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Abstract: Algorithms of the simulation of the anticancer activity of nanoparticles under different
experimental conditions toward cell lines A549 (lung cancer), THP-1 (leukemia), MCF-7 (breast
cancer), Caco2 (cervical cancer), and hepG2 (hepatoma) have been developed using the quasi-SMILES
approach. This approach is suggested as an efficient tool for the quantitative structure–property–
activity relationships (QSPRs/QSARs) analysis of the above nanoparticles. The studied model is
built up using the so-called vector of ideality of correlation. The components of this vector include
the index of ideality of correlation (IIC) and the correlation intensity index (CII). The epistemological
component of this study is the development of methods of registration, storage, and effective use of
experimental situations that are comfortable for the researcher-experimentalist in order to be able to
control the physicochemical and biochemical consequences of using nanomaterials. The proposed
approach differs from the traditional models based on QSPR/QSAR in the following respects: (i) not
molecules but experimental situations available in a database are considered; in other words, an
answer is offered to the question of how to change the plot of the experiment in order to achieve
the desired values of the endpoint being studied; and (ii) the user has the ability to select a list
of controlled conditions available in the database that can affect the endpoint and evaluate how
significant the influence of the selected controlled experimental conditions is.

Keywords: nanoparticle; anticancer activity; QSAR; quasi-SMILES; Monte Carlo method; CORAL
software

1. Introduction

Knowledge is the basis of all actions aimed at improving people’s lives and the
evolution of civilization as a whole. However, knowledge has internal contradictions. For
example, in order to manage or even observe complex processes, it is necessary first to study
the available information, which is the personification of the corresponding knowledge. If
the knowledge is not structured, learning to use these disordered facts or skills becomes
quite expensive and difficult in several respects, such as the necessity of a long period
to learn and apply expensive equipment and software. The main function of the quasi-
SMILES conception examined here is to search for reasonably simple ways to study complex
phenomena. The simulation of physicochemical and biochemical behavior nanomaterials
is quite a complex phenomenon.

Strangeness is one of the manifestations of reality about which it is difficult to speak
clearly. Nevertheless, strangeness is often a property of things that are new, unexpected, or
important. For the implementation of any activity, an economy of thinking is necessary.

Nanomaterials 2023, 13, 1852. https://doi.org/10.3390/nano13121852 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13121852
https://doi.org/10.3390/nano13121852
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-6864-6340
https://orcid.org/0000-0002-4194-9963
https://orcid.org/0000-0001-5290-6136
https://doi.org/10.3390/nano13121852
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13121852?type=check_update&version=1


Nanomaterials 2023, 13, 1852 2 of 14

In practice, such savings can be achieved in various ways. Sorting is perhaps the simplest
fragment of the thought economy process. Sorting consists of selecting the most informative
of the data under experimental conditions in the laboratory, production, and interaction
with environmental circumstances (climate, epidemics, economic crises). However, sorting
does not provide any guidance for decision making at the stage when the choice of priorities
is made. Models are needed at this stage. Having a model for a process can help one to
manage the process. The complexity of the choice is considerable because usefulness and
harm can change places when harm becomes a benefit and the benefit turns out to be
harmful. For instance, the toxicity of nanoparticles is considered a useful quality because it
can be used for good aims. However, left unattended, this toxicity can harm or even kill
humans and animals. The list of nanoparticles is expanding exponentially. The number of
types of toxicity is by no means small. Obviously, under such circumstances, it is impossible
quickly to evaluate experimentally all nanoparticles that are used or can be used. However,
the assessment of the physicochemical and biochemical behavior of a significant number
of new nanoparticles using databases on already studied nanoparticles is quite feasible.
The key points in the development of such models are the need to reduce the memory and
logic requirements of the users of the models. In other words, developers of models should
provide user-friendly means of evaluating new nanoparticles. At the same time, it is highly
desirable and important that such models consider the effect of possible changes in the
corresponding directions for the experimental use of nanoparticles [1].

Quantitative structure–property–activity relationships (QSPRS/QSARs) are a well-
known approach to establishing models of different endpoints considered as a mathe-
matical function of molecular structure. A successful QSAR analysis is possible if and
only if: (i) there is a large enough number of compounds with a clear definition of the
congeneric features corresponding to the molecules; (ii) there is a hypothesis on how and
which molecular features affect the endpoint (topological architecture, 3D configurations,
quantum mechanics interactions, etc.); and (iii) checking of the predictive potential of the
model can be carried out [2,3]. However, the QSPR/QSAR paradigm is widely applied to
relatively traditional substances, such as organic, inorganic, metal-organic chemicals, and
polymers. On the other hand, attempts to use the abovementioned paradigm for nanomate-
rials face quite a complex situation. First, there are only small databases on experimentally
measured basic endpoints, such as thermodynamic parameters and/or biochemical effects.
In other words, selecting a series of nanomaterials with experimental data is the problem.
Secondly, the huge number of atoms in the majority of nanomaterials lessens the usefulness
of traditional molecular descriptors: their values become non-sensitive to small molecular
modifications.

