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Abstract: Owing to the similar valence electron structures between the B-N bond and the C-C bond,
boron nitride, similar to carbon, can form abundant polymorphs with different frameworks, which
possess rich mechanical and electronic properties. Using the hollow, cage-like B16N16 cluster as
building blocks, here, we established three new BN polymorphs with low-density porous structures,
termed Cub-B16N16, Tet-B16N16, and Ort-B16N16, which have cubic (P43m), tetragonal (P4/nbm), and
orthomorphic (Imma) symmetries, respectively. Our density functional theory (DFT) calculations
indicated that the existence of porous structure Cub-B16N16, Tet-B16N16, and Ort-B16N16 were not
only energetically, dynamically, thermally and mechanically stable, they were even more stable than
some known phases, such as sc-B12N12 and Hp-BN. The obtained Pugh’s ratio showed that the Cub-
B16N16 and Tet-B16N16 structures were brittle materials, but Ort-B16N16 was ductile. The analysis of
ideal strength, Young’s moduli, and shear moduli revealed that the proposed new phases all exhibited
sizable mechanical anisotropy. Additionally, the calculation of electronic band structures and density
of states showed that they were all semiconducting with a wide, indirect band gap (~3 eV). The
results obtained in this work not only identified three stable BN polymorphs, they also highlighted a
bottom-up way to obtain the desired materials with the clusters serving as building blocks.

Keywords: boron nitride; cluster-assembled materials; mechanical properties; electronic properties;
first principles calculations

1. Introduction

The similar valance electronic configuration between the B-N bond and the C-C bond
makes boron nitrides have many polymorphs, similar to carbon, including zero-dimensional
(0D) clusters, one-dimensional (1D) nanotubes and nanoribbons, two-dimensional (2D)
nanosheets, and three-dimensional (3D) crystalline or amorphous BN [1–5]. As a new
level of material structure, the study of clusters is helpful to understand the evolution law
of matter from microscopic atoms and molecules to macroscopic condensed matter; it also
provides an ideal platform to explore the novel physic phenomena of the 0D nano-system.

In recent years, BkNk cage clusters have attracted numerous attentions, due to their
potential application in materials, energy, environment, and other fields [6–17]. From
previous works, one can know that there are two main types of BkNk cage structures:
one is constructed from alternating B-N bonds and consists entirely of four-membered
and six-membered rings. The other is a fullerene-like structure based on combinations of
pentagons and hexagons, with N-N and B-B bonds [17–19]. Oku et al. [6–9] synthesized
and detected BkNk (k = 12, 24–60) nanocages by laser desorption time-of-flight mass spec-
trometry and found that the BN clusters consisting of 4-, 6- and 8-membered BN rings
satisfied the isolated tetragonal rule, which was optimized by molecular orbital calculation.
Stéphan et al. [10] presented experimental evidence for the formation of small BN cage-like
molecules by an electron-irradiation experiment and observed that the diameters of the
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smallest and most observed cages were from 0.4 to 0.7 nm, close to those of octahedron-
like structures of B12N12, B16N16, and B28N28 cages, which were predicted to be stable
magic number clusters by electronic structural calculations [11]. These studies provided
experimental evidence for the stable existence of boron nitride clusters.

In fact, early theoretical studies proved that the hollow cage clusters (e.g., B12N12 [12],
B16N16 [13,14], B24N24 [15], and B36N36 [16]) are quite stable. For the specific atomic
structure, Strout [17] compared the two classes of boron nitrides: fullerene-like structures
consisting of pentagons and hexagons and alternant structures consisting of squares and
hexagons. These two classes were compared for B13N13, B14N14, and B16N16 by theoretical
calculations using the Hartree–Fock theory and the density functional theory (B3LYP and
LDA). The major result was that the alternative structures were more stable than the
fullerene-based cage structure.

