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Abstract: Some high-index facets of BiVOy, such as (012), (210), (115), (511), (121), (132) and (231),
exhibit much better photocatalytic performance than conventional (010) and (110) surfaces for water
splitting. However, the detailed mechanisms and stability of improved photocatalytic performance
for these high-index BiVO, surfaces are still not clear, which is important for designing photocatalysts
with high efficiency. Here, based on first principle calculation, we carried out a systematic theoretical
research on BiVO, with different surfaces, especially high-index facets. The results show that all of
the high-index facets in our calculated systems show an n-type behavior, and the band edge positions
indicate that all of the high-index facets have enough ability to produce O, without external bias.
Electronic structures, band alignments and formation enthalpy indicate that (012), (115) and (132)
could be equivalent to (210), (511) and (231), respectively, in the calculation. Oxidation and reduction
potential show that only (132)/(231) is stable without strongly oxidative conditions, and the Gibbs
free energy indicates that (012)/(210), (115)/(511), (121) and (132)/(231) have lower overpotential
than (010) and (110). Our calculation is able to unveil insights into the effects of the surface, including
electronic structures, overpotential and stability during the reaction process.

Keywords: density functional theory; high-index facets; photocatalysis; oxygen evolution reaction

1. Introduction

Water splitting based on photoelectrochemical (PEC) catalysis has received increasing
attention in recent years, as it is one of the most viable methods to solve the energy crisis
without any environment pollution [1-3]. Great efforts have been concentrated on designing
and fabricating suitable and sustainable photocatalysts in the past few years [4-8]. For the
water splitting reaction, a lot of electron-hole pairs can be generated under sunlight, and
these electron-hole pairs can separate and transfer to the surface of photocatalysts. Then, H*
would be reduced by electrons and produce Hj, while in contrast, H,O would be oxidized
by holes and produce O;. Therefore, efficient charge transfer and long carrier lifetimes
are necessary to ensure the excellent photocatalytic performance [9-11]. Furthermore,
the conduction band minimum (CBM) and the valence band maximum (VBM) should be
above the reduction potential of H" /H; and below the oxidation potential of O,/H,0O,
respectively [12-14]. In this condition, the photogenerated electrons have the ability to
reduce proton and the holes have the ability to oxidize HyO.

BiVOy is one of the most studied materials for photocatalytic applications due to its
outstanding photocatalytic properties [15-19]. In order to design even better performing
systems, an in-depth comprehension of improvement strategies, such as crystal facets
engineering [20-25], is still required. The conventional BiVOj is the nanocrystal with a
corner-cut truncated bipyramidal morphology [26-28]. Recently, BiVO, widely covered
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with high-index facets was fabricated and showed an improved oxygen evolution reaction
(OER) performance. For instance, the OER performance on (132), (231) and (121) high-index
facets was three to five times higher than their (010) and (110) low-index counterparts [29].
BiVO, bounded by multiple high-index (012), (210), (115) and (511) exhibits much higher
photocatalytic O, evolution performance (more than two orders of magnitude) compared
with conventional BiVO, material [30]. However, there is still a lack of detailed research
about the high-index facets, especially the mechanisms of improved photocatalytic per-
formance for high-index facets and the stability of different crystal facets, which has great
significance for further improving the photocatalytic performance and promoting the prac-
tical application of photocatalysis. Therefore, it is necessary to investigate the mechanisms
of the improved photocatalytic performance and stability of these high-index facets.

In this investigation, we report a comprehensive theoretical analysis on BiVO, (012),
(210), (115), (511), (121), (132) and (231) high-index facets according to density functional the-
ory (DFT) calculations. We focus on the electronic structure, band edge position, standard
formation enthalpy and Gibbs free energy of BiVO, with different facets. The electronic
structure of BiVOy is investigated by calculating the partial density of states (DOS). The
band edge positions are the focus of analyzing the photocatalytic mechanism. The stability
is investigated using thermodynamic reduction potential and oxidation potential, and the
photocatalytic activities of BiVO, with different facets are studied via analysis of the Gibbs
free energy.