There is an urgent need to clarify the approaches and methodology for measuring
the biochemical potential of engineered nanomaterials. Factually, this is a problem of
tuning computational and experimental approaches oriented to “traditional” substances for
application to nanomaterials. The possibility of employing computational approaches like
nano-QSAR or nano-read-across to predict nanomaterial hazards based on some “standard”
databases is an attractive possibility from a financial point of view. The attractiveness
from an ethical point of view is also clear (minimal animal tests). Many research studies
have endeavored to investigate the eco-toxicological hazards of engineered nanomaterials.
However, little is known regarding nanomaterials’ actual environmental risks, combining
hazard and exposure data on a planetary scale [1].

It has been assumed that strangeness and research activity rarely intersect. However,
when they meet, they either reinforce or disregard each other. For example, modelling,
one of the most important and complex areas of research, can be summed up in the short
aphorism “All models are wrong, but some are useful” [4].

Systematization of knowledge related to nanomaterials has become necessary due to
the fast growth of applications of these “unusual” substances. Systematization involves
various aspects of research activity. The development of approaches that allow for the
simulation of different characteristics of nanomaterials, including their interactions with



Nanomaterials 2023, 13, 1852 3 of 14

other species, is one of them. There are many methods to perform such simulations. One of
the possible approaches is to carry simulations out using the so-called quasi-SMILES [5–13]
approach. The traditional simplified molecular input line entry system (SMILES) [14] allows
the molecular architecture to be represented via a sequence of symbol-codes. At the same
time, the quasi-SMILES approach gives us the possibility of representing the experimental
conditions or even any arbitrary eclectic data related to the behavior of nanomaterials via
symbol-codes. Figure 1 displays the general scheme for the simulation of the biological
effects of nanoparticles. This scheme was used to build up the models described below.
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2. Materials and Methods
2.1. Data

The dataset used in this study includes measurements of half maximal effective (EC50),
inhibitory (IC50), and lethal (LC50) concentration toxicity endpoints toward cell lines A549
(lung cancer), THP-1 (leukemia), MCF-7 (breast cancer), Caco2 (cervical cancer), and hepG2
(hepatoma) under different experimental conditions (various nanoparticles, size, exposure
time) for human cells. The indicated conditions and circumstances were represented by
special codes listed in Table 1. These codes are used for the construction of the quasi-SMILES
that represent the above measurements of the toxicity of the studied nanoparticles [15].

The listed codes for quasi-SMILES make it possible to constructively describe the
available experimental situations for developing models in order to predict the results of
varying codes (i.e., varying of an experiment). The system described can assess the statistical
significance of individual experimental conditions (i.e., the above codes for quasi-SMILES).
In other words, concentration values, exposure times, impacted objects, nanoparticle sizes,
and others are under consideration to simulate the behavior of nanoparticles.
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Table 1. Codes that are applied to construct quasi-SMILES.

Code Comments CW(Code) d

[108m]....... Exposure time
(minutes or hours) −0.4525 0.0343

[12h]....... - −0.3037 0.0513

[216]....... - −0.1135 0.0251

[18h]....... - 0.0 1.0000

[24h]....... - −0.2873 0.0063

[36h]....... - 0.0 1.0000

[48h]....... - −0.3258 0.0160

[60h]....... - 0.0 1.0000

[72m]........ - 0.0 1.0000

[Ag]........ Types of nanoparticles −0.4207 0.0178

[Al2O3]..... - 0.0 1.0000

[Bi2O3]..... - 0.0 1.0000

[CeO2]...... - 0.0 1.0000

[Co3O4]..... - −0.3980 1.0000

[Co]........ - 0.0 1.0000

[Cu2O]...... - 0.0 1.0000

[CuO]....... - 0.4879 0.0333

[Cu]........ - 0.0 1.0000

[Fe2O3]..... - 0.0 1.0000

[MgO]....... - 0.0 1.0000

[Mn3O4]..... - 0.0 1.0000

[Mn3O4]..... - 0.0299 1.0000

[MoO3]...... - 0.0 1.0000

[NiO]....... - 0.0 1.0000

[Ni]........ - 0.0 1.0000

[Sb2O3]..... - 0.3814 0.0185

[SnO2]...... - 0.0 1.0000

[Y2O3]...... - 0.0 1.0000

[TiO2]...... - 0.4736 1.0000

[WO3]....... - 0.0 1.0000

[ZnO]....... - 0.0698 0.0338

[ZrO2]...... - 0.0 1.0000

[nm100]..... Size of nanoparticle in nm 0.0 1.0000

[nm11,9].... - 0.0 1.0000

[nm12,2].... - 0.0 1.0000

[nm14,9].... - 0.0 1.0000

[nm−]....... - −0.3009 0.0069

[nm149]..... - 0.0 1.0000

[nm14]...... - 0.0 1.0000

[nm19,7].... - 0.0 1.0000
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Table 1. Cont.

