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Abstract: Hole-transporting materials (HTMs) have demonstrated their crucial role in promoting
charge extraction, interface recombination, and device stability in perovskite solar cells (PSCs).
Herein, we present the synthesis of a novel dopant-free spiro-type fluorine core-based HTM with
four ethoxytriisopropylsilane groups (Syl-SC) for inverted planar perovskite solar cells (iPSCs). The
thickness of the Syl-SC influences the performance of iPSCs. The best-performing iPSC is achieved
with a 0.8 mg/mL Syl-SC solution (ca. 15 nm thick) and exhibits a power conversion efficiency (PCE)
of 15.77%, with Jsc = 20.00 mA/cm2, Voc = 1.006 V, and FF = 80.10%. As compared to devices based on
PEDOT:PSS, the iPSCs based on Syl-SC exhibit a higher Voc, leading to a higher PCE. Additionally,
it has been found that Syl-SC can more effectively suppress charge interfacial recombination in
comparison to PEDOT:PSS, which results in an improvement in fill factor. Therefore, Syl-SC, a facilely
processed and efficient hole-transporting material, presents a promising cost-effective alternative for
inverted perovskite solar cells.

Keywords: spiro-core; inverted perovskite solar cells; hole-transporting material; dopant free

1. Introduction

The need to replace fossil fuels with alternative energy sources has driven increased
scientific interest in using solar energy. In contrast to first-generation silicon solar cells,
new photovoltaic technologies have been developed to simplify manufacturing processes
and reduce infrastructure costs. As emerging technologies, organic and perovskite solar
cells show promising potential, and both types of devices are built in similar architectures.
Ternary organic solar cells (TOSCs) are being studied in the field of organic photovoltaics
(OPV), as they offer improved efficiency and stability at relatively low costs [1,2]. As
perovskite solar cells (PSCs) have become highly efficient in a very short time, much
research effort is currently focused on the optimization of device interlayers [3–5].

Hybrid organic/inorganic perovskite solar cells (PSCs) are highly promising in photo-
voltaics because of their optoelectronic properties, including an excellent absorption coefficient,
long carrier diffusion length, tuneable bandgap, and high mobility of the charge carriers [6–8].
Additionally, PSCs offer the advantage of a low-cost manufacturing process [9,10]. The power
conversion efficiency (PCE) of PSCs with a regular (n-i-p type) structure has rapidly increased
from its initial value of 3.8% [11] to the current 26.0% [12], which approaches the PCE of
crystalline silicon solar cells [13,14]. However, the n-i-p type devices have some drawbacks,
such as the high-temperature processing (500 ◦C) required for curing the mesoporous TiO2 of
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the electron transport material (ETM). In addition, the requirements for the hole transporting
materials (HTMs), such as high hole conductivity and mobility, high thermal stability, and a
proper energy level, reduce the number of potential candidates. To overcome these issues,
an emerging inverted planar PSC (p-i-n type) structure was designed by Guo et al. [15]. This
p-i-n type configuration shows many advantages compared to their regular counterparts, e.g.,
low-temperature processing and compatibility with large-scale fabrication [16,17], severely
suppressed hysteresis effects, and good compatibility with the flexible substrate. Several
studies have been recently published showing efficiencies near 25% [18,19].

Since HTMs and ETMs can aid the extraction of the free charge carriers at the corre-
sponding electrodes [20], the exploration of new transporting materials has been one of the
strategies to reduce the performance gap between both architectures, as they play a key role in
the stability of the devices [21]. In inverted PSCs (iPSCs), the quality of the HTM film is crucial,
since this affects the crystallinity and morphology of the perovskite film [22]. Conductive poly-
mers such as polytriarylamine (PTAA) and poly(3,4-ethylenedioxythiophene)/poly(styrene
sulfonic acid) (PEDOT:PSS) have been widely used as HTMs. They can modify the hydrophilic
nature of the perovskite surface, reducing moisture [23], and enabling less sophisticated de-
positing methods [24] and lower-temperature annealing [25]. However, devices based on
these polymeric HTMs still have some drawbacks that limit their future scaling up. The
PEDOT:PSS-based devices yield moderate Voc values below 1.0 V, owing to the relatively
low work function that does not match well with that of the perovskite [26]. These devices
also present lower stability due to the hygroscopic nature and the acidity of PEDOT:PSS,
accelerating the degradation of the perovskite (PVK) [27,28]. Finally, PEDOT:PSS can be
partly dissolved by the precursor solvent of the PVK, resulting in nonhomogeneous films [23].
Doping of PEDOT:PSS to simultaneously improve its conductivity and reduce degradation
issues has been explored by a few authors [29,30]. On the other hand, PTAA promotes higher
Voc and power conversion efficiency (PCE) values. However, its high hydrophobic nature
causes a more complex deposition method, which reduces the reproducibility of devices with
higher charge recombination due to heterogeneous growth of the perovskite [31]. The high
PTAA price, together with the need for doping [32], hinders its application in large-scale
iPSC fabrication. To solve these concerns, several dopant-free small molecular HTMs have
been synthesised using different types of central core moieties (e.g., thiophenyl, carbazole,
truxene, pyrene, triphenylamine [20,31,33–35]). The utilization of small organic molecules as
HTMs enables the production of extremely thin films (<20 nm), resulting in higher mobilities
without the need for doping [36,37]. This can be accomplished using only a minimal quantity
of the material. HTMs containing spiro-core structures extract holes more efficiently from the
adjacent perovskite layer, as their perpendicular core geometry can prevent intermolecular
π-π interactions, and form amorphous homogeneous layers [38–41]. Generally, the rigid 3D
core structure is detrimental to hole mobility. However, the introduction of diverse functional
groups could enhance the mobility of spiro-based thin films and modify the energy of the
interface [42–44], which alters the crystal morphology of the perovskite layer.

