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Abstract: Organic semiconductors (OSCs) have attracted considerable attention for many promising
applications, such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs),
and organic photovoltaics (OPVs). The present work introduced E143 food dye as a new nanos-
tructured organic semiconductor that has several advantages, such as low cost, easy fabrication,
biocompatibility, and unique physical properties. The material was characterized using a transmis-
sion electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric
analysis (TGA), and optical absorption spectroscopy. The study of X-ray diffraction (XRD) showed
that E143 dye has a monoclinic polycrystalline structure. Electrical and dielectric properties were
performed by impedance spectroscopy at frequencies (20 Hz–1 MHz) in the temperature range
(303–473 K). The values of interband transitions and activation energy recommended the application
of E143 dye as a new organic semiconductor material with promising stability, especially in the range
of hot climates such as KSA.

Keywords: E143 food dye; organic semiconductors; interband transitions; electrical conductivity;
dielectric relaxations

1. Introduction

Organic semiconductors (OSCs) are compounds with a complex aromatic molecular
structure and fixed color for many potential applications, such as photovoltaics (PVs),
electronics, photosensors, and nonlinear optics [1–3]. Unlike conventional semiconductors,
OSCs are solid crystalline materials whose building blocks are π-bonded molecules of
carbon and hydrogen atoms and sometimes other elements such as nitrogen, sulfur, and
oxygen. Numerous commercial products employing organic dyes as OSCs have appeared
in the market in different fields, such as down-shifting PV coatings [4], flat-screen dis-
plays [5,6], and many industrial processes [7]. A great interest has been devoted to organic
dyes to understand the physical processes that can occur in the devices based on these
materials [8]. Charge transport is one of the important processes where charge carriers
(electrons or holes) move through organic dyes or between organic dyes and other materials,
such as electrodes or semiconductors [9,10]. This process can affect the performance and
efficiency of devices based on organic dyes, such as dye-sensitized solar cells (DSSCs) [11],
organic field-effect transistors (OFETs) [12], and organic light-emitting diodes (OLEDs) [13].
Organic dyes are usually used as active OSCs for OLED used for digital displays in several
electronic products [14]. Some examples of OSCs for OLEDs are organometallic chelates
such as Alq3, fluorescent and phosphorescent dyes, and conjugated dendrimers. These
dyes can be incorporated into different layers of OLEDs, such as the hole injection layer
(HIL), the hole transport layer (HTL), and the emissive layer (EML) [15]. Recent studies
on the electrical conductivity of natural organic dyes have been performed to understand
their potential applications in electronic devices [16,17]. This study has important features
depending on the dye molecular structure, crystallinity, and temperature by which the
conduction mechanisms can be revealed [18,19]. The physical properties of organic dyes
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are currently an important motivation in many fields of applied research [20]. The develop-
ment of nanostructured organic dyes by aromatic rings, conjugated systems, heterocycles,
or metal complexes has opened the way to enhance the processing and physical properties
for different applications [21]. E143 (C37H34N2Na2O10S3) is a turquoise triarylmethane
food dye; this dye is a derivative from hydrocarbon, triphenylmethane, tertiary alcohol,
and triphenylcarbinol groups [22]. Figure 1 illustrates the chemical structure of E143 dye, it
is structurally like azo dyes substituted with a phenolic hydroxyl and two sulfonic acid
groups. However, the complex aromatic molecular structure of this dye make it more stable
and difficult to be biodegraded [23]. E143 food dye is usually supplied as a crystalline solid
in the form of dark green powder or granules with a metallic luster, and its brilliant color
is less likely to fade. E143 food dye is used in many potential applications such as food
industries [24–26], medical applications [27–29], and waste water treatment [30]. It is also
used as a quantitative stain for histones at alkaline PH after acid extraction of DNA as well
as protein stain in electrophoresis [31]. It is considered a safe stain for tumor detection as it
forms stable-colored complexes with histones [32]. The present work aims to introduce a
new line of the applications of E143 food dye as an organic semiconductor material, this is
achieved by studying the structure, interband transition, electrical conductivity, and the
dielectric properties to check whether it can be applied to organic semiconductor-based
devices.
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gravimetric analyzer. X-ray diffraction (XRD) patterns were recorded by x-ray 
diffractometer (SHIMADZUXRD-6100,Tokyo, Japan), using CuKα (λ = 1.5406 Å) 
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Figure 1. The chemical structure and physical form of E143 food dye (C37H34N2Na2O10S3).