2. Materials and Methods

All of the theoretical calculations were based on DFT, as implemented in the Vienna ab
initio simulation package (VASP) [31]. The projector-augmented wave (PAW) method was
adopted and the generalized gradient approximation (GGA) functional of Perdew, Burke
and Ernzerhof (PBE) was selected to describe the interaction between electrons [32,33].
Hubbard U-corrections to the d electrons of V (Usgq = 2.7 eV) was performed to correct the
self-interaction error during the electronic structure calculations, which has been proven to
provide a suitable value [34]. The cut-off kinetic energy was 400 eV for plane wave functions.
The convergence criterion for energy was 10> eV and 10~7 eV for optimization and zero-
point energy (ZPE) calculation, respectively, and the convergence criterion residual force
was set to 0.01 eV/A. The Monkhorst-Pack k-point grids were set to 7 x 7 x 5 for unit
cells and 5 x 5 x 1 for surface systems with Brillouin zones, except for ZPE calculation.
For ZPE, only the gamma-point was chosen due to this calculation being the correction
for individual OH, O and OOH radicals on the BiVOy. In order to avoid the interactions
between layers, a vacuum layer more than 20 A in thickness was placed above the surface
systems. Moreover, the computational hydrogen electrode (CHE) model was adopted for
OER calculation [35], and an implicit solvent model was used to correct the free energy in
this process, as implemented in VASPsol [36]. The solvent is set to water.

3. Results and Discussion
3.1. Geometric Optimization

In our calculations, the unit cell of BiVO, was optimized at first. Generally speaking,
the photocatalyst BiVO, has two crystalline phases, named monoclinic scheelite (m-) and
tetragonal scheelite (t-). Assuming that c is the longest axis, the space group of t-BiVOy is
141 /a with the lattice parameters a = b = 5.15 A c=1172A, a = B = =90° and the m-
BiVO4isI12/b (a=519A,b=509A,c=11.70 A, x = B =90°, 7 = 90.4°) or C2/c (a = 7.27 A,
b=1170 A, c =5.09 A, a = v = 90°, B = 135°) as it employs different methods to select
the unit cell, and the unit cell of m-BiVO, can spontaneously transform into t-BiVOy if
the optimization of the BiVO, unit cell is fully relaxed [37]. Therefore, the unit cell of
BiVO, after optimization may be t-BiVO,4. Due to the m-BiVO, and t-BiVO,4 having a
similar geometric structure, electronic structure, surface energy and work function, all of
the calculated results obtained for t-BiVO, can probably be extrapolated for m-BiVOy [38].
In our calculation, the optimized lattice parameters were a = 5.17 A,b=516A,c=11.76 A,
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n=p= 909, v = 90.15°, which is consistent with previous meta-GGA (a2 = b = 5.11 A,
c=11.60 A, x = B = ¥ = 90°) and GGA + U calculated results (1=b =519 A, c = 11.83 A,
o =P =v=90°)[37,38], and the lattice constants changed slightly by less than 1% compared
with experimental values (2 = b =5.15 A, c=11.72 A, a = § = = 90°) [37]. Considering
that some of previous studies rotated the BiVO,4 90° around the axis a and set b as the
longest axis, b was chosen as the longest axis in this calculation, which is consistent with the
axes used in other experiments [29,30]. In this case, the lattice parameters were defined as
a=517A,b=1176 A,c=5.16 A, a = 7 = 90°, B = 90.15°. After obtaining the optimized unit
cell, the B was set to 90° and the orthorhombic cell was adopted here. This adjustment does
not affect the results and conclusions due to its small error (less than 1%). The side view
and top view of a BiVOy unit cell are shown in Figure S1. In order to support the reliability
and rationality of te results, the band structure of bulk BiVO, was calculated, as shown
in Figure S2. The calculated CBM and VBM related to the Fermi level are 1.72, —0.43 eV,
respectively, and the band gap is 2.16 eV for bulk BiVO,, which is consistent with previous
calculated results (2.17 eV) [39]. In experiments for OER, the improved-photocatalytic-
performance high-index facets are mainly on 24-faceted BiVO, and 30-faceted BiVOy, and
the 24-faceted BiVOy are mainly surrounded by (012), (210), (115) and (511) facets. As for
30-faceted BiVOy, (010), (121), (132) and (231) facets cover most of the area of BiVOy. The
low-index (010) facet has already been investigated in our previous works [40]. Hence,
only (012), (210), (115), (511), (121), (132) and (231) are investigated here. In some previous
studies, c is selected as the longest axis. In this case, the high-index (012), (210), (115), (511),
(121), (132) and (231) facets would be defined as (021), (201), (151), (511), (112), (123) and
(213), respectively. The (012), (210), (115), (511), (121), (132) and (231) systems are obtained
by cleaving the unit cell of bulk BiVO,. The thickness of BiVOj, in each surface system is
larger than 10 A. The side and top views of optimized structures are shown in Figure 1 and
Figure S3, respectively, and the detailed information about thickness and the number of
each atom for these structures is shown in Table S1. The thickness is defined by the vertical
distance between the highest and lowest atoms for each structure. The (210), (511) and (231)
facet can be obtained through a symmetric rotation of (012), (115) and (132) around the
longest axis, respectively. Hence, the morphology of (210) is similar to that of (012), (511) is
similar to (115), and (231) is similar to (132). Moreover, due to the lattice parameters a and ¢
of the optimized unit cell BiVO, not being exactly equal, the (012)/(115)/(132) facets and
the (210)/(511)/(231) facets are not entirely consistent. Hence, the (012)/(115)/(132) facets
probably have negligibly different properties compared with the (210)/(511)/(231) facets.