Herein, in this work we present the design and synthesis of a novel spiro-type HTM
(Syl-SC) by replacing one of the methoxyphenyl groups by ethoxytriisopropylsilane for
each N atom, as shown in Scheme 1. We have investigated the effects of the Syl-SC on
the performance of p-i-n type PSCs based on CsFAMA triple-cation perovskite (Table 1).
Reference cells were prepared using PEDOT:PSS and doped and undoped Spiro-OMeTAD
(N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi[9H-fluorene]-2,2′,7,7′-
tetramine) [45]. The incorporation of the triisopropylsilylether group improves the com-
pound solubility [46], giving rise to uniform, hydrophobic, and high transmittance films,
which can be easily deposited by spin-coating under environmental conditions.
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Table 1. Comparison of the advantages and disadvantages of PEDOT:PSS, PTAA, Spiro-OMeTAD,
and Syl-SC.

Material Advantages Refs. Disadvantages Refs.

PEDOT:PSS

� Good hole extraction and
transport properties

� Solution-processed allowing low-cost
and large-scale production

� Well-established material in the
perovskite solar cells field, providing a
benchmark for comparison

[47]

� The high hygroscopic nature can favor
the capture of humidity, leading to
device degradation. Its acidity can also
corrode ITO

� It can be partly dissolved by perovskite
precursor solvent

� PEDOT:PSS films may suffer from poor
optical transparency, reducing the
amount of light reaching the active
perovskite layer

� Relatively low work function

[23,26,48,49]

PTAA

� PTAA promotes higher PCE values
� Good thermal stability
� Forms a favorable interface with

perovskite, promoting efficient charge
transfer and reducing
recombination losses

[50–52]

� The high hydrophobic nature causes a
more complex deposition method,
increasing the manufacturing challenges.
It can be partly dissolved by perovskite
precursor solvent

� To increase the hole mobility, the
addiction of dopants into the HTL
is necessary

� High cost and inappropriate for the
fabrication of large-area devices

[32,49,50]

Spiro-
OMeTAD

� Provides a good energy level alignment
at the perovskite/HTM interface
facilitating the charge extraction

� Can prevent intermolecular
π-π interactions

� High solubility, film formability, proper
ionization potential, matched absorption
spectrum, and smooth
solid-state morphology

[44,48,53]

� Spiro are unstable at high temperatures
(60–120 ◦C) for long times. It can be
partly dissolved by perovskite
precursor solvent

� The addition of dopants is necessary due
to the low conductivity and mobility

� To obtain successful PV results, a thick
layer around 200–300 nm without doping
is necessary

[44,54]

Syl-SC

� Easy to synthesize and
solution processed

� Appropriate energy levels for
transferring the holes and
blocking electrons

� Good PCE results are obtained using a
minimal amount of compound
without dopants

� Forms ultrathin (<20 nm), homogenous,
and high transmittance films under
environmental conditions

[This work]

� The stability of the devices is pending to
be studied.

� The injection of the electrons is not
efficient giving rise to relatively low
Jsc values.

[This work]
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After device optimization, we realized that the PCE of perovskite solar cells shows
strong dependence on the thickness of the Syl-SC layer, which can be modulated by the pre-
cursor Syl-SC solution concentration. Impedance spectroscopy and transient optoelectronic
measurements were carried out to further understand the interfacial charge recombination.

2. Materials and Methods
2.1. Materials

The PEDOT:PSS was purchased from Heraeus Deutschland GmbH and Co. KG,
Hanau, Germany, Lead(II) bromide (PbBr2) and lead(II) iodide (PbI2) were acquired from
TCI; formamidinium iodide (FAI) and methylammonium bromide (MABr) and were pur-
chased from Dyenamo (99.99%). Cesium iodide (CsI) and all the anhydrous solvents,
i.e., dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), and chlorobenzene (CB),
were purchased from Sigma Aldrich (St. Louis, MO, USA) and used without further purifi-
cation. The patterned indium tin oxide (ITO, 15 Ω/square) glass substrates were provided
by Xin Yan Technology Ltd., Hong Kong.