2. Experimental Techniques

E143 food dye (certified by the Biological Stain Commission) was obtained from
Merck, Germany, with the molecular formula C37H34N2Na2O10S3 and a molecular weight
of 808.85 gm; this dye is usually supplied as a crystalline solid and stable for two years
at room temperature. TEM measurement was carried out using a transmission electron
microscope (JEOL JEM-1400, Tokyo, Japan). E143 dye powder was dissolved in ethanol
with a concentration of 10−4 wt% and then loaded on a carbon-coated copper grid. The
grid was masked by a protective film to avoid material damage by an electron beam.
Other precautions were taken, such as fast scanning and reduced beam current [33]. A
Fourier transform (FT-IR) spectrum was recorded by (NICOLET 6700 FT-IR, Waltham, MA,
USA) in the wavenumber range of 4000–400 cm−1. TGA for E143 was performed in the
temperature range 40–900 ◦C in a nitrogen atmosphere at a heating rate of 10 ◦C/min using
a thermogravimetric analyzer. X-ray diffraction (XRD) patterns were recorded by x-ray
diffractometer (SHIMADZUXRD-6100,Tokyo, Japan), using CuKα (λ = 1.5406 Å) radiation
over 2θ, ranging from 5 to 90◦ with a scan speed 2 deg/min. The optical absorption
spectrum 10−4 wt% E143 dye ethanol solution was recorded at room temperature in the
wavelength range (300–1100 nm) using a spectrophotometer type (JASCO, V-770, UV–VIS-
NIR, Tokyo, Japan). Direct (DC) and alternating current (AC) was measured; the dye
was compacted in the form of circular discs of area 0.0065 m2 and thickness (1.6 mm)
and heated in a shielded homemade furnace in the temperature range (298–383 K). DC
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electrical conductivity was determined from the resistance measured directly using a digital
electrometer (Keithley 616, Ohio, USA). The measurements of AC electrical conductivity
and dielectric properties were carried out in the frequency range of 100 Hz–1 MHz using
an impedance meter (Wayne Kerr-6440B RLC, MA, USA), with accuracy (±0.005%).

3. Results and Discussion
3.1. TEM Characterization

Figure 2 shows a TEM image of E143 food dye (C37H34N2Na2O10S3) dissolved in
ethanol, and it is clear from the scale bar that organic molecules have a cluster form
of nanosized structure. This property enables a structural diversity for easily tunable
photoelectronic properties via low-temperature chemical processing and adjustable band
gap of OSC applications [3,34]. It was reported that promising subwavelength structures
could manipulate the amplitude, phase, frequency, and polarization state of light for
various applications, such as nonlinear optics, surface photocatalysis, surface-enhanced
spectroscopy, and photodetection [35,36].
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Figure 2. TEM image of nanosized E143 food dye (C37H34N2Na2O10S3).

3.2. FT-IR Spectroscopy

FT-IR transmittance spectra of E143 food dye (C37H34N2Na2O10S3) in powder form
are demonstrated in Figure 3. The important characteristic bands, along with the main
functional groups, were determined. The broadband observed at high energy, located
around 3443.2 cm−1, can be assigned to the hydroxyl group (–OH). The vibrational modes
recorded at 3181.8 cm−1 can be assigned to the asymmetric stretching vibration of the
aliphatic C–H bond, whereas the band that appeared at 3064 cm−1 may be raised from the
vibrational resonance of the –CH3 bond. In addition, a very strong vibration mode that
appeared at 1575 cm−1 can be due to the aromatic ring C=C [37]. Generally, the functional
groups depicted by FT-IR spectra are well correlated to the chemical structure of the E143
compound.
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3.3. Thermogravimetric Analysis