Code Comments CW(Code) d

[nm20,8].... - 0.0 1.0000

[nm20–30]... - 0.0 1.0000

[nm22,9].... - 0.0 1.0000

[nm20]...... - 0.4612 0.0160

[nm21]...... - 0.0 1.0000

[nm30–50]... - 0.0 1.0000

[nm312]..... - 0.0 1.0000

[nm33,4].... - 0.0 1.0000

[nm30]...... - 0.0 1.0000

[nm31]...... - 0.0 1.0000

[nm32]...... - 0.0 1.0000

[nm33]...... - 0.0 1.0000

[nm40–68]... - 0.0 1.0000

[nm45,4].... - 0.0 1.0000

[nm42]...... - 0.0 1.0000

[nm5–15]... - 0.0 1.0000

[nm48,9].... - 0.0 1.0000

[nm50]...... - 0.0 1.0000

[nm64–69]... - 0.0 1.0000

[nm83–94]... - 0.0 1.0000

[nm9,2]..... - 0.0 1.0000

[nm90]...... - 0.0 1.0000

[nm5]....... - 0.0 1.0000

[MCF-7]..... Cell line MCF-7 (breast cancer) 0.1888 1.0000

[A549]...... Cell line A549 (lung cancer) 0.1817 0.0068

[THP-1]..... Cell line THP-1 (leukemia) 0.3930 0.0185

[HepG2]..... Cell line hepG2 (hepatoma) 0.0 1.0000

[Caco2]..... Cell line Caco2 (cervical cancer) −0.3912 0.0288

[EC50]...... concentration that gives 50% of the maximal
response 0.3444 0.0164

[IC50]...... Concentration that gives 50% inhibition of a
biological process 0.3023 0.0128

[LC50]...... Concentration that kills 50% test animals 0.0 1.0000

[LD50]...... Dose that kills 50% test animals −0.3424 0.0010

After removing duplicates, the source [15] contains 935 measurements, representing
data related only to human cells. The total set studied here includes 102 measurements.
These data were randomly split into an active training set (≈25%), a passive training
set (≈25%), a calibration set (≈25%), and a validation set (≈25%). The advantages of
considering a structured training set (divided into an active training set, passive training
set, and calibration set) are described in the literature [16]. Five such splits that involve the
deposition of different data each time for the considered data sets are considered to assess
the reproducibility of the approach considered here for creating models [17].
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2.2. Optimal Descriptor

The optimal descriptor is the sum of the correlation weights of the quasi-SMILES codes
obtained by the Monte Carlo method using the CORAL software (http://www.insilico.eu/
coral, accessed on 29 May 2023). The values of the optimal descriptor serve as the basis for
the model of half-maximal concentration (HMC) (i.e., EC50, IC50, or LC50) calculated by
the formula:

HMCk =C0 + C1 × DCW(T, N) (1)

The optimal descriptor depends on the selected method of the Monte Carlo optimiza-
tion of the correlation weights for codes of quasi-SMILES (Table 1). The T and N are the
parameters of the optimization procedure. T is a threshold applied to define rare codes. If
T = 1, this means that codes which are absent in the active training set are rare. The rare
codes are not involved in modelling (their correlation weights are zero). N is the number of
epochs of the Monte Carlo optimization.

2.3. Optimization of Correlation Weights

The optimal descriptors are calculated using the correlation weights obtained by
the Monte Carlo optimization [16,17]. Two target functions of the optimization are com-
pared here:

TF1 = rAT + rPT − |rAT − rPT | × 0.1 (2)

TF2 = rAT + rPT − |rAT − rPT | × 0.1 + (I IC + CII)× 0.3 (3)

rAT and rPT are correlation coefficients between the experimental and predicted values
for the active and passive training sets, respectively. The IIC represents the index of ideality
of correlation [15–17]. The CII is the correlation intensity index [15–17].

Figure 2 contains examples of the optimization history with target functions TF1 and
TF2. The figure demonstrates the advantage of the target function TF2 graphically.
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2.4. Mechanistic Interpretation

If Monte Carlo optimization is carried out several times, then some components of
the optimized correlation weights will have positive values in all optimization trials. Such
correlation weights indicate those fragments of quasi-SMILES that are growth promoters
of the studied endpoint. At the same time, some of the correlation weights will only have
negative values. These correlation weights indicate those fragments of quasi-SMILES that
are patrons of the decrease in the simulated endpoint. Correlation weights with alternating
values (positive and negative in different runs of Monte Carlo optimizations) have no
mechanical interpretation for the models under consideration.

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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2.5. Applicability Domain

The applicability domain for the described model defines via the so-called statistical
defects of codes used in quasi-SMILES. These defects can be calculated as follows:

dk =
|P(S k)−P′(S k)|
N(Sk) + N′(Sk)

+
|P(S k)−P′′(S k)|
N(Sk) + N′′(Sk)

+
|P′(S k)−P′′(S k)|
N′(Sk) + N′′(Sk)

(4)

where P(Sk), P′(Sk) P′′(Sk) are the probability of Sk in the active training set, passive training
set, and calibration set, respectively; N(Sk), N′(Sk), and N′′(Sk) are frequencies of Sk in the
active training set, passive training set, and calibration set, respectively. The statistical
defects of quasi-SMILES (Dj) are calculated as follows:

Dj = ∑NA
k=1 dk (5)

where NA is the number of non-blocked codes in quasi-SMILES.
A quasi-SMILES falls in the applicability domain if

Dj < 2× D

3. Results

Table 2 contains an example of the model of biological activity related to different ex-
perimental situations represented via quasi-SMILES (split 1, target function TF2). However,
since the statistical characteristics of a model can vary for different splits into the training
and validation set, it is necessary to consider a system of several different splits.

