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Abstract: In this work, within the framework of a unified model for the discharge gap and electrodes,
a comparative numerical analysis was carried out on the effect of evaporation of graphite anode
material on the characteristics of the arc discharge in helium and argon. The effect of changing the
plasma-forming ion, in which the ion of evaporated atomic carbon becomes the dominant ion, is
demonstrated. For an arc discharge in helium, this effect is accompanied by a jump-like change in the
dependence of the current density on voltage (CVC), and smoothly for a discharge in argon. With
regard to the dynamics of the ignition of an arc discharge, it is shown that during the transition from
glow discharge to arc in helium, the discharge parameters are also accompanied by an abrupt change,
while in argon, this transition is smooth. This is due to the fact that the ionization potentials, as well
as the ionization cross sections, differ significantly for helium and carbon, and are close in value
for helium and argon. For various points on the CVC, the density distributions of the charged and
neutral particles of an inert gas and evaporated gases are presented.

Keywords: arc discharge; carbon; unified model; extended fluid model

1. Introduction

Nanotechnologies are a rapidly developing area of modern science. The goal of
modern nanotechnologies is a comprehensive study of the processes and products of
the synthesis of nanostructures and nanostructured materials with controlled functional
properties [1–13]. Plasma synthesis of nanostructures has great potential compared to
traditional (CVD, high temperature and high pressure, liquid phase, etc.) methods of
obtaining nanoparticles, since it provides high throughput, short nanostructure growth
time, optimized material properties, and low cost (especially in case of synthesis in a
gas discharge plasma at atmospheric pressure). These features of plasma synthesis are
due to the possibility of supporting the production of nanostructures with a higher yield
both in the plasma volume and at its boundaries (walls limiting the plasma volume,
open discharge boundaries, “plasma-gas”), and also often at high parameter gradients
(temperature, concentrations, electric fields) of the working medium and higher chemical
purity, compared, for example, with CVD [3]. Moreover, the production of nanostructures
using non-equilibrium plasma, in which plasma particles, including ions, electrons, excited
and neutral particles, and radicals, are at different temperatures, is especially attractive,
since it provides non-thermal synthesis of a wide range of nanomaterials, both with high
and low melting temperatures [1–3,6–8,10–13], and at low and high pressures.

At present, various types of discharges are used in the problems of plasma synthe-
sis of nanostructures and nanomaterials [10–13]. At the same time, an arc discharge at
atmospheric pressure in inert gases stands out among other methods for the synthesis
of nanostructures due to the high productivity, wide variety and high quality of the ob-
tained nanomaterials, mainly core–shell nanoparticles, monolayers of transition metal
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dichalcogenides, and carbon nanostructures such as graphene, carbon nanotubes, and
nanodiamonds [14–18]. The unique capabilities of the electric arc method are due to
its flexibility and a wide range of plasma parameters. In particular, starting with the
pioneering work of Iijima on the synthesis of carbon nanotubes using an atmospheric
pressure arc discharge [19], the production of nanomaterials such as boron nitride nan-
otubes (BNNT) [20] and molybdenum disulfide nanoparticles [21] has contributed to the
development of plasma nanotechnologies.

At present, plasma nanotechnologies have acquired an interdisciplinary character, and
are used in the process of creating nanostructures and nanomaterials for optoelectronic
applications [22–25], smart materials [26,27], medicine [28,29], and the modeling of nano-
materials [30]. On the other hand, the problem associated with the complete control of the
quality and reproducibility of the synthesis of low-dimensional materials remains unsolved.
Fundamental questions related to the optimal values of plasma parameters under the
conditions of nanoparticle synthesis, plasma diagnostics, etc., also remain unresolved. On
the other hand, the development of the existing self-consistent physical and mathematical
models of the arc discharge and the performance of full-scale numerical experiments have
already played a decisive role in understanding the effect of experimental parameters on
the kinetics of nanoparticle growth [31]. To date, there are various models of arc discharges
in 0D [32], 1D and 2D formulations in the framework of LTE and non-LTE approximations.
For quite a long time, it was the LTE approximation that was used in modeling arc dis-
charges, which is still used in scientific research [33–37]. On the other hand, a series of
experimental and theoretical works showed a deviation from the local thermodynamic
equilibrium [38–40] at the periphery of the arc discharge and in the near-electrode regions.
In this regard, completely nonequilibrium models of the arc discharge that take into account
near-electrode effects are being developed [41–47].

Fully nonequilibrium models are correct not only for the arc column in its central
part, but also for the plasma periphery and near-electrode regions [41,42]. Regions with
a predominance of space charge (near-cathode and near-anode layers) are considered
using local (0D) models, self-consistently related to arc modeling, on the one hand, and to
modeling electrodes with an arc [43–46]. A review of studies on nonequilibrium arc plasma
and a comparison of two-temperature models and completely nonequilibrium models are
given in [47].