Over the past few decades, the bottom-up approach, with stable clusters as build-
ing blocks, has been considered a promising way to design new materials with desired
properties [20,21]. Xiong et al. [22] studied the stabilities and electronic structures of two
boron nitride crystals, Pm3n B12N12 and sc-B12N12, assembled from the experimental syn-
thesized B12N12 cluster with an alternative structure by first-principles calculations. They
found that the two structures were stable, and both of them were wide-band gap insulators.
In our recent previous work, we established a new sp3-hybridized BN allotrope sc-B24N24,
based on the cage-like alternative B24N24 cluster, which was energetically, dynamically,
and mechanically stable. The analysis of the electronic and optical properties showed that
sc-B24N24 was a semiconductor. Remarkably, if the sc-B24N24 framework was taken as
the host for endohedral doping of magnetic impurities, a desirable magnetic material was
obtained, which exhibited a ferromagnetic (FM) half-metallic ground state with complete
spin polarization [5]. In all these reported BN cluster-assembled phases, the clusters could
maintain their structural characteristics when interacting with neighboring clusters. This
means that the clusters B12N12 and B24B24 can be served as stable assembly motifs to
construct new nanoscale materials using a bottom-up way.

In 2002, Alexandre et al. [23], taking the stable stoichiometric B16N16 [14] as building
blocks, proposed that B16N16 could form covalent-bound, low-density, cluster-assembled
solids with large interstitial channels. However, they only considered one B16N16-assembled
phase. Were the other assembled structures also stable, similar to that of the Zn16O16
cluster [24]? If so, what about their mechanical and electronic properties?

Inspired by these questions, in this work, based on the density functional theory
(DFT), we selected the stable B16N16 nanocluster as the building block for constructing new
possible stable structures. Our results showed that three new porous nanostructures named
Cub-B16N16, Tet-B16N16, and Ort-B16N16 were mechanically, dynamically, and thermally
stable. On the basis of this, we further explored their structural, mechanical, and electronic
properties. As for mechanical properties, the bulk elastic modulus (B), shear modulus
(G), Young’s modulus (Y), Pugh’s ratio (K = B/G), and elastic anisotropy index (AU) were
calculated. The results of Pugh’s ratio suggested that Cub-B16N16 and Tet-B16N16 were
brittle materials, but Ort-B16N16 was ductile. The obtained elastic anisotropy indices
indicated that the proposed phases were all anisotropic, and among them, Ort-B16N16 had
the highest anisotropy. Moreover, the calculations of electronic band structure and densities
of states revealed that these assembled phases were all indirect band gap semiconductors.

2. Computational Methods

The local structure optimization and electronic properties calculations of cluster as-
sembly materials were performed using the DFT method in the Vienna ab initio package
(VASP) [25]. The Perdew–Burke–Ernzerhof (PBE) form of the generalized gradient func-
tional (GGA) was used to solve the exchange correlation energy [26,27]. The plane-wave
base vector was based on the projector-augmented wave (PAW) method [28]. The Grimme
method was adopted to correct the Van der Waals interaction [29]. A cutoff energy of 500 eV
was used for the plane-wave basis, and the energy and force constant convergences were set
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to 10−6 eV and 10−3 eV Å−1, respectively. The Monkhorst-pack k-point mesh with uniform
spacing was adopted in the Brillouin zones, which were 7 × 7 × 7 for the Cub-B16N16
structure, 6 × 6 × 7 for the Tet-B16N16 structure, and 7 × 6 × 7 for the Ort-B16N16 structure.
The phonon dispersion spectra and phonon state densities of the systems were calculated
by the density-functional perturbation theory implemented in the PHONOPY package [30]
to evaluate the dynamic stability. In addition, molecular dynamics simulations using
NVT canonical ensemble at a 300 K temperature were performed to investigate the initial
decomposition mechanism and thermal stability of the supercells. The time step was set to
1 fs, and the total simulation time was 10 ps. The elastic constant Cij, the bulk modulus (B,
the average of BV, and BR), and shear modulus (G, the average of GV, and GR) of the new
structures were calculated according to the Voigt–Reuss–Hill (VRH) approximation [31].
Elastic constants were defined by means of the stress–strain method [32,33].