Table 2. Quasi-SMILES, optimal descriptor DCW(1,15), experimental and calculated biological
activity, statistical defects (D) of quasi-SMILES, and applicability domain (AD).

Set ID Quasi-SMILES DCW(1,15) Expr Calc D AD

P 5 [Ag][nm312][24h][IC50][THP-1] 2.2559 −3.5930 −3.6191 1.0553 YES

A 6 [Ag][nm5][24h][EC50][MCF-7] −1.5770 −5.3340 −5.3221 2.0405 YES

C 7 [Ag][nm5][24h][EC50][HepG2] −0.8541 −5.2630 −5.0009 2.0405 YES

P 8 [Ag][nm5][24h][EC50][A549] −0.2091 −5.0330 −4.7143 1.0472 YES

C 9 [Ag][nm20][24h][EC50][A549] 2.7579 −4.0350 −3.3961 0.0632 YES

V 10 [Ag][nm50][24h][EC50][A549] 3.5230 −3.9100 −3.0562 1.0472 YES

A 11 [Ag][nm20][24h][EC50][MCF-7] 1.3899 −3.8780 −4.0039 1.0565 YES

P 12 [Ag][nm20][24h][EC50][HepG2] 2.1129 −3.6270 −3.6827 1.0565 YES

A 13 [Ag][nm50][24h][EC50][HepG2] 2.8780 −3.5070 −3.3427 2.0405 YES

P 14 [Ag][nm50][24h][EC50][MCF-7] 2.1550 −3.3560 −3.6640 2.0405 YES

P 15 [Al2O3][nm31][24h][ec50][A549] 5.0528 −2.0090 −2.3765 2.0171 YES

A 18 [Al2O3][nm40–68][24h][IC50][THP-1] 5.1653 −2.1810 −2.3265 2.0375 YES

A 21 [Bi2O3][nm149][24h][LC50][A549] 1.8978 −3.7930 −3.7782 3.0131 No

V 22 [Bi2O3][nm149][24h][LC50][HepG2] 1.2528 −3.6680 −4.0648 4.0063 No

C 23 [CeO2][nm14][24h][ec50][A549] 3.5063 −2.2360 −3.0636 2.0171 YES

P 25 [CeO2][nm33,4][24h][IC50][THP-1] 3.2467 −2.5570 −3.1789 2.0375 YES

P 26 [CeO2][nm-][24h][LD50][A549] 4.8429 −2.2360 −2.4697 1.0209 YES

C 27 [CeO2][nm-][48h][LD50][A549] 3.7565 −2.2360 −2.9524 1.0307 YES

P 30 [Co][nm20][24h][IC50][THP-1] 3.8171 −2.5540 −2.9255 1.0535 YES

A 31 [Co3O4][nm9,2][24h][IC50][Caco2] 3.3840 −3.2920 −3.1179 2.0478 YES
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Table 2. Cont.