At present, self-consistent models of arc discharges have been formulated, which
describe, in a unified way, the processes occurring in the discharge gap and in electrodes
and take into account conjugated effects [48–57]. Such models are presented both in one-
dimensional and two-dimensional formulations. Arc discharges with a contracted and
diffuse current spot were reproduced [48]. To develop these models, it is necessary to take
into account the ablation of electrodes (in particular, the anode) and the deposition on the
surface (cathode) of the evaporated material.

The construction of such a model assumes both fundamental and applied interest.
In particular, such models from one side will help to fully describe the non-equilibrium
processes occurring in an arc discharge, which are often ignored in the framework of
LTE approximations. On the other hand, this model will serve as a tool for predicting
plasma parameters under the conditions of synthesis of carbon nanostructures, as well
as for optimizing modern compact plasma-chemical reactors for the synthesis of carbon
nanostructures [17].

Therefore, the aim of the presented work is to formulate a self-consistent physical and
mathematical model of an arc discharge in inert gases with graphite electrodes, which takes
into account the ablation of the electrodes and the evaporation of the electrode material
into the discharge gap. It aims to carry out a comparative analysis of the parameters of
an arc discharge in inert gases (argon and helium), taking into account the evaporation of
carbon particles into the discharge gap.
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2. Model Description
2.1. Model Equations and Boundary Conditions

To determine the distributions of the spatial characteristics of the DC discharge, a
self-consistent model based on the extended fluid description of plasma was formulated,
which is unified from the point of view of describing the discharge gap and electrodes.
It includes k densities’ balance equations for all types of considered particles (neutral,
excited particles, electrons and ions), nk of the buffer gas (with index “buf”), as well as gas
from particles evaporated from the surface of the electrodes (with index “C”), the balance
equation electron energy density nε, and Poisson’s equation for the electric potential ϕ.
To describe gas heating, two equations for the energy balance of heavy plasma particles
are formulated: for helium or argon, and for particles of evaporated gas. In addition, the
model includes heat conduction equations for the cathode and anode. Thus, the system of
equations takes the following form:

∂nk
∂t

+∇ · Γk =
Nr

∑
j=1

(
aR

kj − aL
kj

)
k j

Ns

∏
k=1

n
νL

kj
k , (1)

∂nε

∂t
+∇ ·Qε = −eE · Γe −Qel,e−buf −Qel,e−C −Qin, (2)

∂

∂t

(
∑

k 6=e,C
nkCvkTbuf

)
+∇ · qbuf = ∑

k 6=e,C
ezkΓk · E + Qel,e−buf −Qel,buf−C, (3)

∂

∂t

(
∑

k 6=e,buf
nkCvkTC

)
+∇ · qC = ∑

k 6=e,buf
ezkΓk · E+ Qel,e−C + Qel,buf−C + Qchem + Qrec, (4)

∆ϕ = − e
ε0

(
N

∑
k=1

zknk − ne

)
, E = −∇ϕ, (5)

ρc,acp c,a
∂Tc,a

∂t
−∇ · (Λc,a∇Tc,a) = Qc,a. (6)

Here, the right side of Equation (1) describes the change in the number of particles of
type k due to the reaction j, where aL

kj and aR
kj are stoichiometric coefficients; it is determined

through the reaction constant. The summation is carried out over all reactions j occurring
in the discharge, and the product is over all types of particles participating in the reaction.
E is the electric field strength, the distribution of which is determined from the connection
with the potential determined from the Poisson Equation (5), e is the charge of the electron,
and ε0 is the dielectric constant; zk is the dimensionless charge number of a particle of type
k. The electron energy density is defined as nε = neε, where ne is the density of electrons,
ε is the average energy of the entire ensemble of electrons ne. The electron temperature
Te = 2/3ε is understood as 2/3 of the average energy of the entire ensemble. The density
fluxes of charged, excited, and neutral particles Γk in Equation (1), where k = e, i, n, as
well as the electron energy density flux Qε in Equation (2), respectively, are written in the
diffusion–drift approximation

Γk = −Dk∇nk + zkµkEsnk, (7)

Γn = −Dn∇nn , (8)

Qε = −Dε∇nε − µεEnε , (9)
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where De, Di are the diffusion coefficients of electrons and ions, Dn are the diffusion
coefficients of excited and neutral plasma particles, µe, µi are the mobility of charged
particles in an electric field, µε is the electron energy mobility, and Dε is the electron energy
diffusion coefficient.

The first terms on the right side of (2)–(4) describe the Joule heating of electrons,
heavy buffer gas particles and heavy carbon gas particles, respectively. The terms Qel,e−buf
and Qel,e−C in (2) describe the energy exchange during elastic collisions of electrons with
neutral gas particles. The last term on the right side of (2) Qin = ∑j ∆ε jRj describes the
change in energy due to inelastic collisions of electrons and heavy plasma particles, and is
defined as an inelastic process involving an electron Rj = kj(Te)nenn, where nn is the kind of
neutral particle.