3. Results and Discussion
3.1. Structural Properties

B16N16 cage cluster, a stable cluster with magic number characteristics [10], is an octahe-
dral structure, whose basic units are four-membered rings and six-membered rings, among
which six four-membered rings are independently separated by twelve six-membered
rings [23]. Based on their structural properties and energy stability, we made it the building
blocks and considered three possible cluster–cluster interactions, i.e., six-membered ring
facing six-membered ring (H), four-membered ring facing four-membered ring (C), and
B-N edge-to-edge (S) connection modes. Then, three new periodic 3D solids were obtained
and named Cub-B16N16, Tet-B16N16, and Ort-B16N16, according to their crystallographic
systems and primitive names. Their optimized atomic structures, including the coordina-
tion polymerization mode of each building block and the primitive cells of every phase, are
displayed in Figure 1. The Cub-B16N16, Tet-B16N16, and Ort-B16N16 structures had P43m,
P4/nbm, and Imma symmetries, respectively.
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From Figure 1, one can see that the B16N16 hollow-cage cluster structures were very
stable, with one B atom and four N atoms forming sp3 hybridization, maintaining its
structural integrity in the three assembled new crystalline phases and showing an excellent
“element” role. The structural optimization parameters (space groups, lattice constants, unit
atomic volumes, and equilibrium densities) of Cub-B16N16, Tet-B16N16, and Ort-B16N16
and several considered structures (e.g., c-BN, d-BN, Hp-BN, Pm3n-BN, and sc-B12N12)
are listed in Table 1. For Cub-B16N16, Tet-B16N16, and Ort-B16N16 structures, the average
bond lengths were 1.519 Å, 1.530 Å, and 1.544 Å, respectively; the average bond angles of
the four-membered rings were 93.6◦, 89.8◦, and 90.0◦; and the six-membered rings were
119.2◦, 117.1◦, and 112.8◦, respectively. One can see that the mass densities of Cub-B16N16,
Tet-B16N16, and Ort-B16N16 were 2.124 g/cm3, 2.379 g/cm3, and 2.163 g/cm3, respectively,
which were much lower than that of c-BN (3.472 g/cm3) [34], Hp-BN (3.633 g/cm3) [35],
and Pm3n-BN (2.849 g/cm3) [22], due to the existence of hollow holes. The optimized, non-
equivalent atomic coordinates of Cub-B16N16, Tet-B16N16, and Ort-B16N16 structures are
shown in Table S1. Due to the characteristics of low density and nanopores, the proposed
B16N16-assembled phases might be promising for future applications in heterogeneous
catalysis, molecular transport, and other fields [36,37].

Table 1. The space group (SG), lattice parameters a, b, and c (Å), volume per atom V (Å3/atom),
equilibrium density ρ (g/cm3), cohesive energy per atom Etot (eV/atom), energy gap Eg (eV), and
band gap relative to ground-state c-BN phase (Eg/Eg,c) for cluster-assembled BN phases. The corre-
sponding data of several reported BN polymorphs (c-BN, 2D h-BN, w-BN, d-BN, Hp-BN, Pm3n-BN,
and sc-B12N12) were also compared.

Structure SG a(Å) b(Å) c(Å) V ρ Etot(eV) Eg(eV) Eg/Eg,c

Cub-B16N16 P43m 6.772 6.772 6.772 9.77 2.124 −8.38 2.94 0.659
Tet-B16N16 P4/nbm 8.991 8.991 6.857 8.89 2.379 −8.37 2.80 0.628
Ort-B16N16 Imma 8.975 12.669 10.726 9.51 2.163 −8.42 3.34 0.749
c-BN This work F43m 3.615 3.615 3.615 5.90 3.489 −8.86 4.46 1.00