Set ID Quasi-SMILES DCW(1,15) Expr Calc D AD

V 32 [Co3O4][nm9,2][24h][IC50][A549] 4.2995 −3.2650 −2.7112 2.0258 YES

A 33 [Co3O4][nm-][12h][ec50][A549] 3.0885 −3.3590 −3.2492 1.0689 YES

V 34 [Co3O4][nm-][108][ec50][A549] 2.9873 −3.3510 −3.2942 1.0519 YES

P 35 [Co3O4][nm-][36h][ec50][A549] 3.0404 −3.3480 −3.2706 2.0176 YES

V 36 [Co3O4][nm-][60h][ec50][A549] 3.1083 −3.3410 −3.2404 2.0176 YES

C 42 [Cu][nm90][24h][IC50][THP-1] 2.8851 −4.0500 −3.3396 2.0375 YES

C 44 [Cu][nm22,9][24h][IC50][THP-1] 3.0525 −2.7470 −3.2652 2.0375 YES

A 48 [Cu2O][nm83–94][24h][IC50][THP-1] 2.0570 −4.2440 −3.7075 2.0375 YES

V 49 [CuO][nm48][24h][ec50][A549] 3.4861 −2.9010 −3.0726 0.0504 YES

P 50 [CuO][nm11,9][24h][IC50][Caco2] 2.3263 −3.8000 −3.5879 1.0812 YES

C 51 [CuO][nm11,9][24h][IC50][A549] 3.2418 −3.6240 −3.1811 1.0592 YES

A 52 [CuO][nm42][18h][EC50][A549] 0.4290 −3.6000 −4.4308 2.0565 YES

C 58 [CuO][nm45,4][24h][IC50][THP-1] 3.0629 −3.8080 −3.2606 1.0709 YES

V 59 [CuO][nm30][24h][IC50][THP-1] 2.9429 −3.6480 −3.3139 1.0709 YES

V 64 [CuO][nm > 50][24h][IC50][A549] 3.1342 −3.4230 −3.2289 0.0592 YES

C 65 [CuO][nm-][60h][ec50][Caco2] 2.3452 −3.4190 −3.5795 1.0730 YES

C 66 [CuO][nm-][108][ec50][Caco2] 2.2242 −3.4020 −3.6332 0.1073 YES

V 67 [CuO][nm-][36h][ec50][A549] 3.1928 −3.3940 −3.2029 1.0510 YES

A 68 [CuO][nm-][108][ec50][A549] 3.1397 −3.3420 −3.2265 0.0852 YES

V 69 [CuO][nm-][216][ec50][Caco2] 1.8852 −3.3320 −3.7838 0.0981 YES

A 70 [CuO][nm-][216][ec50][A549] 2.8007 −3.3300 −3.3771 0.0761 YES

A 71 [CuO][nm-][60h][ec50][A549] 3.2607 −3.3280 −3.1727 1.0510 YES

C 72 [CuO][nm-][12h][ec50][A549] 3.2409 −3.3190 −3.1815 0.1022 YES

V 73 [CuO][nm-][36h][ec50][Caco2] 2.2773 −3.3140 −3.6096 1.0730 YES

A 74 [CuO][nm-][24h][ec50][A549] 4.0369 −3.2590 −2.8278 0.0573 YES

C 75 [CuO][nm-][24h][ec50][Caco2] 3.1214 −2.8320 −3.2346 0.0793 YES

V 76 [Fe2O3][nm39][24h][ec50][A549] 4.6853 −2.2040 −2.5397 1.0171 YES

V 77 [Fe2O3][nm-][24h][LD50][A549] 6.0495 −2.2040 −1.9337 1.0209 YES

A 78 [Fe2O3][nm-][48h][LD50][A549] 4.9631 −2.2040 −2.4164 1.0307 YES

A 79 [MgO][nm20][24h][ec50][A549] 6.4904 −1.6020 −1.7378 1.0331 YES

V 80 [Mn3O4][nm14,9][24h][IC50][Caco2] 2.6535 −3.5360 −3.4425 2.0478 YES

C 81 [Mn3O4][nm14,9][24h][IC50][A549] 3.5690 −3.2260 −3.0357 2.0258 YES

A 82 [Mn3O4][nm-][108][ec50][Caco2] 1.3911 −4.0440 −4.0034 1.0739 YES

V 83 [Mn3O4][nm-][216][ec50][Caco2] 1.0522 −3.8990 −4.1539 1.0648 YES

P 84 [Mn3O4][nm-][108][ec50][A549] 2.3066 −3.8570 −3.5966 1.0519 YES

V 85 [Mn3O4][nm-][60h][ec50][Caco2] 1.5121 −3.8390 −3.9496 2.0396 YES

P 86 [Mn3O4][nm-][60h][ec50][A549] 2.4276 −3.7670 −3.5428 2.0176 YES

A 87 [Mn3O4][nm-][216][ec50][A549] 1.9677 −3.6870 −3.7472 1.0428 YES

V 88 [Mn3O4][nm-][36h][ec50][A549] 2.3598 −3.4030 −3.5730 2.0176 YES

A 89 [MoO3][nm100][24h][ec50][A549] 5.4219 −2.1580 −2.2125 2.0171 YES

A 91 [Ni][nm64–69][24h][IC50][THP-1] 4.5318 −2.6220 −2.6080 2.0375 YES
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Table 2. Cont.