The fluxes included in the energy balance equations for the heavy plasma component
in (3) and (4) were written in the following form:

q = − ∑
k 6=e,C

Λk∇T + ∑
k 6=e,C

CpkT Γk, (10)

qC = −ΛC∇Tvap + ∑
k 6=e,buf

CpkTC Γk. (11)

Here, Λ and ΛC are the thermal conductivities of the buffer gas and the gas of particles
of the evaporated material (carbon), whose values were determined as functions of temper-
ature based on the data in [58]. The second terms on the right-hand sides in Equations (10)
and (11) correspond to the energy density fluxes due to the diffusion of molecules. Cpk is
the heat capacity of a gas (buffer or carbon) at constant pressure.

For carbon particles evaporated from graphite electrodes, the terms Qchem and Qrec
were additionally taken into account. The term in (4) Qchem describes the energy lost or
gained by carbon gas as a result of exothermic and endothermic chemical reactions, and
Qrec refers to the energy gained as a result of dissociative recombination reactions.

In Equation (6), the term Qc,a on the right side is the source of heating of the elec-
trodes due to resistive losses, which is calculated from the continuity equation for the
current density:

∇ · J = 0 (12)

where J = σc,aEc,a is the current density, and σc,a is the conductivity of the metal electrode.
The electric field is expressed in terms of the potential of the electric field in the electrode
Ec,a = −∇ϕc,a. Thus, Qc,a = Jc,a · Ec,a.

In numerical calculations, a one-dimensional computational domain was considered;
this is similar to that considered by us in our previous work [49]. The boundary conditions
for Equations (1)–(6) were written in a similar manner to [49]. However, when the electrode
surface reaches the melting temperature, a phase transition and evaporation of the electrode
material into the gas discharge gap begins. In this regard, it is necessary to take into account
additional factors. Thus, for Equation (6), the boundary condition on the cathode surface
from the side of the plasma region (x = 0) was written as follows

n ·Qc = n ·
(

∑
i

Qi + Qevp + Qdep

)
(13)

Here, the first term on the right-hand side is described in detail in [48,49]. It includes
the energy flux density transferred by ions to the cathode, the heat flux density transferred
by the heated gas (plasma) from the near-cathode region due to thermal conductivity,
the heat flux density carried away from the cathode surface due to the energy density of
electrons leaving the cathode as a result of secondary electron emission and thermionic
emission, and the energy flux density transferred by reverse electrons to the cathode. The
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second term on the right takes into account the density of the energy flux carried away due
to the evaporation of atoms and molecules from the cathode surface:

n ·Qevp = −L∑ Γimi, (14)

where Γi is the flux of atoms and molecules of carbon, L is the heat of the vaporization
of graphite. The third term in (13) takes into account the density of the energy flux to
the cathode due to the deposition of carbon particles on the cathode surface from the
discharge zone:

n ·Qdep = L∑ Φimi, (15)

where Φi is the flux of carbon atoms and molecules from the plasma to the electrode surface.
The boundary condition for Equation (6) on the anode surface from the side of the

plasma region (x = L) was written similarly to (13):

n ·Qa = n ·
(

∑
i

Qi + Qevp

)
. (16)

In this case, the first term on the right takes into account the energy fluxes to the anode
due to thermal conductivity, due to the energy transfer by electrons to the anode, and the
energy transfer by ions to the anode in the case of a negative anode potential drop. The
second term on the right side of (16) is written similarly to (14).

For the continuity of Equation (1), written for particles evaporated from the electrode
surface (for atomic and molecular particles of carbon), the boundary condition for the
flow must take into account the evaporation of the material. It was assumed that near the
electrode surface, there is a Knudsen layer with vapor pressure psat,C. The mass transfer
of the electrode material from the solid phase to the gaseous phase is described using the
Hertz–Knudsen–Langmuir equation [59,60]:

Γvap =
3

∑
i=1

(psat,Ci(T)− pCi)

√
MCi

2πkBT
, (17)

where pCi = nCikT are the partial pressures of atomic and molecular (dimers and trimers)
carbon particles in the arc plasma for graphite electrodes; Mi is the mass of an atom
and carbon molecule, and index i takes values from 1 to 3 for graphite electrodes. The
vapor pressure of atomic and molecular particles of carbon near the electrode surface was
determined using the following relations:

log10(Gpsat,i) = −
Ai

Tc,a
+ Bi, (18)

where p1, p2, p3 are the partial pressures of C, C2, C3, vapors, and TC is the temperature of
the electrode material. The coefficients A1 = 37277.3, B1 = 8.143, A2 = 42332.6, B2 = 9.693,
A3 = 40296.0, B3 = 9.811 for carbon were taken from [61,62].