Cal. [22] 3.625 3.625 3.625 −9.37
Expt. [38] 3.615 3.615 3.615 3.489 6.1~6.4

h-BN(2D) This work P63/mmc 2.506 2.506 −8.16 3.95 0.89
Cal. [39] 2.512 2.512
Expt. [40] 2.490 2.490

w-BN This work P63mc 2.549 2.549 4.231 5.92 2.095 −8.85 5.20 1.17
Cal. [22] 2.555 2.555 4.225 −9.35
Expt. [41] 2.553 2.553 4.228

d-BN This work Fd3c 12.290 12.290 12.290 9.81 2.101 −8.72 4.84 1.09
Cal. [36] 12.292 12.292 12.292 2.130 4.86

Hp-BN This work P6222 2.600 2.600 5.811 5.67 3.633 −7.93 3.70 0.83
Cal. [35] 2.610 2.610 5.828 −7.78 3.45

Pm3n-BN This work Pm3n 4.428 4.428 4.428 7.23 2.849 −8.58 4.55 1.02
Cal. [22] 4.418 4.418 4.418 2.868 −8.33 4.53

sc-B12N12
This work Fm3C 11.819 11.819 11.819 8.75 2.345 −8.33 4.98 1.12
Cal. [22] 11.819 11.819 11.819 2.396 −8.20 5.02

3.2. Stabilities

Were the Cub-B16N16, Tet-B16N16, Ort-B16N16 polymorphs stable? To explore this, we
evaluated their energies and their mechanical, dynamic, and thermal stabilities. Firstly, the
total energies of the three assembled materials as functions of volume at a temperature
of zero were calculated to determine the energy stability. For comparison, five related
boron nitride isomerized materials, including c-BN, d-BN, Hp-BN, Pm3n-BN, and sc-B12N12
polymorphs, were also considered, as shown in Figure 2a. The results showed that although
the equilibrium total energies of these three materials were higher than that of c-BN and
d-BN, they were energetically more stable than that of Hp-BN and sc-B12N12, based on the
results, by fitting the third-order Birch–Murnaghan equation of state (EOS) [42]. Among
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the assembled phases, the Ort-B16N16 phase had the lowest energy, implying that it was
the most stable phase.
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The parameters of enthalpy and pressure were obtained from the equation H = Et + PV.
The enthalpy pressure relationships of cluster-assembled crystal phases Cub-B16N16, Tet-
B16N16, and Ort-B16N16 and a series of boron nitride isomeric phases within the range of
0~10 GPa are shown in Figure 2b to confirm the stabilities of three assembled materials,
with respect to the five synthesized phases (e.g., c-BN, d-BN, Hp-BN, Pm3n-BN, and sc-
B12N12) in different ranges of pressure. A more stable phase will generally have a lower
enthalpy for a given pressure. It can be seen from Figure 2b that Cub-B16N16, Tet-B16N16,
and Ort-B16N16 were all more stable than sc-B12N12 and Hp-BN in the whole considered
ranges of pressure, indicating their good mechanical stabilities with respect to sc-B12N12
and Hp-BN.

To assess the dynamical stability of the proposed phases, we further calculated the
phonon dispersion and the corresponding phonon density of states along highly symmetric
paths throughout the Brillouin zone, as shown in Figure S1. The numbers of atoms per unit
cell of Cub-B16N16, Tet-B16N16, and Ort-B16N16 were 32, 64 and 64, respectively, indicating
that there were 96, 192, and 192 branches of the dispersion spectrum. Since there were no
imaginary frequencies in the dispersion spectrum, the proposed Cub-B16N16, Tet-B16N16,
and Ort-B16N16 should be dynamically stable at T = 0 K. Moreover, the densities of phonon
states of the Cub-B16N16, Tet-B16N16, and Ort-B16N16 phases illustrated that the vibrational
modes in the low-frequency region were mainly contributed by N atoms, while those in the
higher-frequency region were mainly contributed by B atoms, due to its relatively smaller
atomic mass.