G

Figure 1. Optimized geometric structures for BiVO, with different facets. The purple, silver and red
spheres represent Bi, V and O, respectively.

3.2. Electronic Structures

After obtaining the most stable structures of surface systems, the electronic structure
of BiVOy (012), (210), (115), (511), (121), (132) and (231) is investigated by calculating the
partial DOS. Here, several layers of atoms for each structure are projected and the calculated
results are shown in Figure 2a—g. Clearly, the VBM is mainly composed of O 2p and the
CBM is mainly contributed to by V 3d for all of the calculated systems, and the facets do
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not affect the composition of CBM and VBM significantly. All of the high-index facets show
an n-type behavior, where the Fermi level is closer to the CBM than VBM. Notably, for (012),
(210), (132) and (231), there is one peak that appears in the middle of the band gap, and it
can be observed that all the peaks are composed of O 2p and V 3d. The peak of (132)/(231)
is very close to the Fermi level, indicating the states might have roughly the same ability to
trap electrons and holes. Therefore, the states of (132)/(231) could act as the recombination
center, which is not beneficial to improve the PEC performance to some extent. The peak
of (012)/(210) is far below the Fermi level, which might have a different ability to trap
electrons and holes. In this case, the states could reduce the recombination of electron-hole
pairs, which is good for photocatalysis. For (115) or (511), there are two peaks between
CBM and VBM. One peak is close to the Fermi level, and this peak is mainly populated by
O 2p and V 3d. The other peak is far below the Fermi level, which is mainly contributed
to by V 3d. Therefore, the two peaks might have the opposite effect on photocatalysis,
and it is hard to establish the combined effect of the two peaks. For (121), there is no peak
between CBM and VBM. In our calculation, the high-index facets represent an inclined
plane rather than a standard plane, and thus the periodic boundary condition causes the
similar morphology to take on different structures. Furthermore, the unit cell of BiVOy is an
orthorhombic cell with a slight deformation. These factors probably cause the high-index
facets with similar morphology to display slightly different electronic structures. However,
these differences do not qualitatively change the electronic structure for the facets with a
similar morphology. In our calculation, the electronic structure of (210) is similar to that of
(012), (511) is similar to (115), and (231) is similar to (132). Moreover, it can be seen that
the band gap and band edge can be modulated by facets. This phenomenon indicates that
the oxidation and reduction capacity can probably be modulated according to crystal facet
engineering of BiVOj.

(012) —Bid (b) (210) —Bi_d

45 45
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Figure 2. Cont.
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Figure 2. (a—g) Calculated DOS of BiVO, with different facets. The Fermi level is set to zero.