It should be noted that graphite is one of the refractory elements. A fairly large number
of works have been devoted to the study of its thermophysical parameters, including the
melting and evaporation temperatures [63,64]. In addition, it should be noted that the
temperature range in which it can exist in the liquid state is small; there are also works
in which it is assumed that graphite sublimates [64]. As experiments and preliminary
numerical calculations show, in the arc mode, intense heating is observed on the anode
surface. It is the anode in the arc discharge mode that experiences a phase transition; we
can observe its erosion and a reduction in longitudinal dimensions due to evaporation
from the surface into the gas-discharge gap [65]. To account for the phase transition, the
apparent heat capacity method was used. According to this method, a phase transition
function α(T) is introduced to ensure a smooth transition between the solid and liquid
phases in a given interval ∆T near the phase transition temperature Tm. The heat capacity
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of the two phases in this interval is expressed as Cp = Cp,s(1− α) + Cp,lα (Figure 1). For a
solid phase, it is assumed α = 0, and for a liquid, it is assumed α = 1. The latent heat of
melting H f is included as an additional term in Cp, i.e.,

Cp = Cp,s(1− α) + Cp,lα + H f
dα

dt
(19)
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2.2. Elementary Processes in Helium Plasma

To describe the elementary processes in a discharge in helium, the works of four
teams of researchers were taken as the basis: the works of Donko Z. et al. [66,67] and
Bogdanov E.A. et al. [68], who were devoted to various options for the fluid modeling of
microdischarges in helium, alongside the work of the scientific group of V. M. Donnelly [69],
as well as the work of R. Deloche et al. [70]. We considered three kinds of excited helium
atoms: metastable triplet and singlet states, andone effective excited level (with the principal
quantum number n = 3), two kinds of positive ions (see Table 1), and one kind of excited
(metastable state) of molecular helium. A set of plasma-chemical reactions is presented in
Table 2.

Table 1. Considered states of the helium atom in an arc discharge.

№ Symbol Energy (eV) Stat. Weight Effective Level Components

1 He 0 1 11S0
2 He(T) 19.8196 3 2 3S1
3 He(S) 20.6157 1 2 1S0

4 He* 23.02 36
3 3S0, 3 1S1, 3 3P0

2 , 3 3P0
1, 3 3P0

0,
3 3D3, 3 3D2, 3 3D1, 3 1D2, 3 1P0

1 ,
5 He+ 24.5874 1 He+

6 He2
+ 22.24 1 He2

+

7 He2* 17.97 3 He2*

2.3. Elementary Processes in Argon Plasma

In our previous studies, as well as studies carried out in [48,51,54,55], we showed that
in the arc mode, to describe the discharge in argon, we can restrict ourselves to a reduced
set of elementary processes. Therefore, in describing the discharge in argon, we used the
elementary processes from [54,55]. In addition to electrons, the following states: e, Ar+,
Ar2

+, Ar*, Ar2*.
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Table 2. Set of elementary processes in helium plasma.

R Reaction
Reaction Constant kj,

m3/s, or m6/s
Description

1 e– + He→ e– + He f0(σ, w) [67–72] Elastic collision
2 e– + He→ e– + He(T) f0(σ, w) [67–72] Excitation
3 e– + He→ e– + He(S) f0(σ, w) [67–72] Excitation
4 e– + He→ e– + He∗ f0(σ, w) [67–72] Excitation
5 e– + He→ 2e– + He+ f0(σ, w) [67–72] Direct ionization
6 e– + He(T)→ 2e– + He+ f0(σ, w) [67–72] Stepwise ionization
7 e– + He(S)→ 2e– + He+ f0(σ, w) [67–72] Stepwise ionization
8 e– + He(T)→ He + e– f0(σ, w) [67–72] Superelastic collisions
9 e– + He(S)→ He + e– f0(σ, w) [67–72] Superelastic collisions

10 He(S) + e→ He(T) + e f0(σ, w) [67–72] Mixing level
11 He(S) + He→ 2He 8 · 10−21 [67,68] Deexcitation
12 He∗ + He→ He+2 + 2e– 8 · 10−17 [67,68] Associative ionization
13 He(T) + 2He→ He∗2 + He 8.1 · 10−48T exp