Thermogravimetric (TGA) analysis is an important tool for examining the thermal
stability of different materials, especially organic materials, which usually have low melting
points due to their weak intermolecular forces. Figure 4 shows the TGA curve and the
derivative (DTGA) thermographs for E143 food dye (C37H34N2Na2O10S3) processed in
powder form. It was observed that TG curves exhibit three weight loss steps that occurred
in the range (30–100 ◦C), (100–250 ◦C), and (250–400 ◦C), respectively. In the first step, the
initial weight loss is usually attributed to the evaporation of superficial humidity and traces
of volatile constituents that are present in the dye. Subsequently, a further slight weight
loss occurred in the second step (100–250 ◦C), showing the thermal stability of the dye
in this temperature range. Finally, in the last step (260–400 ◦C), a large percentage of the
total mass was lost due to the decomposition of the dye molecules as a result of thermal
degradation [38]. The decomposition suggests that the TGA curve during heating can be
clearly observed in the diagram of DTGA. An inspection of the DTGA curve showed the
first phase transition at 82 ◦C followed by decomposition temperatures at 270 ◦C and the
melting point at 330 ◦C, respectively. These values are high due to the existence of many
carbon atoms compared to low molecular-weight organic dyes. This study endorses the
promising thermal stability of E143 and recommends its use in electrical and solar energy
applications in a wide temperature range.
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3.4. X-ray Diffraction

XRD spectra of E143 food dye (C37H34N2Na2O10S3) in powder form were recorded in
the 2θ range from 5 to 90◦; the characteristic peaks were found in the range of 10–35◦, as
shown in Figure 5. The maximum intensity is observed at 22.59◦ for the plane −412, while
the sharpest peaks appeared at 14.82◦, 16.84◦ and 17.30◦, and 22.54◦ corresponding to the
planes (011), (111), and (−102), respectively. All the diffraction peaks in the powder spectra
were indexed, and Miller indices (hkl) were determined with the aid of the CRYSFIRE
computer program. The refinement of the obtained lattice parameters via the experimental
and the calculated 2θ◦ was determined using the CHEKCELL program [39]. The obtained
hkl, observed and calculated 2θ with the difference between these values, are listed in
Table 1. It is observed that E143 has a polycrystalline nature with a monoclinic crystal
structure; the calculated lattice parameters are a = 11.5442 Å, b = 7.7879 Å, c = 10.5705 Å,
α = γ = 90◦, β = 118.21◦).
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Table 1. XRD identification of Miller indices for E143 food dye (C37H34N2Na2O10S3) in powder form.

hkl (obs.) 2θ◦ (calc.) 2θ◦ ∆(2θ◦)

−110 12.2675 12.2742 −0.0067

11 14.8228 14.8149 0.0079

201 16.18 16.1646 0.0154

111 16.84 16.8394 0.0006

−102 17.3 17.314 −0.014

−310 18.0375 18.0471 −0.0096

2 19.0089 19.0397 −0.0308

211 19.82 19.7968 0.0232

−112 20.76 20.7521 0.0079

−412 22.54 22.512 0.028

500 23.4 23.4093 −0.0093

202 24.94 24.9403 −0.0003

−510 26.1 26.0874 0.0126

−320 26.86 26.8613 −0.0013

411 27.28 27.2892 −0.0092

−213 28.09 28.0867 0.0033

−122 28.8 28.7862 0.0138

321 30.74 30.7513 −0.0113

−711 31.76 31.8061 −0.0461

−700 33.04 32.9997 0.0403

421 33.89 33.9008 −0.0108
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3.5. Optical Absorption

Figure 6 illustrates the room temperature optical absorption spectrum of E143 food
dye (C37H34N2Na2O10S3) dissolved in ethanol with a concentration of 10−4 wt%, and the
material exhibits a wide UV–vis absorption spectrum that covers the wavelength range
from 350 to 700 nm. The spectrum shows two major absorption bands; the first band can
be due to transitions from the ground state to the second excited state (S0→S2) around
437 nm, which is called the B band or the Soret band [40]. The second absorption band is
due to the transition from the ground state to the first excited state (S0→S1) around 618 nm,
which is called the Q band [40]. Both the B and Q bands are due to π-π* transitions and
can be understood by Gouterman four orbital model by looking at the far frontier orbitals
(HOMO and LOMO) [41]. The B band is usually located in the ultraviolet region, but it can
shift to the visible region depending on the structure and environment of the molecule [42].
For example, metal complexes of phthalocyanines and porphyrins can have B bands in the
visible region due to the interaction between the metal and the ring system [43].
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Interband transition is a process in which a photon can excite an electron from an
occupied state in the valence band to an unoccupied state in the conduction band of a
material, and this process involves the absorption of the photon and the creation of a hole
in the valence band [42]. Interband transitions can be either direct or indirect, depending
on whether the crystal momentum of the electron is conserved or not. The absorption
spectrum was replotted inset Figure 6 as a function of photon energy to determine the
interband energy transition, Eint, from HOMO to LUMO from the intercept at the energy
axis [44]. It is noted that the value of Eint is 1.885 eV lies in the range of semiconducting
materials (0.1–3 eV) [17]. This feature means that charge carriers can contribute to the
electrical conductivity due to the creation of an electron–hole upon photon absorption by
E143 dye molecules [45]. The efficiency and mechanism of interband transitions depend on
several factors, such as the type of band gap (direct or indirect), the presence of impurity
states or defects, the crystal structure and composition of the semiconductor, and the
temperature [46].
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3.6. DC Conductivity