3.3. Band Alignments

The band edge position could determine the oxidation capacity of holes and the
reduction of electrons to a great extent, which plays an important role in photocatalytic
applications. In this calculation, the band edge position is investigated based on the
macroscopic averaging method [41]. The calculated results for different facets are shown
in Figure 3a—g. It can be seen that the facets have a great effect on CBM/VBM position.
Here, we focus on the distance between CBM/VBM position and vacuum level, and the
CBM/VBM position (vs. Vacuum) for each structure is displayed in Table S2. The band
edge positions could determine the reduction capacity of photogenerated electrons and the
oxidation capacity of photogenerated holes to a great extent. Compared with the band edge
positions, it can be inferred that (012) and (210) demonstrate strong oxidation capacity while
(121) has a strong reduction capacity. Moreover, the band edge position of (210) is similar
to that of (012), (511) is similar to (115), and (231) is similar to (132) in our calculation.

For water splitting, the CBM and VBM should be compared with the reduction po-
tential of H"/H; and the oxidation potential of O,/H,O, respectively. Based on the
relationship between the absolute vacuum level and the normal hydrogen electrode (NHE),
the CBM and VBM of BiVO, with different facets related to H* /H, and O, /H,O potentials
are calculated, as displayed in Figure 3h. It can be seen that the CBM of BiVO, (121) is above
the H* /H, level, meaning that it has sufficient ability to reduce protons. Meanwhile, the
other facets do not have enough reduction ability, and thus the biased voltage is necessary
for (012), (210), (115), (511), (132) and (231) to produce H,. The VBMs of all of the facets
in our calculated systems are below the O, /H,O potential, indicating they have sufficient
oxidation capacity to produce O, without biased voltage.
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Figure 3. (a—g) The relative positions of the electrostatic potential of BiVO, with different facets.
The blue dashed line represents the Fermi level. (h) The band edge potentials related to H* /H, and
O, /H;0 potentials for BiVO, with different facets. The upper and bottom orange lines represent
CBM and VBM, respectively.

3.4. Stability

Resistance against photocorrsion is important for photocatalysis. An excellent photo-
catalyst should remain stable for a long time under light illumination. In order to investigate
whether the facets have the ability to resist photocorrosion, the stability of BiVO, with
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different water splitting capacities under light illumination is analyzed. Generally speaking,
whether the photocatalyst will be easily corroded is largely determined by the reduction
potential (¢,) and oxidation potential (¢,x). For water splitting, when the ¢, of the photo-
cathode can cause a reduction reaction to occur and is higher than the H* /H, potential,
the photocatalyst will be corroded because of reduction. When the ¢,, of photoanode
can cause an oxidation reaction to occur and is smaller than the O,/H;,O potential, the
photocatalyst will be corroded because of oxidation [42]. In the reaction for water splitting,
the photogenerated electrons participate in self-reduction while the photogenerated hole
takes part in self-oxidization. The possible path for self-reduction can be described as
follows [43,44]:

2BiVOy,(s) + 6HT + 6e™ « 2Bi(s) + V,05(s) + 3H,O 1)
2BiVOy(s) +2HT +2e~ « BiyO3(s) +2VO,(s) + HyO ()
2BiVOy4(s) + 10H" +10e™ «» BiyO3(s) +2V(s) + 5H,0 (3)

BiVO4(s) + 8H' +8e™ «» Bi(s) + V(s) + 4H,O 4)

As for self-oxidization, the possible path can be summarized as follows [43,44]:

4BiVOy(s) + 12ht « 4Bi®t 4+ 2V,05(s) + 30, (5)
2BiVO,(s) + 12h™ « 2Bi®* +2VO3* 430, (6)
BiVO,(s) + H,O +2h* « BiVOs + 2H™" @)
4BiVO4(s) + HyO +2h™ < BigOy(s) +2V,05(s) +2H™" (8)

Under strongly oxidative conditions, such as largely surface-accumulated holes or an
applied high bias potential, there are another two possible paths [43,44]:

2BiVOy + O, ¢+ 2BiVO;5 )

8BiVO, 4 O, > 2BiyO7 + 4V;,05 (10)

In the calculation, the ¢, and @,y relative to NHE can be determined [42]:
Pre — P (H+/H2) = - {Gproduct - Greactans} /neF (11)