(
− 650

T

)
[69,70] Conversion to excimers

14 He(T) + He(T)
ξ→ He+ + He + e–

1−ξ→ He+2 + e–
2.9 · 10−15

(
T

300

)0.5
[69,70] Penning ionization

15 He(S) + He(S)
ξ→ He+ + He + e–

1−ξ→ He+2 + e–
2.9 · 10−15

(
T

300

)0.5
[69,70] Penning ionization

16 He(T) + He(S)
ξ→ He+ + He + e–

1−ξ→ He+2 + e–
2.9 · 10−15

(
T

300

)0.5
[69,70] Penning ionization

17 He(T) + He∗2
ξ→ He+ + 2He + e–

1−ξ→ He+2 + He + e–
2.9 · 10−15

(
T

300

)0.5
[69,70] Penning ionization

18 He(S) + He∗2
ξ→ He+ + 2He + e–

1−ξ→ He+2 + He + e–
2.9 · 10−15

(
T

300

)0.5
[69,70] Penning ionization

19 He∗2 + He∗2
ξ→ He+ + 3He + e–

1−ξ→ He+2 + He + e–
2.9 · 10−15

(
T

300

)0.5
[69,70] Penning ionization

20 He+ + 2He→ He+2 + He 1.4 · 10−43(T/300)−0.6 [69,70] Ion conversion
21 2e– + He+ → He∗∗ + e– 6 · 10−32(Te/T)−4.0±0.5 [69,70] Three body recombination
22 e– + He+ + He→ He∗ + He 1 · 10−38(Te/T)−2.0 [69,70] Three body recombination
23 e– + He+2 + He→ He∗2 + He 5 · 10−39(Te/T)−1 [69,70] Three body recombination
24 e– + He+2 → He∗2 5 · 10−15(Te/T)−1 [69,70] Dissociative recombination
25 2e– + He+2 → He∗ + He + e– 4 · 10−32(Te/T)−4.0±0.5 [69,70] Dissociative recombination

2.4. Kinetics of Elementary Processes Involving Atoms and Molecules of Carbon

Next, we consider a plasma-chemical model with the participation of atomic and
molecular particles of carbon entering the gas-discharge gap during the evaporation of
graphite electrodes. The considered states of carbon particles are presented in Table 3. The
species in the model include atomic, diatomic, and triatomic carbon in ground states (C, C2,
C3), excited states (C∗, C∗2 , C∗3), and ionized states (C+, C+

2 , C+
3 ).

A complete set of plasma-chemical reactions involving atomic and molecular particles
of carbon is presented in Table 4. Previously, this set was considered in [52,62]. In addition,
electron dissociation [73] was taken into account, as well as Penning ionization of carbon
atoms and molecules in a discharge with helium.
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Table 3. Set of considered states of atoms and molecules of carbon in an arc discharge.

№ Symbol Energy (eV) Comment

1 C 0 -
2 C∗ 8.864 2p3p(3P)
3 C+ 11.26 -
4 C2 0 -
5 C∗2 2.394 C∗2 → C2 (Swan bands)
6 C+

2 11.79 -
7 C3 0 -
8 C∗3 3.062 C∗3 → C3 (Swing bands)
9 C+

3 12.00 -

Table 4. Set of elementary processes in arc plasma involving carbon atoms and molecules.

R Reaction Reaction Constant kj * Description

1 C + e→ C + e f0(σ, w) [72] Elastic Collision
2 C2+e→ C2+e f0(σ, w) [74] Elastic Collision
3 C3+e→ C3+e f0(σ, w) [74] Elastic Collision
4 C + e→ C+ + 2e f0(σ, w) f0(σ, w) [74] Direct ionization
5 C+e→ C∗ + e f0(σ, w) [52,62] Excitation
6 C∗ + e→ C + e f0(σ, w) [52,62] Deexcitation
7 C∗ + e→ C+ + e + e f0(σ, w) [52,62] Stepwise ionization
8 C2 + e→ C+

2 + 2e f0(σ, w) [52,62] Direct ionization
9 C2 + e→ C∗2 + e f0(σ, w) [52,62] Excitation

10 C∗2 + e→ C2 + e f0(σ, w) [52,62] Deexcitation
11 C∗2 + e→ C+

2 + 2e f0(σ, w) [52,62] Stepwise ionization
12 C3 + e→ C+

3 + 2e f0(σ, w) [52,62] Direct ionization
13 C3 + e→ C∗3 + e f0(σ, w) [52,62] Excitation
14 C∗3 + e→ C3 + e f0(σ, w) [52,62] Deexcitation
15 C∗3 + e→ C+

3 + 2e f0(σ, w) [52,62] Stepwise ionization
16 C2+e→ e + 2C f0(σ, w) Electron dissociation

17 C3+C→ C2 + C2 1.7× 109T1.5 exp
(
−1.958× 104/T

)
[52,62] Chemical reactions between

heavy species
18 C2 + C2 → C3+C 5× 1011T0.5 exp

(
−3.02× 103/T

)
[52,62] Chemical reactions between

heavy species
19 C2 + M→ C + C + M 4.5× 1018T−1 exp

(
−7.093× 104/T

)
[52,62] Chemical reactions between

heavy species
20 C + C + M→ C2 + M 1× 1016T−0.5 [52,62] Chemical reactions between

heavy species
21 C3+M→ C + C2 + M 1.6× 1016T exp

(
−8.748× 104/T

)
[52,62] Chemical reactions between

heavy species
22 C + C2 + M→ C3+M 1× 1016T−0.5 [52,62] Chemical reactions between