Set ID Quasi-SMILES DCW(1,15) Expr Calc D AD

P 94 [NiO][nm48,9][24h][IC50][THP-1] 2.7830 −4.5020 −3.3850 2.0375 YES

V 95 [Sb2O3][nm20,8][24h][IC50][Caco2] 1.7044 −3.7080 −3.8642 1.0663 YES

C 96 [Sb2O3][nm20,8][24h][IC50][A549] 2.6199 −3.5630 −3.4574 1.0443 YES

P 97 [Sb2O3][nm-][24h][ec50][Caco2] 2.2649 −4.4650 −3.6151 0.0644 YES

P 98 [Sb2O3][nm-][48h][ec50][Caco2] 1.1785 −4.4650 −4.0978 0.0741 YES

A 99 [Sb2O3][nm-][72][ec50][Caco2] 0.3668 −4.4650 −4.4585 1.0581 YES

A 100 [Sb2O3][nm-][216][ec50][A549] 1.9442 −4.1230 −3.7576 0.0612 YES

P 101 [Sb2O3][nm-][60h][ec50][Caco2] 1.4887 −3.8860 −3.9600 1.0581 YES

V 102 [Sb2O3][nm-][108][ec50][A549] 2.2832 −3.8800 −3.6070 0.0704 YES

C 103 [Sb2O3][nm-][108][ec50][Caco2] 1.3677 −3.7900 −4.0138 0.0924 YES

C 104 [Sb2O3][nm-][216][ec50][Caco2] 1.0287 −3.7820 −4.1644 0.0832 YES

V 105 [Sb2O3][nm-][60h][ec50][A549] 2.4042 −3.6940 −3.5533 1.0361 YES

P 106 [Sb2O3][nm-][36h][ec50][Caco2] 1.4208 −3.6410 −3.9901 1.0581 YES

V 107 [Sb2O3][nm-][36h][ec50][A549] 2.3363 −3.5380 −3.5834 1.0361 YES

P 108 [SnO2][nm21][24h][ec50][A549] 4.4986 −2.1790 −2.6227 2.0171 YES

P 111 [SnO2][nm33][24h][IC50][THP-1] 2.7228 −2.4290 −3.4117 2.0375 YES

A 112 [TiO2][nm30–50][24h][ec50][A549] 5.4703 −1.9030 −2.1910 2.0171 YES

P 114 [TiO2][nm5–15][24h][ec50][A549] 5.2689 −1.9030 −2.2805 2.0171 YES

P 120 [TiO2][nm12,2][24h][IC50][THP-1] 4.7545 −1.8770 −2.5090 2.0375 YES

V 121 [TiO2][nm-][24h][LD50][A549] 6.5859 −1.9030 −1.6953 1.0209 YES

A 122 [TiO2][nm-][48h][LD50][A549] 5.4994 −1.9030 −2.1780 1.0307 YES

C 123 [WO3][nm30][24h][ec50][A549] 3.4752 −2.3650 −3.0774 2.0171 YES

P 124 [Y2O3][nm33][24h][ec50][A549] 3.8498 −2.3540 −2.9110 2.0171 YES

A 126 [ZnO][nm21][24h][ec50][A549] 4.6905 −2.9080 −2.5375 1.0509 YES

P 127 [ZnO][nm19,7][24h][IC50][A549] 3.1916 −3.5120 −3.2034 1.0597 YES

C 128 [ZnO][nm19,7][24h][IC50][Caco2] 2.2761 −3.4280 −3.6102 1.0817 YES

V 132 [ZnO][nm53,6][24h][IC50][THP-1] 2.6149 −2.9990 −3.4596 0.0714 YES

P 133 [ZnO][nm-][48h][LD50][A549] 3.5956 −3.0330 −3.0239 0.0645 YES

C 134 [ZnO][nm-][24h][LD50][A549] 4.6821 −2.5110 −2.5412 0.0548 YES

V 139 [ZnO][nm > 50][24h][IC50][A549] 2.9661 −3.1300 −3.3036 0.0597 YES

P 140 [ZnO][nm-][216][ec50][A549] 2.6326 −3.2950 −3.4518 0.0766 YES

C 141 [ZnO][nm-][36h][ec50][A549] 3.0247 −3.2770 −3.2776 1.0515 YES

V 142 [ZnO][nm-][60h][ec50][A549] 3.0925 −3.2460 −3.2474 1.0515 YES

C 143 [ZnO][nm-][108][ec50][A549] 2.9715 −3.2380 −3.3012 0.0858 YES

V 144 [ZnO][nm-][60h][ec50][Caco2] 2.1770 −3.1890 −3.6542 1.0735 YES

C 145 [ZnO][nm-][216][ec50][Caco2] 1.7171 −3.1220 −3.8585 0.0986 YES

C 146 [ZnO][nm-][108][ec50][Caco2] 2.0560 −3.1130 −3.7079 0.1078 YES

C 147 [ZnO][nm-][36h][ec50][Caco2] 2.1092 −3.0900 −3.6843 1.0735 YES

A 148 [ZnO][nm-][12h][ec50][A549] 3.0727 −2.8380 −3.2562 0.1028 YES

C 149 [ZrO2][nm20–30][24 h][ec50][A549] 5.5291 −2.0900 −2.1649 2.0171 YES

A 150 [ZrO2][nm32][24 h][IC50][THP-1] 5.3352 −2.3340 −2.2510 2.0375 YES
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Two CORAL methods are applied here for five random splits.
The first CORAL method is the Monte Carlo optimization with target function without

the vector of ideality of correlation and the correlation weights of fragments of local
symmetry (Equation (2)). This method gives the models represented in Table 3.

Table 3. The statistical characteristics of models observed in the case of the first CORAL method.

Split Set * n R2 CCC IIC CII Q2 RMSE F

1 A 26 0.9953 0.9976 0.7316 0.9959 0.9946 0.062 5075

P 25 0.8116 0.8577 0.7559 0.8444 0.7912 0.436 99

C 25 0.5839 0.7129 0.5545 0.7389 0.5034 0.518 32

V 26 0.6669 - - - - 0.421 -

2 A 25 0.9674 0.9834 0.9079 0.9751 0.9625 0.162 682

P 26 0.8741 0.8936 0.9141 0.9062 0.8592 0.452 167

C 26 0.7119 0.8223 0.5094 0.7885 0.6510 0.287 59

V 25 0.6664 - - - - 0.440 -

3 A 26 0.9942 0.9971 0.9971 0.9947 0.9935 0.071 4145

P 25 0.8097 0.8489 0.6615 0.8729 0.7840 0.488 98

C 25 0.0250 0.1500 0.1577 0.8450 0.2846 0.654 1

V 26 0.4691 - - - - 0.459 -

4 A 26 0.9676 0.9836 0.7214 0.9690 0.9637 0.175 718

P 25 0.9292 0.8513 0.2425 0.9471 0.9194 0.455 302

C 25 0.4948 0.6813 0.5881 0.7106 0.3317 0.340 23

V 26 0.6266 - - - - 0.544 -

5 A 25 0.9958 0.9979 0.6653 0.9971 0.9948 0.061 5496

P 25 0.8422 0.9095 0.8821 0.8796 0.8229 0.423 123

C 26 0.5414 0.7188 0.4751 0.7746 0.4348 0.320 28

V 26 0.5943 - - - - 0.466 -

* A = active training set; P = passive training set; C = calibration set; V = validation set; n = the number of samples
in a set; R2 = determination coefficient; CCC = concordance correlation coefficient; IIC = index of ideality of
correlation; CII = correlation intensity index; Q2 = leave-one-out cross-validated R2; RMSE = root mean squared
error; F = Fischer F-ratio.