Pox — @ (H+/H2) = - |:Gproduct - Greactans:| /neF (12)

where go(H+ / Hz) is the NHE potential, and this value is 0 when the pH is 0. Gyoquc+ and
Greactans indicate the Gibbs free energy of products and reactants, respectively. Many of
these can be obtained according to the handbook [45]. n represents the number of holes
or electrons involved in the reduction or oxidization reaction. e is the elemental charge,
and F is the Faraday constant. Moreover, it has been confirmed that the free energy for
a compound in the proposed reaction can be approximated via its standard formation
enthalpy (AH) in the calculation [42,46], and the AH can be defined as follows:

AH = Egot — Zi n;E; (13)

where E;, represents the total energy of compound, #; is the number of species i atoms that
the compound contains, and E; represents the energy of pure element i in its conventional
reference phases.
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Here, some crystal cells are moderately adjusted to enable the structures to satisfy the
conditions for calculating AH, and the structures for calculating AH are plotted in Figure
54. Detailed information about formation enthalpy can be found in Table S3. It can be seen
the (012) and (210) facets have similar AH in our calculation. Also, the AH of (115) is similar
to that of (511), while (132) is similar to (231). Hence, the morphology, electronic structures,
band edge positions and formation enthalpy of the (012), (115) and (132) surfaces are similar
to the (210), (511) and (231) surfaces, respectively, and the former could be equivalent to
the latter. It can be inferred the results obtained for the (210), (511) and (231) surfaces could
be extrapolated for the (012), (115) and (132) surfaces, respectively. Therefore, the @re/ @ox
of (012), (115) and (132) are not calculated here.

The results of @re and @ox are shown in Figure 4a—d and Table S4. For the reduction
reaction, (210), (511), (121), and (231) have a higher ¢ than H* /H; potential, and thus
they would be corroded under light illumination. Therefore, they are not suitable for the
production of Hy as photocathodes. For the oxidation reaction without strongly oxidative
conditions, (210), (511) and (121) have a smaller @,y than O, /H,O potential, indicating that
these facets are easily corroded, while (231) is stable when the strongly oxidative conditions
do not exist. Under strongly oxidative conditions, all of the facets in our calculation are
unstable and would be oxidized, and this is the reason why the dissolution of BiVOy is
largely promoted by illumination as well as high bias potential [47,48]. Generally speaking,
a high applied bias potential can increase photocatalytic performance due to it enhancing
electron hole separation. However, the high applied bias potential probably induces
strongly oxidative conditions, which make the BiVO, photoanode unstable and not good
for photocatalysis. The competitive reactions of self-oxidation and water oxidation play an
important role for the stability of (231) under high applied potentials.

2 2
(a)y @10 cB (b)Y “[G11) cB

-1 / -1 /
< ] Py |
e —— | —y
L L
Yoo - — fo S
Z e z - ===
C O S
8 -7 8 -7
R 5
S 2 S 2
a a

3 3

VB VB
4 2 4 6 8 10 12 14 4 2 4 6 8 10 12 14
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-2 2
(c) (d)“[@3n cB
> >
L L
I I
z z
K4 K4
S S
5 5
S 2 S 2
a a

3 3

VB VB
4o 2 4 6 B 10 12 14 4o 2 4 6 B 10 12 14
pH value pH value

Figure 4. (a—d) The reduction and oxidation potentials of BiVO4 with different surfaces. The wine
lines stand for reactions. The green and olive lines represent oxidation reactions with and without
strongly oxidative conditions, respectively. The blue and magenta dashed lines are the H* /H, and
O, /H;0 potential, respectively. The yellow and cyan areas represent the conduction band (CB) and
the valence band (VB), respectively.
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3.5. Overpotential

In order to further analyze the photocatalytic activity, the OER performance of BiVO,
(210), (511), (121) and (231) is analyzed according to overpotential based on the CHE
model [35]. For OER, there are four steps, and each step contains one electron transfer. The
reaction of the OER path can be written as:

HyO(l) 4+ = OH +H' e~ (14)
OH =0 +H +e” (15)