2.2. Deposition of the HTMs

The solution of PEDOT:PSS was spin-coated onto the ITO substrate at 5000 rpm for
45 s, and then annealed on a hot plate at 150 ◦C for 10 min in air. The Syl-SC was dissolved
in chlorobenzene with three different concentrations (2, 0.8, and 0.5 mg/mL) and spin-
coated on top of the ITO substrate at 3000 rpm for 30 s, and then annealed at 100 ◦C for
10 min in air.

2.3. Preparation of the Perovskite Triple-Cation Cs0.05FA0.79MA0.16Pb(I0.85Br0.15)3 (CsFAMA)
Precursor Solution

The preparation of the perovskite precursor solution has been reported in our earlier
works [45]: The perovskite precursors FAI (1.1 M), MABr (0.2 M), PbI2 (1.15 M), and PbBr2
(0.2 M) were dissolved in anhydrous DMF:DMSO (4:1 v/v). Then, 42 µL of a CsI stock
solution (1.5 M in DMSO) was added to the mixed perovskite solution. The precursor
solution was stirred and then filtered using a PTFE filter head (pore size of 0.22 µm).

2.4. Device Fabrication

The structure of the inverted planar PSCs (iPSCs) was ITO/HTM (PEDOT:PSS or
Syl-SC)/CsFAMA/C60/BCP/Ag, as illustrated in Figure 1a. Prepatterned ITO glass sub-
strates were sequentially cleaned with Mucasol solution (2% in deionized water), DI water,
ethanol, and IPA in an ultrasonic bath for 10 min each. Firstly, 60 µL HTM (PEDOT:PSS or
Syl-SC) solution was spin-coated onto the clean ITO substrate and annealed, then the ITOs
were cooled down to room temperature and transferred into a N2-atmosphere glovebox.
Next, the deposition of the triple-cation perovskite layer was achieved in a N2 glovebox
by spin-coating onto the HTM film in a static antisolvent-assisted two-step procedure at
1000 rpm for 10 s, and 4000 rpm for 25 s, followed by the addition of 110 µL on the spinning
substrate during the last 12 s for the antisolvent step. After that, the samples were annealed
for 40 min at 100 ◦C. Afterwards, 20 nm of C60 and 8 nm of bathocuprine (BCP) were
thermally evaporated successively on top of the perovskite layer as electron-selective layers.
Lastly, a 100 nm Ag layer was deposited at low pressure (10−6 bar) to complete the device.
The active area of all devices is 0.09 cm2.
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2.5. Device Characterizations

The current density–voltage (J–V) curves were recorded using a Keithley source measure
unit (Model 2400) as a voltage source, and a solar simulator ABET technologies, (model
11,000 class type A) as the light source. The measurements were registered under 1 Sun
conditions (100 mW/cm2, AM 1.5 AG) calibrated with a silicon reference cell. The devices
were sealed in a holder under a N2 atmosphere. The EQE spectra were recorded using a
quantum efficiency measurement system from Lasing, S.A. (IPCE-DC, LS1109-232) with a
Newport 2936-R power-meter unit. The light dependence of the open circuit voltage (Voc) and
short-circuit current density (Jsc) was established by measuring the J–V characteristics under
different light intensities using a set of optical density filters.

The images of the surface morphology of the perovskite film were taken with a field
emission scanning electron microscopy (FESEM, Thermo Fisher Scientific model Scios 2,
Waltham, MA, USA).

Photoinduced charge extraction (CE) and transient photovoltage (TPV) measurements
were performed in open-circuit voltage equilibrium by illuminating the devices using a
white light LED ring from LUXEON®, Lumileds, The Netherlands. The white LED ring is
connected to a programmable power supply and a control box that controls the applied
bias, providing different light intensities switched from open- to short-circuit states. All of
the signals were recorded using a Yokogawa DLM2052 oscilloscope (Yokogawa Electric
Corporation, Tokyo, Japan), which registers the voltage drops. In TPV measurements,
the small light perturbation pulses were provided by a nanosecond PTI GL-3300 nitrogen
laser with a 580 nm laser pulse wavelength (<100 ns pulses). Impedance spectroscopy (IS)
measurements were carried out with a frequency range of 5 Hz–1 MHz at forward applied
bias voltages of 0.75 V and an AC signal with 50 mV amplitude under 1 sun (AM 1.5 G)
illumination using an HP-4193A impedance analyser, Hewlett-Packard Company, Palo
Alto, CA, USA.

3. Results and Discussion
3.1. Synthesis and Photoelectrochemical Properties

Scheme 1 depicts the synthesis pathway of the Syl-SC molecule. The spiro-type fluo-
rine core [55] was incorporated through a Buchwald–Hartwing coupling [56,57] from the
commercial 2,2′,7,7′-tetrabromo-9,9′-spirobi[fluorene], and the secondary amine 2. The
initial amine 1 was synthesized using a well-established procedure involving a nucleophilic
substitution between 4-iodoanisole and ethanolamine [58]. The protection of the hydroxyl
group with the triisopropylsilyl [56] produces the silyl amine 2. Syl-SC was obtained
with a good yield, and its chemical structure was characterized using nuclear magnetic
resonance (NMR) spectroscopy (Figure S2, Supporting Information). The thermal proper-
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ties were investigated using thermogravimetric analysis (TGA) and differential scanning
calorimetric (DSC) methods (Figure S3, Supporting Information). From TGA analysis, it
can be deduced that Syl-SC exhibited lower thermal stability compared to Spiro-OMeTAD,
with a decomposed temperature at 123 ◦C, and 170 ◦C for the spiro (Table S1, Supporting
Information), probably due to the N-ethoxytrialkylsislylether substituent incorporation.
Considering that Syl-SC is a viscous oil under ambient conditions, and DSC measurements
showed one glass transition at 171 ◦C for Syl-SC (Table S1), we can assume a polymorphic
behaviour, as well as for the Spiro-OMeTAD counterpart [59].

Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were used to analyse
the electrochemical properties of Syl-SC (Figure S4, Supporting Information) using tetrabuty-
lammonium hexafluorophosphate (0.1 M) as the supporting electrolyte, a Pt counter electrode,
a glassy carbon working electrode, and Ag/AgCl reference electrode. The redox potential
and frontier orbitals are gathered in Table S2 (Supporting Information). The highest occupied
molecular orbital (HOMO) level was obtained from the half-wave potentials determined by
CV, EHOMO = −(EI

OX + 4.8). Additionally, the optical band gap energy (Eg) was utilized to
estimate the lowest unoccupied molecular orbital (ELUMO = Eg + EHOMO). Figure 1b illustrates
the energy level alignment for the materials employed in the iPSCs. The low HOMO energy
level of PEDOT:PSS usually yields a Voc between 0.85 and 1 V [30]. The Syl-SC has a deeper
HOMO energy level than PEDOT:PSS, which better matches the valence band of CsFAMA.
The high energy gap between the LUMO of Syl-SC to the CsFAMA conduction band indicates
that Syl-SC can effectively block the injection of electrons from the perovskite to the anode,
and suppress the current leakage. On the other hand, an effective electron transfer to the
cathode is expected due to the proper alignment between the conduction band of perovskite
and the lowest unoccupied molecular orbital (LUMO) levels of the electron transport layers
(ETLs). The energy levels for ITO, PEDOT:PSS, CsFAMA, C60, BCP, and Ag were taken from
the literature [21,31,60–62].

3.2. Electrical Characterization and Performance Analysis

The photovoltaic performance of iPSC devices containing Syl-SC as a dopant-free HTL
was evaluated using the triple-cation perovskite CsFAMA as the absorber layer. Similar
iPSCs using PEDOT:PSS as the HTM were fabricated as a reference, and compared with
reference devices made of doped and undoped spiro. We studied the effects of Syl-SC thick-
ness on the performance parameters of iPSCs by tuning the Syl-SC concentration in the
chlorobenzene solution. The current density vs. voltage (J–V) curves of the best-performing
iPSCs are shown in Figure 2a with PEDOT:PSS and three different Syl-SC concentrations,
0.5 mg/mL, 0.8 mg/mL, and 2 mg/mL, under 1 Sun illumination (AM 1.5G, 100 mW/cm2).
The best-performing parameters of the optimization of Syl-SC concentration are summa-
rized in Table 2. Average PCE and standard deviation values were calculated from over
eight devices. Statistical results for the devices that contain PEDOT:PSS and Syl-SC with
three different concentrations are shown in the Supporting Information (Figure S5). We
observed a decrease in the PCE, Voc, and fill factor (FF) of devices with a Syl-SC concen-
tration of 2 mg/mL, whereas the Jsc is quite similar to that of devices with 0.5 mg/mL
and 0.8 mg/mL. PCE significantly improves by reducing the Syl-SC concentration from
2 mg/mL (PCE = 13.07%) to 0.5 mg/mL (PCE = 15.09%); however, we observe a lack of
reproducibility in the devices fabricated with 0.5 mg/mL of Syl-SC solution. Notably,
when using a Syl-SC concentration of 0.8 mg/mL, both Voc and FF were simultaneously
improved, affording an increment of the PCE up to 15.77%.
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Figure 2. (a) J–V curves of devices based on Syl-SC at different concentrations at reverse scan under 
AM 1.5 g illumination. (b) J–V curves (forward and reverse scans) of the best PCSs prepared with 
PEDOT:PSS and Syl-SC HTMs under AM 1.5 g illumination. (c) EQE spectra (line and symbols) and 
integrated short-circuit current density (solid lines). 
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PEDOT-PSS-based devices, the hysteresis had a major effect on the FF. The hysteresis in-
dex (HI), HI = (PCEreverse − PCEforward)/(PCEreverse) [63], was calculated to quantify the dis-
crepancy between the two scanned efficiencies. The best Syl-SC device (0.8 mg/mL) shows 
the lowest hysteresis index in comparison with both PEDOT:PSS and spiro-based refer-
ence devices. The champion device based on Syl-SC exhibited the highest PCE of 15.77% 
(reverse scan), with a Jsc of 20.00 mA/cm2, a Voc of 1.006 V, and an FF of 80.10%. On the 
other hand, the champion device based on PEDOT:PSS exhibited a PCE of 14.76% (reverse 
scan), with a Jsc of 21.37 mA/cm2, a Voc of 0.866V, and an FF of 79.70%, values that are higher 
than the references made with doped and undoped spiro in our previous work [45]. Thus, 
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Figure 2. (a) J–V curves of devices based on Syl-SC at different concentrations at reverse scan under
AM 1.5 g illumination. (b) J–V curves (forward and reverse scans) of the best PCSs prepared with
PEDOT:PSS and Syl-SC HTMs under AM 1.5 g illumination. (c) EQE spectra (line and symbols) and
integrated short-circuit current density (solid lines).