The temperature effect on the DC electrical conductivity, σdc, was studied for circular
discs made of E143 food dye (C37H34N2Na2O10S3) at different temperatures in the range
(303–473 K) and plotted as shown in Figure 7. It was observed that σdc is thermally
activated up to a peak value located at 353 K and then decreased at higher temperatures.
This behavior suggested the existence of two different conduction mechanisms, the first
operates in the low-temperature range (303–353 K), and the second occurs in the range (353–
473 K). The behavior of DC conductivity can be described using the Arrhenius equation [16],

σdc = σ◦exp
(
−∆Eσ

kBT

)
(1)

where ∆Eσ is the activation energy for the electrical conduction, T is the absolute temper-
ature; kB is Boltzmann’s constant, and σo is the pre-exponential factor depending on the
density of states and the charge carrier mobility. The calculated values of the activation
energy of the two regions ∆Eσ1 and ∆Eσ2 were 0.10 eV and 0.24 eV, respectively. At region
(1), the electrical conductivity of the dye is increased by increasing temperature, with
similar behavior as observed in semiconductors. Additionally, the calculated activation
energy confirms that the dye is an organic semiconductor [47]. This behavior implies that
as the temperature is increased, the charge carriers gain higher mobility and overcome
the activation energy barrier and contribute to the electrical conduction. The observed
increase in the conduction can be associated with the increased mobility of electrons of the
organic compounds [48] and reveals the semiconducting behavior of E143 dye. At higher
Ctemperatures above 353 K, the values of σdc are decreased by increasing temperature
due to the phase changes as verified by TGA studies. This behavior may be ascribed to
the lattice disorder caused by thermal vibrations, which cause random motions of charge
carriers from one site to another and hinder the conduction process.
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3.7. AC Conductivity

The frequency dependent on AC electrical conductivity for semiconductor materials is
an important study to explain the conduction mechanism. Understanding the conduction
process gives valuable information about the defect levels present in the system and also
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helps to differentiate between localized and free band conduction. Regarding the localized
conduction, σac increases with frequency, while σac decreases with frequency in the free
band conduction. The total conductivity, σtotal at angular frequency ω, can be written
as [18,49],

σtotal = σdc + σac (2)

where σdc and σac are the DC and AC conductivities; it is assumed that σdc represents σac at
zero frequency. In many semiconductors and insulators, the frequency dependence of σac
can be expressed by [18,49],

σac(ω) = Aωs (3)

where A is a temperature-dependent constant; ω is the angular frequency; and s is the
frequency exponent, which controls the type of the conduction mechanism and is generally
smaller than or equal to unity. Figure 8 shows the frequency dependence of σac in the
frequency range from 30 Hz to 1 MHz and a temperature range of 303–473 K for circular
discs made of E143 food dye (C37H34N2Na2O10S3). It is noted that σac increases with
increasing frequency; this behavior is ascribed to the electron jumping (hopping and/or
tunneling) between electron donor atoms and empty sites localized in the band gap [50].
The values of the frequency exponent s were directly obtained by calculating the slopes of
Figure 8 at the studied temperature range. The temperature dependence of s is shown in
Figure 9; the values are decreased with increasing temperature to 353 K and then increased.
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Many models have been postulated in order to explain the AC conduction in semicon-
ductors based on the frequency and temperature dependence of the frequency exponent s.
Quantum Mechanical Tunneling (QMT) [51] and Correlated Barrier Hopping (CBH) are
the most well-known models used for this issue [19,52]. Regarding these models, three
types of charge carriers are distinguished: electrons, small polarons, and large polarons.
In the CBH model, the charge carriers jump over the potential barrier between two defect
states over the potential barrier separating them. In the temperature range T < 383 K, the
exponent s is decreased with temperature obeying the CBH model according to [53],

