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Abstract: With the growing demands of human beings, sanitary landfill, along with the increase
in landfill depth and leachate water pressure, has put forward new and higher requirements for
the impermeable layer. In particular, it is required to have a certain adsorption capacity of harmful
substances from the perspective of environmental protection. Hence, the impermeability of polymer
bentonite–sand mixtures (PBTS) at different water pressure and the adsorption properties of polymer
bentonite (PBT) on contaminants were investigated through the modification of PBT using betaine
compounded with sodium polyacrylate (SPA). It was found that the composite modification of
betaine and SPA could reduce the average particle size of PBT dispersed in water (reduced to 106 nm
from 201 nm) and enhance the swelling properties. As the content of SPA increased, the hydraulic
conductivity of PBTS system decreases and the permeability resistance improves, while the resistance
to external water pressure increases. It is proposed a concept of the potential of osmotic pressure
in a constrained space to explain the impermeability mechanism of PBTS. The potential of osmotic
pressure obtained by linear extrapolation of the trendline of colloidal osmotic pressure versus mass
content of PBT could represent the external water pressure that the PBT resist. Additionally, the PBT
also has a high adsorption capacity for both organic pollutants and heavy metal ions. The adsorption
rate of PBT was up to 99.36% for phenol; up to 99.9% for methylene blue; and 99.89%, 99.9%, and
95.7% for low concentrations of Pb2+, Cd2+, and Hg+, respectively. This work is expected to provide
strong technical support for the future development in the field of impermeability and removal of
hazardous substances (organic and heavy metals).

Keywords: bentonite; sodium polyacrylate; betaine; osmotic pressure; hydraulic conductivity;
adsorption

1. Introduction

With deepening urbanization, industrial waste and municipal waste have increased
rapidly. The current method of waste disposal is mainly sanitary landfill, an efficient way to
prevent pollutants from polluting the environment [1,2]. Leachate from sanitary landfilling,
however, typically contains organic contaminants and heavy metal ions, damaging both
the local ecological environment and public health [3–5]. Organic pollutants significantly
harm biological and human health, weaken the body’s defenses against illness, and result
in birth abnormalities and reproductive issues [6–8]. Heavy metal ions could pose a major
threat to ecosystems and human health even at low concentrations because of their high
mobility, bioaccumulation, tremendous toxicity, and cancer-causing potential [9]. Lead
and cadmium are examples of heavy metal ions that can harm the kidneys and induce
analgesia [10], hepatitis, carcinogenesis [11], pulmonary fibrosis [12], and indigestion [13].
Leachate pollution of the environment can be avoided via impermeable layers [2,14]. The
primary types of impermeable layers include geomembranes, geosynthetic clay liners
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(GCL), compacted clay liners (CCL), and bentonite–sand mixes (BS) [15]. Due to the
uneven settlement of the foundation, CCL, GCL, and geomembrane may be destroyed and
impermeability decreased. However, the BS is a main direction for the development of
impermeable layers as it is low cost, self-healing, and has low permeability [16,17].

Bentonite is a kind of clay, with montmorillonite as the main mineral. The basic
structure of the montmorillonite crystal lattice consists of silica (tetrahedron) and alumina
(octahedron). Additionally, there are two primary types of bentonite: sodium bentonite
and calcium bentonite [18]. As a result of the layers of montmorillonite absorbing water
molecules, bentonite dictated the impermeability of BS, which showed up as macroinfla-
tion [19,20]. Bentonite may be biologically changed to increase its impermeability [21,22].
According to Salemi [17], sodium polyacrylate (SPA)-modified bentonite can reduce the
hydraulic conductivity of bentonite from 1.73 × 10−7 m/s to 2.06 × 10−8 m/s. By altering
bentonite with polyacrylic acid, Scalia [23] demonstrated that the hydraulic conductivity of
bentonite decreased from 2 × 10−10 m/s to 8 × 10−11 m/s. Based on Ozhan [24], modi-
fied bentonite containing cationic polyacrylamide can lower hydraulic conductivity from
3.4 × 10−10 m/s to 5.4 × 10−11 m/s. Zhang [25] verified that the anionic polyacrylamide-
modified bentonite reduced hydraulic conductivity from 3.91 × 10−10 to 2.12 × 10−11 m/s.
A skeleton created by sand in the BS enhanced the structural durability of the impermeable
layer, facilitating its long-term use [26]. The mechanism of impermeability has not yet
been fully investigated. Bohnhoff [27] proposed a semi-permeable membrane mechanism
that underlies bentonite resistance; Ejezie [28] contended that polyacrylamide blocks the
pores between sand grains; Katsumi [16] postulated that swelling was the cause of the low
hydraulic conductivity of bentonite materials; and Yu [29] claimed that polymer-modified
bentonite contains minute cavity structures that lengthen the percolation path, decreasing
the material’s permeability.