Table 2. Performance of PSCs made of PEDOT:PSS and Syl-SC.

HTM Concentration
(mg/mL) Scan Jsc (mA/cm2) Voc (V) FF (%) PCE (%) HI Ref.

PEDOT:PSS /
Forward 21.21 0.864 76.60 14.03 (13.64 ± 0.76)

0.049 This workReverse 21.37 0.866 79.70 14.76 (14.26 ± 0.86)

Doped spiro /
Forward 19.01 0.880 66.2 11.08

0.088 [38]Reverse 19.00 0.890 71.9 12.15 (10.69 ± 1.48)

Undoped spiro /
Forward 19.55 0.890 72.1 12.54

0.109 [38]Reverse 19.53 0.914 78.8 14.07 (11.92 ± 1.57)

Syl-SC 2
Forward 20.04 0.909 64.00 11.66 (10.49 ± 0.74)

0.108 This workReverse 20.00 0.938 69.60 13.07 (12.35 ± 0.65)

Syl-SC 0.8
Forward 19.54 0.986 78.60 15.15 (15.01 ± 0.23)

0.039 This workReverse 19.57 1.006 80.10 15.77 (15.00 ± 0.90)

Syl-SC 0.5
Forward 20.02 0.931 76.80 14.30 (12.94 ± 1.51)

0.052 This workReverse 19.94 0.956 79.20 15.09 (13.79 ± 1.43)

Average PCE and standard deviation values were calculated from over eight devices.

The J–V curves of devices made with Syl-SC and PEDOT:PSS showed a low hysteresis
effect; however, in devices with Syl-SC, the hysteresis reduced the FF and Voc, while in
PEDOT-PSS-based devices, the hysteresis had a major effect on the FF. The hysteresis
index (HI), HI = (PCEreverse − PCEforward)/(PCEreverse) [63], was calculated to quantify the
discrepancy between the two scanned efficiencies. The best Syl-SC device (0.8 mg/mL)
shows the lowest hysteresis index in comparison with both PEDOT:PSS and spiro-based
reference devices. The champion device based on Syl-SC exhibited the highest PCE of
15.77% (reverse scan), with a Jsc of 20.00 mA/cm2, a Voc of 1.006 V, and an FF of 80.10%.
On the other hand, the champion device based on PEDOT:PSS exhibited a PCE of 14.76%
(reverse scan), with a Jsc of 21.37 mA/cm2, a Voc of 0.866V, and an FF of 79.70%, values
that are higher than the references made with doped and undoped spiro in our previous
work [45]. Thus, we have continued our work, taking as a sole reference the device made
with PEDOT:PSS. The higher PCE of the iPSC with Syl-SC (0.8 mg/mL) can be mainly
attributed to its higher Voc compared to the device with PEDOT:PSS (1.006 and 0.866 V,
respectively). However, the iPSC with PEDOT:PSS exhibits a higher Jsc than that of the
Syl-SC-based device (21.37 and 19.57 mA/cm2, respectively). To validate the Jsc calculated
from J–V curves, external quantum efficiency (EQE) measurements were performed on
devices with Syl-SC and PEDOT:PSS. Figure 2c displays the EQE spectra and the integrated
Jsc of the PSCs. The integrated Jsc, calculated from the EQE, is 21.45 mA/cm2 for PEDOT:PSS
and 19.25 mA/cm2 for Syl-SC, which fits with the current density extracted from the
J–V curve.
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3.3. Morphological Characterization of the Films