The second CORAL method is the Monte Carlo optimization with target function
calculated by Equation (3) with the use of the vector of ideality of correlation together with
the correlation weights of fragments of local symmetry. This method gives the models
represented in Table 4.

One can see that the statistical characteristics of models observed in the case when the
second method is applied are better than those observed in the case of the first method.
This is evidenced by the average determination coefficient for the validation set, which in

the case of the first method amounts to
−

R2
V = 0.605(∆R2

V = 0.073). The second method

gave
−

R2
V = 0.751(∆R2

V = 0.097).
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Table 4. The statistical characteristics of models observed in the case of the second CORAL method.

Split Set * n R2 CCC IIC CII Q2 RMSE F

1 A 26 0.9029 0.9490 0.6968 0.9203 0.8850 0.282 223

P 25 0.7780 0.8048 0.8727 0.8391 0.7534 0.477 81

C 25 0.5926 0.7273 0.7696 0.7677 0.5227 0.468 33

V 26 0.6895 - - - - 0.325 -

2 A 25 0.7646 0.8666 0.8072 0.8717 0.7154 0.434 75

P 26 0.7538 0.7461 0.8669 0.8612 0.7185 0.622 73

C 26 0.8353 0.8981 0.9124 0.8679 0.7857 0.221 122

V 25 0.9132 - - - - 0.239 -

3 A 26 0.8588 0.9240 0.5792 0.9002 0.8386 0.353 146

P 25 0.7794 0.6971 0.5627 0.8848 0.7481 0.661 81

C 25 0.6332 0.7749 0.7947 0.7882 0.5415 0.286 40

V 26 0.6278 - - - - 0.318 -

4 A 26 0.8868 0.9400 0.6906 0.9275 0.8671 0.327 188

P 25 0.8327 0.8529 0.3663 0.8719 0.8021 0.486 114

C 25 0.3795 0.5803 0.6157 0.8039 0.2497 0.439 14

V 26 0.7355 - - - - 0.413 -

5 A 25 0.8341 0.9095 0.8430 0.9063 0.8062 0.387 116

P 25 0.7593 0.8271 0.4998 0.8316 0.7258 0.557 73

C 26 0.8146 0.8062 0.9016 0.8982 0.7673 0.317 105

V 26 0.7878 - - - - 0.273 -

* A = active training set; P = passive training set; C = calibration set; V = validation set; n = the number of samples
in a set; R2 = determination coefficient; CCC = concordance correlation coefficient; IIC = index of ideality of
correlation; CII = correlation intensity index; Q2 = leave-one-out cross-validated R2; RMSE = root mean squared
error; F = Fischer F-ratio.

4. Discussion

The most popular traditional QSAR modelling approach can be formulated as follows:
(i) selection of a group of available and convenient descriptors; (ii) defining a model
using training-set substances; and (iii) validating the model using external validation-
set substances. One can formulate several questions related to the optimization of this
approach. For example, how will the model’s statistical quality change in the next division
into training and testing samples? How to avoid overfitting (i.e., how to avoid a situation
where a good model for the training set becomes a bad model for external substances)?
How can one estimate the probability of obtaining a satisfactory and reliable model? In
fact, the approach under consideration attempts to solve these problems using original
idealizations, assumptions, and limitations.

Much excellent research is dedicated to nano-topics; nevertheless, even a simple question,
e.g., whether a nanomaterial can be assessed using software, is quite ambiguous. The
results of different estimations can vary depending on the personal experience of the expert
conducting the study, and one cannot guarantee the reproducibility of these assessments.

Perhaps the main and convenient (from the user point of view) idealization of the
considered approach is that instead of searching for sources of numerous descriptors, it is
supposed to use “artificial” optimal descriptors, which can be tuned to correlate with the
endpoint of interest. This assumption may not be correct. In this case, the approach under
consideration is unsuitable for such a task, and a useful alternative approach to solve the
task becomes necessary. However, there are cases where the approach discussed here has
been useful [6–12].
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The approach considered here has various advantages. First, to apply this approach,
one can use arbitrary data. There is no ‘a priori’ knowledge before the experiment about
whether such data can improve the model or not. The instability of the values of the
correlation weights is a reliable indicator of the uselessness of the tested factor. On the
contrary, at the same time, stability is a significant indicator of the influence of the factor
on the predictive potential of the model. Secondly, this approach makes it easy to change
the set of correlation-weighted factors, thus radically changing the model. This facilitates
fast evaluation of the benefits of various hypotheses related to the optimal list of factors
involved in the model development process.

The universality of the approach provides the user with sample opportunities to
choose a set of basic factors for developing a model. However, overextension of such a
set can lead to useless models that are excellent for the training set of samples but are
completely unsuitable for external sets of similar samples. Given this circumstance, it is
difficult to formulate rules for dividing the available data into active learning, passive
learning, calibration, and an external validation set. It seems reasonable to assume that
each of the four mentioned sets has the same significance. Therefore, the distribution of
available samples should be approximately the same, i.e., about 25% of the data for each
set (Tables 2 and 3).