Bentonite has significant research value in wastewater treatment [30,31] due to its
multi-layer structure, high specific surface area, and exchangeable interlayer cations, which
may efficiently adsorb organic contaminants [32–34] and heavy metal ions [35]. However,
the adsorption capacity of raw bentonite is limited, and can be increased via polymer
modification [36]. Currently, the principal use of quaternary ammonium cationic surfactants
is in the cation exchange modification of bentonite [37]. At a phenol concentration of
200 mg/L, He [38] discovered that modified bentonite with cetyltrimethylammonium
bromide (CTAB) could achieve phenol adsorption of 10.1 mg/g. According to Meng [39],
adding a quaternary ammonium surfactant to modified bentonite enhanced its ability to
adsorb methylene blue from 60% to 95%. However, bentonite may become hydrophobic
and have a reduced ability to adsorb metal ions if quaternary ammonium surfactants are
present [40]. Liu [41,42] found that modified bentonite with amphoteric surfactants was
effective at adsorbing bisphenol A, Pb2+, and Cd2+. This was probably due to the carboxyl
groups (−COO−) and positively charged groups (−N+) that were present in the amphoteric
surfactants, which make it simpler to adsorb metal ions and organic contaminants [43–45].

As sanitary landfills evolve, the depth of the landfill steadily deepens, the water
pressure of the leachate increases and the demands on the impermeable layer are raised.
This study examined the impermeability of a PBT–sand mixture (PBTS) and the composited-
modification bentonite’s (PBT) adsorption capability after being treated with sodium
polyacrylate and betaine. Additionally, the osmotic pressure mechanism was proposed as
an impermeability mechanism. In a sand–sand constrained space, the colloidal osmotic
pressure of PBTS determined the water pressure it could resist. The findings showed
that the osmotic pressure of the PBT colloid increased with increasing SPA concentration,
and that PBTS’s resistance to permeability and external water pressure both improved.
However, the hydraulic conductivity of PBTS increased and the resistance to permeability
decreased when the water pressure was greater than the osmotic pressure of the PBT
colloidal. Additionally, the PBT showed effective adsorption properties for phenol, heavy
metal ions, and methylene blue.
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2. Experimental Methods
2.1. Materials

Natural bentonite (OB) came from India, an earth-yellow powder with a water content
of 8%, particle size of 0.075 mm, and cation exchange capacity (CEC) of 67.1 mmol/100 g;
the main composition is shown in Table 1. The molecular weight of sodium polyacrylate
(SPA) was 5 million (500 w), 10 million (1000 w), 15 million (1500 w), 20 million (2000 w),
and 25 million (2500 w), from industrial-level products. Betaine was analytically pure; the
fineness of the sand was 30 mesh; and the experimental water was deionized water.

Table 1. Main components of bentonite (%mass).

Montmorillonite Kaolinite Quartz Halloysite

63% 19% 14% 3%

2.2. Preparation of Polymer-Modified Bentonite

A total of 1.5 g (3% of bentonite mass) sodium polyacrylate (SPA) dissolved in 300 mL
deionized water at 70 ◦C and 50 g bentonite dissolved in 1000 mL deionized water were
stirred for 2 h. The bentonite solution was evenly dispersed and then added to the sodium
polyacrylate solution, stirred for 1h, dried at 100 ◦C, ground, and passed through a 200 mesh
sieve, and the sample was named PB. Then, 2.5 g (5% of the bentonite mass) betaine was
dissolved in 100 mL deionized water, added to the dispersed bentonite solution, and
stirred for 1h, and then sodium polyacrylate solution was added, stirred for 1h, dried at
100 ◦C, ground, and passed through a 200 mesh sieve, and the sample was named PBT.
The bentonite was modified only with betaine, and named BT. The different contents and
different betaine content of bentonite were named PxBTy; x was the content of SPA, and y
was the content of betaine. The different molecular weights of the SPA composite modified
with betaine were named as P500wBT, P1000wBT, P1500wBT, P2000wBT, and P2500wBT.