Since the hole-transporting layer can influence the crystallinity and morphology of
perovskite film, surface modifications of the HTL layer have been investigated. Images of
the water droplets on the surface of PEDOT:PSS and Syl-SC are shown in Figure S6 of the
Supporting Information. The contact angle (CA) test demonstrated the hydrophilic nature
of the PEDOT:PSS film, with a CA of 16◦, whereas the Syl-SC film exhibited a higher contact
angle of 73◦. The higher wettability of the bottom layer promotes better spreading of the
perovskite precursor solution during the spin-coating process. Nevertheless, some studies
have reported that a relatively hydrophobic surface promotes the formation of high-quality
polycrystalline films compared to those deposited on a hydrophilic surface [22]. In addition,
the effects of HTMs on the surface morphology of CsFAMA films were characterized
by a field emission scanning electron microscope (FESEM). The FESEM images show a
highly smooth surface for the PEDOT:PSS film (Figure S6c, Supporting Information), while
Syl-SC forms a structured domain surface (Figure S6d, Supporting Information). The
FESEM images of CsFAMA grown on PEDOT:PSS and Syl-SC (0.8 mg/mL) are shown
in Figure 3a,b, respectively. It is noteworthy that perovskite films presented a smooth
surface and full coverage in both HTMs, and pinholes between grain boundaries were not
observed. As evidenced by the FESEM surface images, the CsFAMA film grown on Syl-SC
showed a smaller grain size than that of CsFAMA deposited on PEDOT:PSS. The grain size
distribution analysis (Figure 3c) reveals a perovskite average grain size difference of more
than 100 nm between the two studied bottom substrates. The Syl-SC film promotes the
formation of smaller CsFAMA crystals (approximately 163.9 nm in diameter) compared to
PEDOT:PSS (approximately 271.6 nm).
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Figure 3. Top view surface FESEM images of (a) PEDOT:PSS; (b) Syl-SC (0.8 mg/mL); (c) CsFAMA 
grain size distribution on PEDOT:PSS (red)/Syl-SC (green) calculated from ≈ 150 grains from 
FESEM images; (d) cross-sectional FESEM image of the p-i-n device with Syl-SC as the HTM. 

Figure 3. Top view surface FESEM images of (a) PEDOT:PSS; (b) Syl-SC (0.8 mg/mL); (c) CsFAMA
grain size distribution on PEDOT:PSS (red)/Syl-SC (green) calculated from ≈150 grains from FESEM
images; (d) cross-sectional FESEM image of the p-i-n device with Syl-SC as the HTM.

The larger crystals observed on PEDOT:PSS indicated a better growth of the perovskite
film, which can explain the higher Jsc value for the PEDOT-PSS-based device [22,31].
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Figure 3d displays a cross-sectional view obtained by FESEM of the iPSC based on Syl-SC.
The image shows a compact and clear multilayered structure with well-defined interfaces.
The cross-sectional FESEM images show that Syl-SC promotes a proper crystallization
of CsFAMA. The thickness of all layers that integrate the device was measured from the
FESEM images (see Figure S7, Supporting Information).

3.4. Charge Recombination Characterization

To assess the influence of the Syl-SC interlayer on the interfacial charge recombination
in devices, we analysed the light intensity dependence of Voc and Jsc. Figure 4a shows the
variation of Jsc against light intensity (Plight) fitted by the power-law function JSC = Plight

α,
where α represents the second-order bimolecular recombination degree. A power (α)
value ~1 suggests that the charge recombination mechanism can be mostly assigned to
the monomolecular recombination processes, whereas the bimolecular recombination is
negligible under short-circuit conditions [64,65]. The estimated α value of samples with
Syl-SC and PEDOT:PSS were 0.95 and 0.90, respectively, which suggested a low contri-
bution of bimolecular recombination. However, the slightly higher α value indicates that
Syl-SC can better reduce the bimolecular recombination than PEDOT:PSS. Figure 4b shows
the light intensity dependence of Voc. The semilogarithmic Voc vs. Plight plot was fitted

by the equation VOC = nid ( kT/q ) Ln (P light

)
+ C, where nid is the ideality factor, k is

the Boltzmann constant, T is the temperature, q is the elementary charge and C is a fitting
parameter. The expected n value ranges between 1 and 2 (1 ≤ nid ≤ 2); the bimolecular
recombination is dominating if the nid value approaches 1, while the monomolecular re-
combination mechanisms are responsible for the charge recombination (e.g., trap-assisted
and geminate recombination) when nid values are close to 2 [66,67]. The devices with
PEDOT:PSS and Syl-SC exhibited similar nid close to 1 (1.05 and 1.10), which indicates
both HTMs can suppress the monomolecular recombination under open-circuit conditions.
These results suggest that Syl-SC enables perovskite films of good quality with low defects
or impurities at the HTM/CsFAMA interface and at grain boundaries, which reduces the
monomolecular recombination [68].
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Figure 4. (a) Dependence of Jsc on the light intensity. The experimental data (symbols) are fitted 
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We also carried out electrochemical impedance spectroscopy (EIS) measurements to 
investigate charge recombination. Figure 4c displays the Nyquist plots of devices with 
PEDOT:PSS and Syl-SC measured under 1 Sun illumination at 0.75 V bias. Both iPSCs 
presented one typical semicircle shape corresponding to the resistor/capacitor circuit [69]. 

Figure 4. (a) Dependence of Jsc on the light intensity. The experimental data (symbols) are fitted
(solid lines) using JSC = Plight

α; (b) dependence of Voc on the light intensity. The experimental data

(symbols) are fitted (solid lines) using Voc = nid (kT/q) Ln (P light

)
+ C; (c) impedance spectroscopy

Nyquist plot for iPSCs with PEDOT:PSS and Syl-SC measured under 1 Sun illumination at 0.75 V bias.
The inset shows the equivalent circuit model used to fit (solid lines) the experimental data (symbols).