The presented approach is similar to incremental methods based on the selection
of suitable contributions from individual parts of molecules to describe or model the
physicochemical property or biological activity of interest [18,19]. The main common
feature of the described approach with the additive scheme is that in both cases, the
modeled endpoint is considered as the sum of the contributions of some participants in
the model-building process. The difference between the mentioned approaches lies in
the fact that for the traditional additive scheme, the set of participants is constant. At the
same time, for the quasi-SMILES approach, it is possible to vary the number and quality
of participants in the model-building process. For example, theoretically, the user of the
quasi-SMILES method can eliminate the correlation weights reflecting particle size by
reducing the number of Monte Carlo optimization parameters.

On the other hand, the user can expand the brutto formulas by representing the
corresponding metal oxides with traditional SMILES (e.g., instead of Al2O3 using [O-2].
[O-2].[O-2].[Al+3].[Al+3]), thereby increasing the number of optimized parameters. Of
course, such changes do not guarantee an improvement in the predictive potential of the
model, but they do provide the user with extended opportunities in the search for a model of
the phenomenon and perhaps even stimulate the user’s creative activity. Another important
although hidden point is that the considered approach allows the user to identify and
discard those quasi-SMILES fragments that are non-informative due to their low prevalence
in training samples and/or in the general array of available data. This defines automatically
through the appropriate selection of the threshold described above (i.e., parameter T in
Equation (1)). Since QSAR is actually a random event [20] associated with and determined
by the distribution of available data in training and control samples, this option is very
useful because it allows one to go from so-called “naive cross-validation” to “two-step
cross-validation” [21]. The difference between naive and two-step cross-validation is as
follows. Naive cross-validation is the result of a single distribution in the training and
the validation sets. In contrast, two-step cross-validation is the result of considering and
analyzing multiple random distributions in the training and validation sets.

A very significant component of models built on optimal descriptors using quasi-
SMILES codes is optimization procedures by the Monte Carlo method. The choice of the
target function is the key to the success of such Monte Carlo calculations. The ideality
index of correlations (IIC) [22] turned out to be a very useful finding for improving the
objective functions for the Monte Carlo method optimizations used to construct optimal
descriptors calculated in using both SMILES and quasi-SMILES codes. The majority of the
phenomena involved in the natural sciences are complex. Idealization (or simplification)
is one of the most common approaches to studying complex phenomena in the natural
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sciences, such as ideal gas, ideal solution, ideal crystals, and ideal symmetry [22]. Ideal
correlation is also a very attractive variant of correlations in general. The main idea of
ideal correlation expressed through IIC is a correlation with forced minimization of the
mean absolute error (MAE). It is to be noted, however, that the application of IIC gives an
improvement to the statistical characteristics for calibration and validation sets which is
accompanied by reducing the correlation coefficient for the training sets. This is a paradox
situation. Nevertheless, from a practical point of view, this situation is preferable to
overtraining (i.e., the situation in which the excellent statistical quality for the training set is
accompanied by poor statistical quality for the validation set). An analysis of the graphical
representations of such a paradox observed with various geometric configurations on
plots for ‘experiment vs calculation’ shows that such idealization is not always possible;
fortunately, however, it is possible in the majority of cases of the different arrangement of
points on the plot diagram ‘experiment vs calculation’ [23].

Another useful invention for improving the predictive potential of models based on
quasi-SMILES codes is the Correlation Intensity Index (CII) [17]. Data on a group of quasi-
SMILES (e.g., calibration set or validation set) with experimental and predicted values
of an endpoint gives the possibility to estimate the contribution of each quasi-SMILES to
the correlation between experiments vs calculated endpoint value. The negative effect of
removing quasi-SMILES means it is a ‘supporter’ of the correlation; the positive effect of
removing quasi-SMILES means it is an ‘oppositionist’ of the correlation. The sum of these
effects is the CII.

5. Conclusions

The present study demonstrated that the quasi-SMILES technique gives statistically
robust models for the half-maximal concentrations for the five cell lines. We showed that
the statistical quality is well reproduced for five random splits of available data into a
structured training set (i.e., the active training, passive training, and calibration sets) and an
external validation set. Such approach is tested and recommended for various applications
of the quasi-SMILES approach. Paradoxically, the vector of ideality of correlation, which
is the sum of the described IIC and CII, improves the predictive potential of the studied
models but in detriment to the statistical quality of the models on the training set. The
described approach can be easily adapted to simulate other experimental situations and
endpoints for nanomaterials and other substances (mixtures, polymers, peptides, proteins).

A quasi-SMILES approach describing experimental situations can be modified both by
feedback (i.e., depending on the results obtained) and purely heuristically in accordance
with spontaneous ideas for which statistical expertise is possible. Thus, quasi-SMILES are a
simple and versatile approach for modelling experimental situations not yet implemented
in practice. Indices IIC and CII cannot only improve Monte Carlo optimization, but the
mentioned values can also be indicators of the predictive potential of various models.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13121852/s1. Supplementary Materials section contains technical
details (Table S1 quasi-SMILES split 1–5 with experimental and calculated values of the half-maximal
concentrations for the five cells lines; Table S2 includes the numerical data on the corresponding
correlation weights for elements of quasi-SMILES).
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