1-s = 6kBT/Wm (4)

where Wm is the carrier in the localized states. The calculated value of Wm was 0.34 eV,
as obtained by calculating the slope of the 1-s versus T relation plotted in Figure 9. It is
obviously noted from the extrapolation of the 1-s plot that the value of s approaches one as
T tends to zero K, so the CBH model is the dominant conduction mechanism at T < 353 K.
On the other hand, at temperature values T > 353 K, the value of s increases by raising the
temperature signifying the typical behavior of the QMT model. In the non-overlapping
small polaron tunneling (NSPT) model, s is only temperature dependent as it slightly
increases with increasing temperature. Thus NSPT model cannot be applied to determine
the conduction mechanisms for the obtained results. According to the overlapping large
polaron tunneling (OLPT) model, the value of s is decreased by increasing temperature
until reaching a minimum value at a given temperature and then continues to increase by
increasing temperature [54]. This model discussed σac predicted from the QMT model in
which tunneling of polarons is the dominant mechanism along with considerable overlap
of polaron distortion clouds. For large polarons, the spatial extent is large compared with
the inter-atomic spacing; thus, the potential wells of neighboring sites are overlapped. As
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a result of the dominant Coulombic interaction, the polaron hopping energy is reduced.
According to the OLPT model, the frequency exponent “s” can be evaluated by [55],

s = 1−
8αRω + 6WH0rp/RωkBT(

2αRω +
6WH0rp
RωkBT

)2 (5)

where Rω is the hopping length, rp is the polaron radius, and WH0 is the hopping polaron
energy assumed to be constant for all sites given by [55],

WH0 = e2/4εp rp (6)

Thus, the OLPT model suggests that the frequency exponent s should be temperature
and frequency dependent and decreases from unity by increasing temperature. For large
values of 2αrp, s is decreased, tending to the value predicted by the QMT model. On the
other hand, for the small values of 2αrp, s exhibits a minimum value at a certain temperature
and then increase by increasing temperature in a similar way to the case of small-polarons
according to the QMT model. OLPT conduction mechanism suggests the application of
E143 food dye as a hole injection layer (HIL) for OLED applications since large polarons
can tunnel through the potential barriers created by overlapping lattice distortions [56,57].
This can be ascribed to the fact that large polarons can affect the charge injection and
transport in OLEDs by modifying the energy barriers and tunneling rates at the interfaces
between different organic layers [58,59]. The temperature dependence of σac(ω) is shown in
Figure 10 at different frequencies. It is clear that σac(ω) is thermally activated up to a peak
value at a certain temperature and then continues to decrease by increasing temperature
in agreement with the behavior observed for σdc results. This peak is shifted to higher
temperatures by increasing the frequency of the applied field due to the enhancement of
carrier jumping. This can be ascribed to the increase in carrier mobility according to the
thermal activation jumping model.
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The temperature dependence of σac(ω) is controlled by the thermal activation process
according to the Arrhenius equation [60],

σac(ω) = σoexp
(
−∆E(ω)

kBT

)
(7)

where ∆E(ω) is the activation energy for the electrical conduction. The AC activation energy
was calculated for all the investigated frequencies; the frequency dependence of ∆E(ω)
for E143 dye is shown in Figure 11. It is clearly noted that ∆E(ω) decreases by increasing
frequency; such a decrease can be due to the contribution of the applied frequency to the
conduction mechanism. This result suggests that hopping conduction is the dominant
mechanism. It was observed that the values of ∆E(ω) are decreased by increasing frequency;
this can be due to the fact that the increase in the frequency improves the electronic jumps
between the localized states.
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3.8. Dielectric Properties

Figure 12 shows the effect of frequency on the loss factor tan δ for E143 food dye
(C37H34N2Na2O10S3). It is noted that the values of tanδ are high at low frequencies; this
can be due to the Ionian conduction loss besides the loss of the electronic polarization.
However, in the high-frequency region, there is one mechanism that controls the process,
the oscillation in the Ionian dielectric loss [61]. The temperature dependence of tanδ is
illustrated in Figure 13 for E143 food dye (C37H34N2Na2O10S3) at selected frequencies. It
was noted that all the plots have one broad maximum, which is attenuated and shifted
towards higher frequencies by increasing temperature. This attenuation can be due to
the phonon dipole interaction, which leads to a decrease in the energy transported to the
dielectric medium. This behavior is characteristic of the dielectric relaxations caused by the
localized movement of the segments in the dye molecules.
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The study of dielectric relaxation is very important to understand the origin of dielec-
tric losses as a potential tool for the determination of the structure and defects existing in
solids. The complex dielectric function for the investigated organic dye is expressed by the
Debye equation [62],