2.3. Material Characterization

X-ray diffraction (XRD) was carried out using a Panaco Empyrean diffractometer
from the Netherlands at 40 kV and 40 mA with Cu (λ = 1.5406), and scans were recorded
between 4◦ and 40◦ in 0.1◦ steps at a rate of 2 ◦/min. The particle size distribution of the
bentonite colloids was measured using a laser particle size analyzer, Master Sizer 2000,
Malvern, UK. FTIR was used to test the changes in bentonite before and after modification
with the Therno Nicolet Nexus smart Fourier transform infrared spectrometer, USA, with a
measured spectral range of 400–4000 cm−1 and an accuracy of 0.01 cm−1. The microscopic
morphology of the OB, PB, and PBT was characterized using a JSM-7500F SEM. The
zetapotential of OB, PB, and PBT was tested.

2.4. Free Swell Index

The free swell index (FSI) test was conducted according to the ASTM D5890 standard
method. Add 90mL of deionized water to a 100 mL measuring cylinder, take 2 g dried
OB, PB and PBT, add about 0.1 g or so to the cylinder each time, leave an interval of at
least 10 min, add water to 100 mL after all the additions. The free swell index of bentonite
(mL/2 g) was measured after 24 h.

2.5. Hydraulic Conductivity

A total of 16 g of OB and PBT mixed with 64 g of sand, were added to 7–9 g of
deionized water, and water was slowly sprayed into the sand mixture. Then, under 10 MPa
pressure, they were pressed into a specimen with a height of 10 mm and a diameter of
70 mm, with a density of about 2.2 g/cm3. The hydraulic conductivity was measured with
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a TST-55 permeameter, controlling the water pressure from 20 kPa in increments of 30 kPa
to 200 kPa. The hydraulic conductivity was calculated as follows:

k =
a × L

2 × A × ∆t
ln
(

∆h1

∆h2

)
(1)

where k is the hydraulic conductivity (m/s), a is the cross-sectional area of the PBTS
specimen m2; L is the height of the PBTS specimen (m); A is the water passage area of
the sample (cm2); ∆t is the time interval(s); ∆h1 is the head loss across the permeame-
ter/specimen at the start time of the permeation trial (m); and ∆h2 is the head loss across
the permeameter/specimen at the end time of the permeation trial (m).

2.6. Colloidal Osmotic Pressure

PBT and OB were dissolved in 100 mL of deionized water to prepare colloidal solutions
with concentrations of 5, 15, 25, 35, 45, and 55 g/L. The osmotic molar concentrations of
bentonite colloids were measured using a German GONOTEC freezing point osmotic
pressure meter, Osmomat030 3000.

2.7. Adsorption Experiments
2.7.1. Phenol Adsorption Experiments

OB and PBT were dissolved in 100 mL of phenol solution with a solution concentration
of 50, 100, 200, 400, 600, and 800 mg/L, shaken at 150 r/min for 3 h. The supernatant was
removed and centrifuged at 7500 r/min for 15 min and passed through a 0.45 µm filter
membrane, and the absorbance of the filtrate at 271 nm was measured.

2.7.2. Methylene Blue Adsorption Experiments

OB and PBT were dissolved in 50 mL of methylene blue solution with a solution con-
centration of 200 mg/L, respectively, shaken at 25 ◦C at 150 r/min for 3 h, the supernatant
taken, and the absorbance measured at 664 nm using a UV spectrophotometer.

2.7.3. Heavy Metal Ion Adsorption Experiments

OB and PBT were dissolved in 100 mL of Pb2+, Cd2+, Hg+ ion solution with a solution
concentration of 200 mg/L, shaken at 25 ◦C with 150 r/min for 3 h, the supernatant taken,
centrifuged at 7500 r/min for 15 min, passed through a 0.45 µm filter membrane, and the
metal ions in the filtrate measured using flame method atomic absorption spectroscopy.

