 cycle) 178 [24]

Mn3O4-MC 2 M KOH 1 93.7 (1000 cycle) 236.7 [26]
Cr-doped Mn3O4 1 M Na2SO4 1 70 (1000 cycle) 209 [53]

Mn3O4 NPs 1 M KOH 5 84.2 (5000 cycle) 209 [54]
Mn3O4@NPC(H)/CC 1 M Na2SO4 1 97.3 (5000 cycle) 256.8 This work

In this study, the presence of N/P atoms embedded in the carbon framework en-
hanced the conductive pathways within the Mn3O4@NPC(H)/CC electrode, thus facilitat-
ing electrostatic attraction and providing numerous electroactive sites. These findings are
consistent with the observed superior capacitive performance of the Mn3O4@NPC(H)/CC
electrode at high scan rates and current densities. Overall, the tight connection and im-
proved conductive pathways contributed to the enhanced electrochemical behavior of the
Mn3O4@NPC(H)/CC electrode.

4. Conclusions

In this study, a chitosan biomass material was utilized as a precursor for a carbon
skeleton. Through a hydrothermal process, an Mn3O4@NPC/CC electrode with exceptional
capacitive properties was synthesized from N, P-codoped carbon crystalline hybridized
with Mn3O4 on a carbon fiber cloth (CC) substrate.

The morphology of the electrode material was transformed from a cluster structure to a
flower-like structure due to the introduction of N, P-codoped carbon polycrystalline. Addi-
tionally, the incorporation of NPC not only reduced the crystallinity of the Mn3O4, but also
optimized the micropore/mesopore ratio, creating a favorable environment for the storage,
transmission, and diffusion of electrolyte ions within the Mn3O4@NPC/CC electrode.
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The fabricated Mn3O4@NPC(H)/CC hybrid exhibited pseudo-capacitive behavior.
It maintained a high Coulombic efficiency at low scan rates, and the capacitance signifi-
cantly increased to 256.8 F g−1 at 1 A g−1, with a capacitance retention rate of 97.3% over
5000 charge/discharge cycles for the Mn3O4@NPC/CC electrode with a higher P-dopant
content. These results validate the excellent electrochemical properties of N, P-codoped
carbon crystalline hybridized with Mn3O4, highlighting the potential for its application in
flexible supercapacitor electrodes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13142060/s1, Figure S1. The chemical structure of chitosan. Figure S2.
The Electrochemical proerties of the as-fabricated Mn3O4@NPC electrode by adding 15 mL H3PO4
as P-dopant source. (a) CV examination and (b) GCD test (Cm = 172 F/g at 1 A/g). Figure S3. The
Electrochemical proerties of the as-fabricated Mn3O4@NPC electrode by adding 20 ml H3PO4 as
P-dopant source. (a) CV examination and (b) GCD test (Cm = 155 F/g at 1 A/g). Figure S4. The
Electrochemical proerties of the as-fabricated Mn3O4@NPC electrode by adding 25 ml H3PO4 as
P-dopant source. (a) CV examination and (b) GCD test (Cm = 141 F/g at 1 A/g).
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