However, the above discussion could not guarantee the stabilities of the three phases
at elevated temperatures. In this regard, further exploration of the thermal stabilities of
Cub-B16N16, Tet-B16N16, and Ort-B16N16 at room temperature was necessary. By building
a 2 × 2 × 1 supercell with 128 atoms for the Cub-B16N16 structure, 256 atoms for the
Tet-B16N16 structure, and a 2 × 1 × 1 supercell with 128 atoms for the Ort-B16N16 structure,
we performed the ab initio molecular dynamics (AIMD) simulations at 300 K with a Nosé–
Hoover thermostat. Figure S2 shows the potential energy and temperature fluctuations
of the three systems as a function of simulation times. Throughout the simulation, the
potential energy was almost constant, with small variations due to thermal fluctuations
for all the assembled crystal phases. Correspondingly, the structures maintained their
original structures without damage. Therefore, the simulation results confirmed that all the
assembled structures were thermally stable and could survive, at least at room temperature.
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To examine the mechanical stability of the assembled phases, we further calculated
their elastic constants. The results are listed in Table 2. According to Born’s mechanical
stability criterion, a material with mechanical stability should follow the related mechanical
stability criteria:

For the cubic system,

C11 > 0, C44 > 0, C11 − C12 > 0, C11 + 2C12 > 0. (1)

For the tetragonal system,

C11 > 0, C33 > 0, C44 > 0, C66 > 0,

C11 − C12 > 0, C11 + C33–2C13 > 0,

2(C11 + C12) + C33 + 4C13 > 0.

(2)

For the orthorhombic system,

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0,

C11 + C22 − 2C12 > 0, C11 + C33 − 2C13 > 0, C22 + C33 − 2C23 > 0,

C11 + C22 + C33 + 2(C12 + C13 + C23) > 0.

(3)

It can be seen that all of the Cij for Cub-B16N16, Tet-B16N16, and Ort-B16N16 met the
Born stability criterion [43]; this means that they were all mechanically stable.

Table 2. Calculated elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Pugh’s
ratio K (B/G), Young’s modulus Y (GPa), and Vickers hardness Hv (GPa) of cluster-assembled BN
phases and a few typical BN phases.

Structure C11 C12 C13 C22 C23 C33 C44 C55 C66 B G K Y Hv

Cub-B16N16 304 118 127 180 112 1.61 279 15.19
Tet-B16N16 376 84 122 314 123 134 197 123 1.60 305 16.30
Ort-B16N16 225 73 54 480 112 200 76 26 76 141 69 2.07 178 8.17
c-BN 797 175 456 382 391 0.98 875 63.37
Cal. [44] 780 173 444 376 382 62.82
d-BN 300 175 120 216 93 2.32 243 7.38
Cal. [36] 252 111 2.17
Hp-BN 873 154 360 384 366 1.04 832 55.97
Cal. [35] 892 166 363 375
Pm3n-BN 712 90 195 297 235 1.26 558 33.74
Cal. [22] 781 116 218 337 218~332
sc-B12N12 452 127 163 232 162 0.69 391 17.28
Cal. [22] 483 160 190 268 162~190

Electron localization function (ELF) was an effective method for analyzing the types
of chemical bonds, which can accurately characterize the distribution characteristics of
electron delocalization in both molecules and solids [45]. Values of 1.00 and 0.50 indicated
complete localization and delocalization of electrons, respectively, while 0.00 indicated very
low electron density. The electronic local functions of Cub-B16N16, Tet-B16N16, and Ort-
B16N16 along the four-numbered ring in the [001] direction was calculated to investigate the
local characteristics of the assembled materials. Figure 3 illustrates a 2D contour map of ELF
along the [001] direction of Cub-B16N16, Tet-B16N16, and Ort-B16N16. It can be seen that the
ELF value in the middle of the B-N bond was close to 1.0, implying that the electrons were
highly localized in this region. In other words, the B-N bonds in the assembled materials
had strong covalent properties. This should be the reason that Cub-B16N16, Tet-B16N16,
and Ort-B16N16 had superb energy and dynamical, thermal, and mechanical stability. Near
the N and B atoms, the ELF values were about 0.5 and 0.25, respectively. This means
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that electrons were more likely to be localized around the N atom, while the densities of
electrons near the B atom were very low.
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3.3. Mechanical Properties