3. Results and Discussions
3.1. Characterization

XRD was used to analyze the structures of OB, PB, PBT, and BT. The results are shown
in Figure 1a. The d001 of PBT was reduced from 1.451 nm to 1.223 nm as compared to OB,
which contributed to the quaternary amino via ion exchange in betaine. The bentonite layer
distance of d001 was not significantly affected by a betaine content above 5% (Figure S1). The
particle sizes of OB, PB, and PBT dispersed in water are shown in Figure 1b. PBT displayed
nanodispersibility after modification, with the particle size dropping from 203 nm for OB to
106 nm, due to the intercalation of betaine. The IR of bentonite is shown in Figure 1c, where
the main spectral bands of bentonite are 3623 cm−1, attributed to the stretching vibration of
montmorillonite structural hydroxyl −OH, 3436 cm−1, and 1636 cm−1, mainly due to the
stretching vibration of an interlayer water molecule −OH and bending vibration of −OH,
1421 cm−1 attributed to the stretching vibration and bending vibration of C-H, 1034 cm−1

and 797 cm−1 attributed to the stretching vibration and bending vibration of Si-O, and 876
cm−1 attributed to the bending vibration of montmorillonite structural hydroxyl −OH. In
particular, the peak at 1564 cm−1 was the stretching vibration of acrylate (−COO−) on
both PB and PBT, and the peak at 1339 cm−1 was the stretching vibration of C-N on PBT.
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Figure 1. (a) XRD patterns of OB, PB, PBT, and BT; (b) PSD patterns of OB, PB, and PBT; (c) IR
patterns of OB, PB, and PBT.

3.2. Free Swell Index

The higher the FSI of bentonite, the lower its hydraulic conductivity [22]. The FSI
values of OB, P3%B (3%SPA) and P3%BT5% (3% SPA and 5% betaine) are shown in Figure 2a.
As the SPA molecular weight increased, the FSI gradually rose, and betaine caused the
FSI to rise even higher. The FSI of PBT5% (5% betaine) is shown in Figure 2b; the higher
the content of SPA, the more significantly the FSI increased. The FSI of P3%&2000wBT (3%
SPA (2000 w, molecular weight)) is shown in Figure 2c, where the FSI increased with
the increased betaine content, with no further increase beyond 5%. Figure 2d shows
that following the SPA treatment, the zetapotential of PBT increased and its stability was
improved; the stability increased with increasing SPA content. The zetapotential continued
to rise following SPA and betaine compound modification, and stability improved with
increasing betaine content.
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Figure 2. (a) The FSI of OB, P3%B, and P3%BT5% with different molecular weights of SPA; (b) the
FSI of PBT5% with different SPA (2000 w) content; (c) the FSI of P3%&2000wBT with different betaine
content; and (d) the zetapotential of OB and PB with different SPA contents and PBT with different
SPA and betaine contents.

3.3. Hydraulic Conductivity

The impermeability of PBTS combined with PBT and sand in various ratios was exam-
ined. Based on the results of the FSI experiment, PBT was made by modifying 5% betaine
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and SPA with various molecular weights and contents. The hydraulic conductivity of
P2000wBT5%S (SPA (2000 w, molecular weight) and 5% betaine) with a 20:80 PBT–sand ratio
at 20–200 kPa water pressure is shown in Figure 3b. The result indicated the P2000wBT5%S
with high SPA content had a lower hydraulic conductivity and better impermeability. With
the rising water pressure, the hydraulic conductivity of P2000wBT5%S with varied SPA
contents first fell and then rose. The critical water pressure Pc was defined as the water
pressure at the lowest value of hydraulic conductivity, as shown in Table 2, which rose as
the content of SPA increased.
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Table 2. Pc, πµ with various SPA contents (kPa).