We also carried out electrochemical impedance spectroscopy (EIS) measurements to
investigate charge recombination. Figure 4c displays the Nyquist plots of devices with PE-
DOT:PSS and Syl-SC measured under 1 Sun illumination at 0.75 V bias. Both iPSCs presented
one typical semicircle shape corresponding to the resistor/capacitor circuit [69]. The EIS re-
sponses were interpreted using an equivalent-circuit model with one external series resistance
(Rseries) and one resistor/capacitor (RC) element, as shown in the inset of Figure 4c. The fitting
parameters of the circuit elements are summarized in Table S3 (Supporting Information).
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Since the iPSCs have similar structures, and the only difference lies in the HTM layer, the
changes in the EIS measurements are attributed to the HTM/CsFAMA interface. The Rseries
is associated with the contact resistances and sheet resistance of ITO, and can be estimated
from the high-frequency range. The similar Rseries of iPSCs with PEDOT:PSS and Syl-SC
(7.18 and 7.30 Ω, respectively) indicate that there are no major differences in the hole-extraction
dynamics between devices with the two HTMs. On the other hand, the characteristic semicir-
cle describes the electrochemical behaviour of devices, which involves geometrical capacitance
(C1) and interfacial charge recombination resistances (R1). The recombination resistance
(R1 in Table S3) is 35.01 Ω and 25.11 Ω for devices with Syl-SC and PEDOT:PSS, respectively.
The larger recombination resistance implies lower recombination losses; thus, Syl-SC can
better suppress the interfacial charge recombination.

To obtain further insight into the effects of Syl-SC on the charge recombination dynamics,
we carried out charge extraction (CE) and transient photovoltage (TPV) measurements under
standard device PV operating conditions in terms of light intensity and applied voltage [70],
which is important for PSCs that display light intensity-dependent properties [71–73]. As
a large modulation transient method, CE is a measurement that allows extraction of all
the charges present in the solar cell once the Voc of the device is stabilized, and while the
illumination is switched off. After a short circuit of the solar cell, the resultant transient
discharging current is measured through a small external load resistor. Figure 5a shows
the charge extraction of the device obtained applying different open circuit voltages under
illumination. The charge density exhibited two different regimes, linear and exponential. The
linear trend in the voltage region 0–0.8 V is attributed to accumulated charge at the electrodes
(geometrical capacitance). On the other hand, after 0.8 V, the charge carrier density exhibited
an exponential dependency on the applied voltage, and is related to the accumulated charge
at the HTM/perovskite/ETM interfaces (chemical capacitance). The charge density within
the bulk of the device is estimated by subtracting the geometrical capacitance from the CE
data. The charge density at the bulk (solid lines in Figure 5a) shows a more pronounced slope
at 0.7–0.85 V for the PEDOT:PSS, and at 1 V for Syl-SC. The better energy alignment between
the HOMO of the Syl-SC and the perovskite valence band (VB) would be the reason for these
differences in the charge vs. voltage. As previously reported [74], the resulting Voc arises from
the respective HOMO energy level [75], as well as the disorder of the density of states and the
recombination constant [72,76]. So thus, we analyse the interfacial carrier losses using TPV
measurements in the different solar cell devices. Figure S8 (Supporting Information) shows
the variation of the carrier lifetime (τ∆n) as a function of the Voc. To analyse the recombination
kinetics more effectively, we compare the carrier lifetime (extracted from the TPV plot) as
a function of charge density (extracted from the CE plot), as shown in Figure 5b. Thus, we
compare the differences in carrier lifetime under a determinate charge value (vertical solid line
at 4× 10−8 C/cm2), as shown in the inset of Figure 5b. The recombination in the devices with
PEDOT:PSS is one order of magnitude faster than that of devices with Syl-SC, which explains
the differences in Voc values. Thus, Syl-SC can better reduce the charge recombination than
that PEDOT:PSS. This result agrees with those obtained from light intensity-dependence of
Voc and Jsc, and impedance spectroscopy analyses.



Nanomaterials 2023, 13, 2042 11 of 15
Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 

0.0 0.2 0.4 0.6 0.8 1.0

0

1x10-8

2x10-8

3x10-8

4x10-8

5x10-8

6x10-8

 PEDOT:PSS
 Syl-SC

Ch
ar

ge
 c

ar
rie

r d
en

si
ty

 [C
/c

m
2 ]

Open circut voltage [V]  
10-10 10-9 10-8 10-7

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

PEDOT:PSS
Syl-SC 

Sm
al

l p
er

tu
rb

at
io

n 
lif

et
im

e 
[s

]

Charge carrier density [C/cm2]

3x10-8 4x10-8 5x10-8 6x10-8
1E-7

1E-6

1E-5

1E-4

1E-3

 
(a) (b) 

Figure 5. (a) CE under different open light biases for PSC with Syl-SC and PEDOT:PSS as hole 
transport layers. Symbols represent the geometrical and chemical capacitances. Dashed lines corre-
spond to the linear fitting of the geometrical capacitance. The solid lines represent the charge density 
at the bulk after subtracting the geometrical capacitance. (b) Charge carrier density (n) from CE 
versus the carrier lifetime from TPV measurements, both capacitive contribution and bulk dynamics 
representation. 