As is known, many reported polymorphs of boron nitride have excellent mechanical
properties. This naturally poses a question: can the new low-density porous boron nitride
polymorphs preserve their intrinsic configuration under external stress? Using the VRH
method [31], we calculated the bulk elastic modulus (B), shear modulus (G), Young’s
modulus (Y), and Pugh’s ratio (K = B/G) of the three low-density assembled phases on
the basis of the obtained elastic constants. The data are listed in Table 2. The moduli of
Cub-B16N16, Tet-B16N16, and Ort-B16N16 were relatively lower, compared to that of the
super-hard boron nitride c-BN. However, considering their low densities, they still had
good elastic properties. To prove this, we further calculated the Vickers hardness (Hv) using
the empirical formula [37]:

Hν = 2
(

G2

B2

)0.585

− 3 (4)

The calculated results of Vickers hardness are shown in Table 2. One can see that the
hardnesses of Cub-B16N16, Tet-B16N16, and Ort-B16N16 were less than 40 GPa, which was
the critical value of Vickers hardness to distinguish super-hard materials from ordinary
materials. Although they were not super-hard materials, Cub-B16N16, Tet-B16N16, and
Ort-B16N16 were still hard, even superior to some metal nitrides and carbides, such as TiC,
TiN, and WC [46]. In addition, the ratio of the bulk elastic modulus to the shear modulus
(i.e., B/G) is often used to distinguish ductile and brittle materials. If the B/G ratio is
greater than 1.75, the material is ductile; otherwise, it is brittle. The B/G ratios of Cub-
B16N16, Tet-B16N16, and Ort-B16N16 were calculated to be 1.61, 1.60, and 2.07, respectively.
There was no doubt that Cub-B16N16 and Tet-B16N16 were brittle materials, but Ort-B16N16
was ductile.

Figure 4 shows the ideal tensile strength as a function of strain for Cub-B16N16, Tet-
B16N16, and Ort-B16N16 along the three directions of [100], [110], and [111]. It can be seen
that Cub-B16N16, Tet-B16N16, and Ort-B16N16 could withstand a certain tensile strain before
the structure broke. Specifically, along the [100], [110], and [111] directions, the ideal tensile
strength and the corresponding maximum strain withstood at the fracture point of the
three structures are shown in Table 3.
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Table 3. Calculated ideal tensile strengths and corresponding maximum tensile strains withstood at
the fracture point.

Structure Direction Ideal Tensile Strength (GPa) Maximum Strain (%)

Cub-B16N16 [100] 22.39 8
[110] 14.29 6
[111] 18.56 7

Tet-B16N16

[100] 25.09 12
[110] 18.47 8
[111] 18.69 7

Ort-B16N16 [100] 12.12 7
[110] 18.91 9
[111] 12.45 7

Moreover, from Figure 4, one can conclude that Cub-B16N16, Tet-B16N16, and Ort-
B16N16 were mechanically anisotropic. Microcracks and lattice deformations of materials
are important factors for reflecting the elastic anisotropy, which also plays a key role in
enhancing the mechanical durability of materials. In order to characterize the anisotropy
degree of materials, Ranganathan proposed a universal elastic anisotropy index AU for
each crystal phase, based on the mean values of Reuss and Voigt [47]:

AU = 5
GV
GR

+
BV
BR

− 6 (5)

where GV, GR, BV, and BR are the shear moduli and bulk moduli of Voigt and Reuss
approximations, respectively.

The material is isotropic when the value of AU is zero; otherwise, it is anisotropic. The
degree of anisotropy of the material can be reflected by the magnitude of the AU deviation
from zero. The greater the deviation of AU, the stronger the anisotropy. We calculated
the universal elastic anisotropy indices, AU, of Cub-B16N16, Tet-B16N16, and Ort-B16N16 to
provide an effective perspective on mechanical anisotropy. The results showed that the
anisotropy indices of Young’s moduli for Cub-B16N16, Tet-B16N16, and Ort-B16N16 were
1.30, 1.32, and 4.82, respectively, and the anisotropy indices of shear moduli were 1.37,
1.39, and 4.62, respectively. Therefore, Cub-B16N16, Tet-B16N16, and Ort-B16N16 were all
anisotropic. Among the proposed phases, Ort-B16N16 had the strongest anisotropy, due
to its largest AU. Figure 5 shows the three-dimensional diagrams of Young’s moduli and
shear moduli, which can provide more intuitive physical images for the anisotropic elastic
characteristics of the three assembly structures.
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3.4. Electronic Properties