0% 1% 3% 5%

Pc 80 110 140 170
πµ 80.6 110.5 137 170.2

Generally, the hydraulic conductivity of PBTS was influenced by the PBT–sand ratio.
As shown in Figure 3c, the hydraulic conductivity of P5%&2000wBT5%S (5% SPA (2000 w,
molecular weight) and 5% betaine) decreased first and then increased when the PBT–sand
ratio increased, coinciding with earlier studies [46]. The Pc for P5%&2000wBT5%S, with the
15:85 PBT–sand ratio lower than the other PBT–sand ratios of PBTS, due to the low PBT
content of the system, did not have a higher colloidal osmotic pressure and had relatively
poor impermeability. Additionally, the hydraulic conductivity of P5%BT5%S with different
SPA molecular weights and 20:80 PBT–sand ratios is shown in Figure 3d, and decreased
when the molecular weight increased; at 170 kPa, the lowest hydraulic conductivity of
P2500wBT5%S was 4.62 × 10−12 m/s.

3.4. Colloidal Osmotic Pressure Mechanism

Our experimental results were not well explained by current impermeability mecha-
nisms, so the colloidal osmotic pressure mechanism was proposed. Figure 4a depicts the
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osmotic pressure of the PBT colloidal solution with various SPA concentrations. The figure
showed that the greater the SPA concentration of PBT, the higher the osmotic pressure,
which was consistent with the experimental findings. Moreover, the osmotic pressure
tended to flatten out and alter almost linearly as the mass concentration increased. Obvi-
ously, the impermeable PBT had a highly concentrated colloidal system, in which colloidal
osmotic pressure was hardly measured. Thus, the curve of osmotic pressure with high
concentration was extrapolated to 100% by the PBT mass content (seen in Figure 4d). The
intercept value gained from extrapolating, shown in Table 2, was called the potential of
osmotic pressure (πµ). The πµ could represent the chemical potential of PBT, which was
an ability to form osmotic pressure. The test value Pc basically coincided with the πµ, indi-
cating that the ability of PBTS to resist external water pressure depended on the colloidal
osmotic pressure in a constrained space. Thus, the colloidal osmotic pressure mechanism
was proposed to explain the impermeability of PBTS (shown in Figure 5). When the PBTS
was compacted, the sand particles overlapped each other to form a sand–sand constrained
space which the PBT filled. When water began to penetrate, the PBT absorbed it and
expanded, gradually creating a highly concentrated colloidal system with a comparatively
stable colloidal osmotic pressure. Due to the PBT not being able to absorb more water
and expand in a constrained space, it was able to resist water penetration. When the
external water pressure exceeded the colloid osmotic pressure, the PBT colloid loss and
impermeability of PBTS were reduced.
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3.5. Adsorption Properties

Domestic waste, industrial wastewater, and mine tailings usually contain organic
pollutants and heavy metal ions, but the nanodispersible PBT may have great adsorption
performance for harmful substances. In this paper, the organic pollutants and heavy metal
ions adsorption performance of OB and PBT were investigated, and the adsorption pro-
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cesses of OB and PBT were described by Langmuir and Freundlich’s isothermal adsorption
models and adsorption kinetics [47,48].

3.5.1. Phenol Adsorption

The adsorption capacity of P3%&2000wBT5% (3% SPA (2000 w, molecular weight) and
5% betaine) for different concentrations of phenol is shown in Figure 6a; it increased as the
phenol concentration rose, and reached 150 mg/g. Compared to OB, the phenol adsorption
capacity of PBT improved by 289% at a 50 mg/L concentration. It was higher than the
120.4 mg/g reported in previous research for bentonite modified by dodecyldimethyl
betaine [49]. The phenol adsorption rate of P3%BT5% with different molecular weights
of SPA is shown in Figure 6b, and it could reach more than 90% and up to 99%. When
the SPA content increased, as shown in Figure 6c, the phenol adsorption increased up to
111 mg/g. The phenol adsorption increased up to 111 mg/g as the SPA concentration rose,
as illustrated in Figure 6c. Figure 6d depicted the P3%&2000wBT’s phenol adsorption capacity
with various betaine contents; as the betaine content grew, the phenol adsorption capacity
increased up to 102 mg/g. Because of its high surface tension, phenols with low surface
tension could not be effectively adsorbed onto OB. After modification, PBT exhibited a
higher affinity for phenol. As shown in Figure 7, the phenol adsorption processes of OB and
PBT were more consistent with the Freundlich model and with the pseudo-second-order
kinetics (Tables S2 and S3).
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3.5.2. Methylene Blue Adsorption