ε∗(ω) = ε′(ω) + iε′′(ω) (8)

where (ω) and (ω) are the real and imaginary parts of the dielectric constant, respectively.
The values of (ω) and (ω) were determined from the measurements of the capacitance and
loss tangent tanδ under different temperatures and frequencies. Figures 14 and 15 show the
frequency dependence of (ω) and (ω) for E143 food dye (C37H34N2Na2O10S3) recorded at
different temperatures. It was observed that (ω) is decreased by increasing frequency; this
behavior can be explained by the dielectric polarization mechanisms of materials, which
usually occur as interfacial, dipolar, ionic, and electronic polarization [63]. Electronic and
ionic polarizability is active in the high-frequency range, while the other two mechanisms
occur at low frequencies [64]. The dielectric molecules consist of negative charges centered
around the positive charges located at the center of the molecule. When these molecules
are subjected to an external electric field, the positive charges are biased toward the field,
while the negative charges are biased to the opposite direction. As a result, the positive
charge center is no longer applicable with the negatively charged center but separated by
a small distance, causing the emergence of electrical dipoles, then the molecules become
polarized and gain dipole moment. The effect of interfacial polarization appears at low
frequencies and vanishes at higher frequencies, while the electronic and ionic polarizations
come to be pronounced [65]. The decrease in (ω) with frequency may be ascribed to the fact
that the migration of dipoles is the main source of the dielectric loss [66]. Accordingly, low
and moderate frequencies are categorized by high values of (ω) due to the occurrence of
carrier jumping in addition to polarization. On the other hand, at higher frequency values,
the dipole vibrations may be the only source of dielectric loss, so (ω) decreases at high
frequencies [66]. The obtained results of (ω) can be explained on the basis of the theory of
hopping of the charge carriers over the potential barrier between defect sites, as suggested
by Elliot [67].

The temperature dependence of (ω) and (ω) for E143 food dye (C37H34N2Na2O10S3)
was studied at different frequencies and plotted in Figures 16 and 17. The increase in (ω)
by increasing temperature can be due to the increase in polarization caused by the thermal
motion of electrons [68]. Since the dipoles cannot orient themselves at low temperatures,
their orientation is strongly facilitated by heating the material, and the value of polarization
is increased [69]. It was also observed that the trend of (ω) is a typical behavior for a
polar dielectric as the value of (ω) increases up to a peak value at a certain temperature
and then drops. This drop in can be ascribed to the intensified thermal vibrations of the
dye molecules, which disturb the orderliness of the oriented dipoles [70,71]; a similar
trend is applicable for the dependence of the dielectric loss (ω) with temperature. The
dielectric properties of E143 food dye have screened a new OSC material with known
energy alignment relaxation spectra and dielectric strength, which are directly related to
the device stability and lifetime [72,73].
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4. Conclusions

Based on the obtained results, E143 food dye (C37H34N2Na2O10S3) can be considered
as an organic semiconductor material as confirmed by the measured value of room tem-
perature of interband transition (Eint = 1.885 eV), DC conductivity (σdc = 3 × 10−6 S/m),
and activation energy (0.1 eV). This result has motivated our group to conduct future
intensive studies on E143 dye (C37H34N2Na2O10S3) thin films for bandgap engineering and
mobility optimization for OSC devices. The conduction mechanism has been explained on
the basis of the OLPT model, which suggested the application of E143 food dye as a hole
injection layer (HIL) for OLED applications. The dielectric properties were explicated on
the basis of the Debye model for the frequency and temperature dependence for the typical
semiconductor material. This study is significant as dielectric relaxations can strongly affect
the performance and stability of OSC devices, such as transistors, capacitors, sensors, etc.
Moreover, TGA measurements revealed that E143 food dye (C37H34N2Na2O10S3) exhibits
excellent thermal stability over a wide range of climatic temperatures. E143 food dye
(C37H34N2Na2O10S3) is recommended to be considered a sustainable OSC material for the
future of green energy in hot countries like KSA.
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