The electronic band structures along the high-symmetry k-points were calculated,
and the Monkhorst-pack k-point meshes increased to 15 × 15 × 15 for the Cub-B16N16
structure, 11 × 11 × 15 for the Tet-B16N16 structure, and 12 × 15 × 14 for the Ort-B16N16
structure, as shown in Figure 6. Similar to most of the BN polymorphs, one can see that
Cub-B16N16, Tet-B16N16, and Ort-B16N16 were semiconducting with wide energy band gaps,
which were 2.94, 2.80, and 3.34 eV, respectively. Since the valence band maximum (VBM)
and conduction band minimum (CBM) were not at the same high-symmetry k-points for
Cub-B16N16 and Ort-B16N16 structures, they belonged to indirect band gap semiconductors.
However, the Tet-B16N16 structure was a direct bandgap semiconductor, since VBM and
CBM were at the same high-symmetry k-points. As is usual for PBE calculations, the
absolute band gaps were systematically underestimated, whereas the relative magnitudes
provided a gauge of the electronic change with respect to the change in bulk topology [48].
We calculated the relative band gap magnitude of each structure to the most stable c-BN
(Eg/Eg,c), which is shown in Table 1.
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The total and partial densities of states (DOS) of Cub-B16N16, Tet-B16N16, and Ort-
B16N16 are shown in Figure 7. There was obvious hybridization between the N atomic
orbital and the B orbital, due to the fact that the B-N bonds of the assembled crystal phases
were strong covalent bonds. According to the partial densities of states, the densities of
states of the VBM and CBM were dominated by B-2p and N-2p orbitals, respectively. In the
vicinity of the Fermi level, the states of the valence were mainly contributed by the N-2p
orbital, and the states of the conduction band mainly came from the B-2p orbital.
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4. Conclusions

In summary, based on the bottom-up approach, we predicted three new low-density
boron nitride polymorphs, Cub-B16N16, Tet-B16N16. and Ort-B16N16, which can be con-
sidered three-dimensional structures assembled from B16N16 cage clusters. Based on the
density functional theory modified by Van der Waals, the following interesting features
of Cub-B16N16, Tet-B16N16, and Ort-B16N16 were characterized: (i) they were low-density
(2.124 g/cm3, 2.379 g/cm3, and 2.163 g/cm3, respectively) porous materials, due to the
existence of boron nitride hollow cages B16N16; (ii) Cub-B16N16, Tet-B16N16, and Ort-B16N16
exhibited good energy and dynamic, thermal, mechanical, and chemical stability, due to
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the strong covalence interaction between B and N atoms, which was proven by our electron
localization function analysis; (iii) the results of elastic properties calculations showed that
Cub-B16N16 and Tet-B16N16 were brittle materials, but Ort-B16N16 was ductile; the Young’s
moduli and shear moduli of the three assembled materials harbored strong anisotropy;
(iv) the electronic band structure showed that the three assembled crystal phases were
all indirect wide-band gap semiconductors. Our results not only highlighted some novel
low-density boron nitride polymorphs, they also provided a bottom-up way to design new
solid materials by using the clusters as building blocks.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13131927/s1, Table S1: The optimized non-equivalent atomic
coordinates of Cub-B16N16, Tet-B16N16, and Ort-B16N16 structures. Figure S1: Phonon band struc-
tures and phonon density of states of Cub-B16N16, Tet-B16N16, and Ort-B16N16. Figure S2: The
fluctuation of potential energy and temperature of Cub-B16N16, Tet-B16N16, and Ort-B16N16 as a
function of molecular dynamics simulation time at room temperature. Reference [49] is cited in the
Supplementary Materials.
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