heavy species
23 C3 + C+ → C+

2 + C2 1.7× 109T1.5 exp
(
−1.958× 104/T

)
[52,62] Dissociation involving ions

24 C+
2 + C2 → C3 + C+ 5× 1011T0.5 exp

(
−3.02× 103/T

)
[52,62] Association involving ions

25 C+
3 + C→ C+

2 + C2 4.5× 1018T−1 exp
(
−7.093× 104/T

)
[52,62] Dissociation involving ions

26 C+
2 + C2 → C+

3 + C 1× 1016T−0.5 [52,62] Association involving ions
27 C+

2 +M→ C+ + C + M 1.6× 1016T exp
(
−8.748× 104/T

)
[52,62] Dissociation involving ions

28 C+ + C + M→ C+
2 +M 1× 1016T−0.5 [52,62] Association involving ions

29 C+
3 + M→ C+ + C2 + M 1.6× 1016T exp

(
−8.748× 104/T

)
[52,62] Dissociation involving ions

30 C+ + C2 + M→ C+
3 + M 1× 1016T−0.5 [52,62] Association involving ions

31 C+
3 + M→ C+C+

2 + M 1.6× 1016T exp
(
−8.748× 104/T

)
[52,62] Dissociation involving ions

32 C+C+
2 + M→ C+

3 + M 1× 1016T−0.5 [52,62] Association involving ions
33 C++2e→ C∗ + e 8.75× 10−27T−4.5 [52,62] Three body recombination
34 C+

2 +2e→ C∗2 + e 8.75× 10−27T−4.5 [52,62] Three body recombination
35 C+

3 +2e→ C∗3 + e 8.75× 10−27T−4.5 [52,62] Three body recombination
36 C+

2 + e→ C + C f0(σ, w) [52,62] Dissociative recombination
37 C+

3 + e→ C + C f0(σ, w) [52,62] Dissociative recombination
38 C∗2 → C2 7.14 × 106 [52,62] Radiation
39 C∗3 → C3 7.14 × 106 [52,62] Radiation
40 He∗ + C→ C+ + He + e 2.9 · 10−15(T/300)0.5 [52,62] Penning ionization
41 He∗ + C2 → C+

2 + He + e 2.9 · 10−15(T/300)0.5 [52,62] Penning ionization
42 He∗ + C3 → C+

3 + He + e 2.9 · 10−15(T/300)0.5 [52,62] Penning ionization

* for reactions 1–16 and 36, 37, the dimension is m3/s; for the rest, it is cm3/mol/s, or cm6/mol2/s.
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3. Results and Discussion

The system of Equations (1)–(8) was solved with the appropriate boundary conditions
according to the method presented by us earlier in [49]. It was assumed that the discharge
had a uniform structure in the radial direction, so the 1D geometry was considered. The
cathode and anode lengths were assumed to be the same and equal to 20 mm; the inter-
electrode distance varied from 0.4 to 2 mm. The buffer gas pressure (helium or argon) was
760 Torr. The voltage at the source was set equal to 5 kV. By varying the ballast resistance
Rbal from 300 Ω to 500 kΩ, the dependences of the discharge voltage drop U(j) (“CVC”)
were obtained, as well as the dependences of the surface temperature of the cathode Tc(j)
and the anode Ta(j) on the discharge current density j (Figures 2a and 3a) for the discharge
with graphite electrodes in the buffer inert gas helium and argon, respectively. In addition,
the average values of the densities of electrons, various types of ions, atoms, and molecules
of carbon are presented depending on the current density in the arc in helium (Figure 2b)
and argon (Figure 3b), respectively.

As can be seen from Figures 2a and 3a, in both cases, a falling dependence U(j) is
observed. It can be seen that in helium arc discharge at a current density of 2.5 × 106 A/m2,
there is a small jump in the potential drop across the discharge gap, equal to ~6 V. Such a
jump in the potential drop is often found in the experimental data and is interpreted as
a transition to a hissing arc [75]. Apparently, it is associated with intense evaporation of
the anode material. But in the argon arc discharge, the characteristic is monotonic. In the
helium arc discharge, in the range of current densities up to 1.25 × 106 A/m2 and in argon
up to 2.5 × 106 A/m2, respectively, the cathode surface temperature exceeds the anode
surface temperature. As the current density increases, a transition to a new regime occurs,
within which the anode surface temperature exceeds the cathode surface temperature and
the process of ablation from the anode becomes dominant. This is the so-called anodic arc.