O +H,0O(l) = OOH" + H' + e (16)
OOH = %+ Oy(g) +H + e~ (17)

where * refers to the active site of BiVO,, and OH’, 0" and OOH" represent the adsorbed
intermediates in the OER process. Theoretical overpotential (1) is related to the largest
Gibbs free energy change (AG) among the four steps:

n = —max[AGqyy, (AGy — AGepy), (AGoo — AGy), (492 — AGoy)] /e — 1.23 (18)

and the AG is the difference in Gibbs free energy between product and reactant, which can
be described as:
AG = AE + AEzpg — TAS (19)

in which the AE is the adsorption energy, and AEzpg and AS represent ZPE and entropy,
respectively. T is the temperature. At the potential of zero, the relationship of Gibbs free
energy meets the conditions:

G(H") + G(e™) = 1/2G(H,) (20)
G(H") + G(OH ™) = G(H,0) (21)
2G(H,) + G(O,) — 2G(H,0) = 4.92 eV (22)

The free energy of O; is calculated using Equation (22) rather than DFT due to the large
error in calculating O, in the VASP program. The structures of adsorbed intermediates,
including OH*, O* and OOH*, are shown in Figure S5. Detailed information regarding the
calculated total energy, ZPE and entropy is displayed in Table S5.

The results for overpotential are plotted in Figure 5. Considering that the actual
reaction is taking place in the solution, the implicit solvent model is adopted to correct
the free energy. The data for the overpotential of (010)/(110) come from our previous
calculation [40], calculated using the same parameter for this work. In order to highlight the
effect of solvent correction. The data without solvent correction are also calculated, and the
results are plotted in Figure S6. Clearly, the facets impact free energy significantly, whether
solvent correction is added or not. Total speaking, the solvent correction has a greater effect
on the Gibbs free energy change of OH* and OOH* compared with O*. With the solvent
correction, the overpotentials needed for (210), (511), (121) and (231) are 0.55, 0.58, 0.70
and 0.45 V, respectively. When the solvent correction is not considered, the overpotentials
are 0.65, 0.62, 0.73 and 0.56 V for (210), (511), (121) and (231), respectively. Therefore, the
solvation mainly affects the Gibbs free energy of the adsorbed intermediates OH* and
OOH* and further changes the overpotential in our calculated structures. According the
calculated overpotentials, the photocatalytic performance trend of these facets is predicted
to be (231) > (210) =~ (511) > (121) > (110) > (010). It should be noted that all of the high-
index facets show a lower overpotential than the conventional low-index facets (010) and
(110). Although the overpotentials are different for each structure with and without solvent
correction, the conclusions do not change. Therefore, these high-index facets might exhibit
a better photocatalytic performance than low-index facets (010) and (110) due to their lower
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overpotential. However, due to (210), (511) and (121) being easily corroded because of
self-oxidation in the OER process, only (231) is suitable for OER. In our calculation, (012),
(115) and (132) could thus be equivalent to (210), (511) and (121), respectively. It can be
inferred that (132)/(231) is the potential surface for OER. The (012)/(210), (115)/(511) and
(121) facets have better photocatalytic activity than (010) and (110), but they are easily be
corroded. Hence, they should be modulated appropriately in order to resist photocorrosion.
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Figure 5. The calculated OER free energy for BiVO,4 with different facets.

4. Conclusions

In summary, we carried out a comprehensive theoretical analysis on the roles of
crystal facets in OER using the BiVOj. It is found that facets could modulate the electronic
structures, band edge positions, stability and overpotential of BiVO, significantly. All of the
high-index facets in our calculation show an n-type behavior. The (132)/(231) facet creates
one peak near the middle of the band gap, while (012)/(210) creates one peak far below the
Fermi level. For (115)/(511), there are two peaks between the CBM and VBM. The band
edge position indicates that not all of the facets can produce O, without a biased voltage.
The facets could change the overpotential greatly, and the high-index surfaces exhibit a
better photocatalytic activity due to their lower overpotential in our calculated systems.
However, all of the high-index facets are unstable as a photoanode, except for (132)/(231)
when there are no strongly oxidative conditions. Under strong oxidative conditions, all
of the facets would be corroded. Generally speaking, (132)/(231) probably has strong
oxidation ability, high stability, and low overpotential, making it a potential surface for
OER. By controlling the exposed facets, OER performance could be improved to some
extent. Our calculation provides important insights into the roles of high-index facets on
BiVOy for OER.
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