4. Conclusions 
To summarize, we have successfully synthesized a new hole-transporting small mol-

ecule, Syl-SC, and used it as a dopant-free hole-transport layer (HTL) for inverted planar 
perovskite solar cells (PSCs) under ambient conditions. We showed that optimizing the 
thickness of the HTL is an effective approach to enhance the device performance in the 
inverted configuration. The champion device with a PCE of 15.77% is made of a 15 nm 
ultrathin HTL obtained from a Syl-SC precursor solution of 0.8 mg/mL. Compared to the 
control PEDOT:PSS HTL and references with undoped and doped Spiro-OMeTAD, the 
Syl-SC HTL improved the Voc of iPSCs devices because of several reasons. This improve-
ment can be attributed to the deeper HOMO energy level of Syl-SC, which better aligns 
with the valence band of the CsFAMA. Further analysis using impedance spectroscopy 
and transient optoelectronic measurements revealed that the Syl-SC HTL significantly re-
duced interfacial charge collection, improved fill factor (FF), and overall device efficiency. 
These findings demonstrate that modifying the well-known Spiro-OMeTAD through side-
chain engineering is a promising strategy for developing efficient hole-transporting ma-
terials (HTMs), without the need for chemical dopants. 
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Figure 5. (a) CE under different open light biases for PSC with Syl-SC and PEDOT:PSS as hole
transport layers. Symbols represent the geometrical and chemical capacitances. Dashed lines cor-
respond to the linear fitting of the geometrical capacitance. The solid lines represent the charge
density at the bulk after subtracting the geometrical capacitance. (b) Charge carrier density (n)
from CE versus the carrier lifetime from TPV measurements, both capacitive contribution and bulk
dynamics representation.

4. Conclusions

To summarize, we have successfully synthesized a new hole-transporting small
molecule, Syl-SC, and used it as a dopant-free hole-transport layer (HTL) for inverted
planar perovskite solar cells (PSCs) under ambient conditions. We showed that optimizing
the thickness of the HTL is an effective approach to enhance the device performance in the
inverted configuration. The champion device with a PCE of 15.77% is made of a 15 nm
ultrathin HTL obtained from a Syl-SC precursor solution of 0.8 mg/mL. Compared to the
control PEDOT:PSS HTL and references with undoped and doped Spiro-OMeTAD, the
Syl-SC HTL improved the Voc of iPSCs devices because of several reasons. This improve-
ment can be attributed to the deeper HOMO energy level of Syl-SC, which better aligns
with the valence band of the CsFAMA. Further analysis using impedance spectroscopy and
transient optoelectronic measurements revealed that the Syl-SC HTL significantly reduced
interfacial charge collection, improved fill factor (FF), and overall device efficiency. These
findings demonstrate that modifying the well-known Spiro-OMeTAD through side-chain
engineering is a promising strategy for developing efficient hole-transporting materials
(HTMs), without the need for chemical dopants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13142042/s1, Figure S1: Infrared spectra in KBr of Syl-SC com-
pound; Figure S2: (a) 1H NMR spectrum of Syl-SC (300 MHz, CD3COCD3), (b) 13C NMR spectrum
of Syl-SC (75 MHz, CD3COCD3); Figure S3: (a) Thermogravimetric analysis (TGA) curve of Syl-SC;
method 30–900 ◦C to 10 ◦C/min under 80.0 mL/min of N2. (b) Differential scanning calorimetry
(DSC) trace of Syl-SC measured under N2 flow at heating and cooling of 10 ◦C/min from 30 to
300 ◦C; Table S1: Thermal properties of HTM; Figure S4: (a) UV-vis of Syl-SC in CH2Cl2 solution.
(b) Tangent to the UV-vis absorption curve on the side of lower energy to estimate the transition
energy (Eg) from the transition wavelength (λtrans). (c) Differential pulse voltammetry (DPV) and
(d) cyclic voltammetry in CH2Cl2 solution for Syl-SC vs. Ag/AgCl; Table S2: Optical and elec-
trochemical properties of Syl-SC; Figure S5: Devices based on PEDOT:PSS and Syl-SC at differ-
ent concentrations. (a) Performance device (PCE) boxplot; (b) open circuit voltages (Voc) boxplot;
(c) current density (Jsc) boxplot; and (d) fill factor (FF) boxplot; Figure S6: The contact angles between
HTL film and water droplet on the substrate of (a) PEDOT:PSS and (b) Syl-SC. Top surface FESEM of
(c) PEDOT:PSS and (d) Syl-SC; Figure S7: Cross-sectional FESEM image of the p-i-n device containing
Syl-SC as HTM with the thickness of the layer’s components; Table S3: Impedance parameters extracted

https://www.mdpi.com/article/10.3390/nano13142042/s1
https://www.mdpi.com/article/10.3390/nano13142042/s1
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from Nyquist plots fitted with the electrical equivalent circuit; Figure S8: Charge carrier lifetime (τ∆n) as
a function of device Voc. References [56,58,77,78] are cited in the Supplementary Materials.
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