The vertical dashed line corresponding to the current density of 2.5 × 106 A/m2 in the
helium arc (Figure 2) and 1.1 × 106 A/m2 in the argon arc (Figure 3) divides the range of
current densities into two modes. Let us analyze these two modes in more detail. To do this,
consider Figures 2b and 3b. It can be seen that in the first I mode, in the range of current
densities not exceeding 2.5 × 106 A/m2 in helium and not exceeding 1.1 × 106 A/m2 in
argon, respectively, the dominant ion is the atomic buffer gas ion, helium or argon. As
the current density increases in the second II mode, the atomic carbon ion becomes the
dominant ion. In other words, the effect of changing the plasma-forming ion is observed.
This effect is associated with high densities of atomic carbon particles evaporated in the
discharge gap, low ionization energies, and high values of the impact ionization cross
sections of carbon atoms compared to helium or argon atoms.

In this case, since the values of the ionization potentials of helium (24.6 eV) and carbon
(11.26 eV) differ significantly, as well as the values of the maxima of the ionization cross
sections, a jump is observed, both in the dependences U(j) and in the dependences of the
average values of the densities of the considered plasma particles (Figure 3a). The close
values of the ionization potentials of argon (15.8 eV) and carbon (11.26 eV), as well as the
maxima of the ionization cross sections, lead to monotonic dependences U(j), and plasma
particle densities averaged over the discharge gap.

It should be noted that with a further increase in the current density in an arc discharge
in helium, the second most important ion becomes the molecular carbon ion C2

+. The role
of the molecular ion of the buffer gas He2

+ or Ar2
+ is insignificant, and decreases with

increasing current density. The role of the molecular carbon ion C2
+ sharply increases at

high current densities in the range of 2 × 106–3 × 106 A/m2 and higher.



Nanomaterials 2023, 13, 1966 10 of 20

Nanomaterials 2023, 13, x FOR PEER REVIEW  11  of  22 
 

 

effect is associated with high densities of atomic carbon particles evaporated in the dis-

charge gap, low ionization energies, and high values of the impact ionization cross sec-

tions of carbon atoms compared to helium or argon atoms. 

                           
(a) 

     

(b) 

Figure 2. Dependences (a) of the voltage across the discharge gap and the temperature of the cath-

ode and anode surfaces on the current density, as well as (b) of the concentrations of electrons, ions, 

and neutral carbon particles averaged over the discharge gap in an arc discharge in helium. 

In this case, since the values of the ionization potentials of helium (24.6 eV) and car-

bon (11.26 eV) differ significantly, as well as the values of the maxima of the ionization 

cross sections, a jump is observed, both in the dependences U(j) and in the dependences 

Figure 2. Dependences (a) of the voltage across the discharge gap and the temperature of the cathode
and anode surfaces on the current density, as well as (b) of the concentrations of electrons, ions, and
neutral carbon particles averaged over the discharge gap in an arc discharge in helium.
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and anode surfaces on the current density, as well as (b) of the concentrations of electrons, ions, and
neutral carbon particles averaged over the discharge gap in an arc discharge in argon.

The following fact is also noteworthy: in the argon arc discharge, in the entire consid-
ered range of current densities, the neutral components of carbon C dominate over carbon
ions, with the exception of the molecular carbon ion C2

+, whose density is close to the
density of the neutral component C2. Another feature is observed in helium arc discharge.

In the first I mode, in which the buffer helium ion is the dominant type of ion, the
concentration of evaporated carbon ions C+, C2

+ exceeds the density of neutral evaporated
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particles C, C2, C3. In this case, the main mechanism for the formation of ions of evaporated
particles is impact ionization, which is associated with rather high values of the electron
temperature or, more precisely, the given value of the self-consistent electric field strength
in the discharge gap. In other words, the value of the electric field strength in the discharge
is high enough to maintain the discharge (the discharge “burns on helium”), and this field
ensures complete ionization of the evaporated carbon particles.

Next, we consider the distribution of densities of different types of particles along the
discharge gap of an arc discharge in helium and argon for various current densities.

Thus, Figure 4 shows the density distributions of electrons, various types of ions, as well
as neutral carbon particles along the discharge gap for current densities of 7 × 105 A/m2,
2.5 × 106 A/m2, 3.5 × 106 A/m2, corresponding to points A, B and C in Figure 2a. It can
be seen that at a current density of 7 × 105 A/m2, the helium ion is the dominant type
of ion. The maximum densities of carbon ions C+, C2

+, C3
+ are observed in the center of

the discharge gap, and reach values of 1.24 × 1019 m−3, 1.35 × 1017 m−3, 5.5 × 1014 m−3,
respectively. The density distribution of neutral carbon atoms has a weak minimum at the
center of the discharge gap. The maximum values of C2 and C3 densities are observed near
the anode.

With an increase in the current density to a value of 2.5 × 106 A/m2, corresponding
to point B, the atomic carbon ion becomes the main plasma-forming ion along almost
the entire length of the discharge gap; only in a narrow near-cathode region and also in
the near-anode region is the dominance of helium ions observed. The density maxima of
neutral carbon particles are observed near the electrode surfaces: C near the cathode, and
C2 and C3 near the anode.

With a further increase in the current density to a value of 3.5 × 106 A/m2, the
dominant ion in the entire discharge gap is the atomic carbon ion. The second most
important ion in the cathode region is the atomic argon ion He+, and in the rest of the
region, the molecular carbon ion C2

+. The character of the distribution of neutral carbon
particles does not change.

Similar distributions are shown in Figure 5 for argon arc discharge. Three points A,
B, and C on the CVC (Figure 3a) are considered, corresponding to current densities of
7 × 105 A/m2, 1.0 × 106 A/m2, and 3.5 × 106 A/m2. In the case of the first point A, the
dominant ion is the argon ion.

The density distributions of neutral carbon particles have maxima near the electrodes.
With an increase in the current density to 1.0 × 106 A/m2, the carbon ion becomes the
dominant ion in almost the entire discharge gap, except for the near-electrode regions,
in which the argon ion predominates. With a further increase in the current density, the
carbon ion dominates the entire length of the discharge gap.

Next, we consider the dynamics of establishing the main parameters of the arc discharge
at a current density j = 2× 106 A/m2 in helium and argon, respectively (Figures 6 and 7). The
breakdown of the discharge occurs at times of the order of 10−9 s. At times of the order of
several tens of nanoseconds, a glow discharge is established.

Next, the processes associated with the heating of the gas in the discharge gap and a
decrease in the concentration of neutral particles are switched on, while the combustion
voltage changes, and by the time a change of ~5 × 10−6 s has occurred in the discharge in
helium (and ~8 × 10−5 s in argon), there is a glow discharge with a voltage drop across the
discharge gap of ~1900 V for helium and ~500 V for argon, respectively.

In this mode, intense heating of the cathode surface occurs in the time interval from
5 × 10−6 s to 0.4 s in helium and from 8 × 10−5 s to 3 × 10−4 s in argon. Thus, the cathode
surface temperature increases from 340 to 2200 K in helium and from 530 K to 2600 K in
argon. Further, the discharge begins to switch to the arc mode. Moreover, this transition
in a discharge in helium is characterized by two jumps: in the first, the voltage drops
from 1900 V to 28–20 V, and in the second, from 20 V to 12 V. The first jump is associated
with the transition from a glow discharge to an arc, and the second with a change in the
plasma-forming ion. An abrupt character change is also observed during the transition
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from a glow discharge to an arc, and during a change in the plasma-forming ion in the
dynamics of the densities of charged, excited, and neutral particles.
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and anode surface temperatures; densities of (c) charged, (d) excited, and neutral particles.

In an arc discharge in argon, such a transition occurs in a smooth (monotonic) manner.
From the moment of time ~8 × 10−5 s, the concentration of carbon atoms and molecules
in the discharge gap, as well as their ions and excited states, begins to increase. Moreover,
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after 0.2 s, the atomic carbon ion C+ becomes the dominant type of ion. After 5 ms, the
voltage drop across the arc discharge is less than 100 V, that is, it can be argued that the
discharge has switched to the arc mode. In this mode, after ~5 s, a constant current density
j = 2 × 106 A/m2 is established, and there is an increase in the temperature of the cathode
surface to 3390 K and the anode surface to 3200 K.

Additional numerical calculations were carried out according to the conditions of
the experiments carried out in [76]. For this, it was assumed that the pressure in the
interelectrode gap is 500 Torr. The anode diameter was assumed to be 0.65 cm, and the
ablation rate was considered after the arc was ignited at a time of 60 s.

Figure 8 presents a comparative analysis of the rate of evaporation of carbon particles
from the anode surface from [76] and those obtained in the framework of the formulated
model in a helium discharge. We can see a fairly good quantitative agreement between the
results, which indicates the reliability of the calculated data obtained.
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4. Conclusions

Thus, in this work, the arc discharge model, which describes the processes in the
discharge gap and electrodes in a unified way [48–52], was further developed, taking into
account the processes occurring in the discharge gap and in the electrodes in a unified
way. In this case, the process of the evaporation of particles from the anode surface was
additionally taken into account. Numerical calculations were considered for arc discharges
in helium and argon with graphite electrodes. Additionally, elementary processes involving
carbon particles evaporating from the anode surface were taken into account. It is shown
that during an arc discharge, the potential jump is observed in the dependence of voltage
on current density, which corresponds to a change in the arc discharge regime, in which a
change in the plasma-forming ion is observed. In the case of an argon arc, this transition
is smooth.

This difference is due to the fact that the ionization potentials, as well as the ionization
cross sections, differ significantly for helium and carbon, and are close in magnitude for
helium and argon. The density distributions of charged and neutral particles of an inert
gas and evaporating gases are presented for different CVC points.
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The formulated model and the performed numerical experiments are a convenient
tool for the development of modern plasma-chemical reactors based on arc discharges for
the synthesis of carbon nanostructures. In particular, on the basis of the formulated model,
conditions for the optimal synthesis of nanostructures in terms of pressure and input power
can be predicted.
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