The adsorption performance of PBT on organic pollutants using methylene blue as
a simulant was investigated. With increasing molecular weight, as shown in Figure 8a,b,
the methylene blue adsorption capacity and adsorption rate of P3%BT5% (3% SPA and 5%
betaine) both increased from a maximum of 335 mg/g in OB to 464 mg/g, an increase
of 38.5%, and from 91.3% of OB to 99.9%, respectively. Figure 8c depicts the methylene
blue adsorption capability of P2000wBT5% with varying SPA content, which increased with
increasing SPA content. As demonstrated in Figure 8d, the methylene blue adsorption
capability of P2000wBT5% increased as the betaine concentration increased. The adsorption
process of PBT was via pseudo-second-order kinetics (Figure S2, Table S3).

3.5.3. Heavy Metal Ion Adsorption

As shown in Figure 9a, the Pb2+ adsorption of P2000wBT5% (with 5% betaine and
different contents SPA (2000 w, molecular weight)) rose from 128 mg/g in OB to 151
mg/g with increasing SPA concentration. Additionally, this was similar to the 150 mg/g
reported in previous research for bentonite modified by sodium polyacrylate [50]. With
betaine content increasing, as shown in Figure 9b, the adsorption capacity of P3%&2000wBT
increased. The adsorption process of P3%BT5% was pseudo-second-order kinetic (Figure S3,
Table S4). In fact, the content of heavy metal ions in domestic waste was low, and the
adsorption rate of PBT on heavy metal ions at low concentrations (20 mg/L) could be
investigated. Figure 9c depicted the Pb2+, Cd2+, and Hg+ adsorption rates of OB and PBT
with various SPA molecular weights. When compared to OB, all of the Pb2+ adsorption
rates of PBT with different SPA molecular weights increased by 12%. The Cd2+ adsorption
rates of P3%BT5% at various molecular weights were comparable to those of Pb2+, which
increased by 10% and exceeded 99%; however, the Hg+ adsorption rates of P3%BT5% at
various molecular weights of SPA increased with increasing molecular weight, reaching
a maximum of 95.7% and an increase of 35% over OB. The heavy metal ions adsorption
capacity of PBT was enhanced by electrostatic adsorption, increased adsorption sites and
complexation of the polymer with metal ions, and basically the complete adsorption of
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heavy metal ions at low concentrations, which could effectively remove trace contents of
heavy metal ions from the waste filtrate.
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adsorption capacity of P3%&2000wBT with different betaine contents; and (c) the Pb2+, Cd2+ and Hg+

adsorption rates of OB and P3%BT5% with different SPA molecular weights.

PBT had good adsorption capabilities for both organic contaminants and heavy metal
ions, contrasted with quaternary ammonium salt modifications [43]. This was primarily
due to the complex modification of the amphoteric surfactant betaine with SPA, which
improved the hydrophilicity and dispersibility of the bentonite while increasing the number
of adsorption sites.

4. Conclusions

In this study, bentonite was treated with SPA and betaine to reduce the particle size
from 203 nm to 106 nm and achieve nanoscale dispersion. The swelling performance of PBT
was improved, and the zetapotential indicated that the stability of PBT was improved. The
PBTS impermeability was investigated from the standpoint of osmotic pressure, and the
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colloidal osmotic pressure mechanism was proposed to explain the PBTS impermeability
process. When the colloidal osmotic pressure of PBT increased, its permeability coefficient
decreased, its impermeability improved, and its resistance to external water pressure
increased. The permeability coefficient of PBTS could be lowered to 4.62 × 10−12 m/s
after modification. PBT was also effective in absorbing organic pollutants and heavy metal
ions. The phenol adsorption capacity and adsorption rate of PBT went up to 150 mg/g
and 99.36%, respectively; the methylene blue adsorption capacity and adsorption rate of
PBT went up to 464 mg/g and 99.91%, respectively; the Pb2+ adsorption capacity went
up to 151 mg/g; and the Pb2+, Cd2+, Hg+ adsorption rate of PBT in low concentrations
went up to 99.89%, 99.9%, and 95.7%, respectively. Overall, this work could provide strong
technical support for future developments in the field of impermeability and the removal
of hazardous substances (organic and heavy metals).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13121840/s1, Figure S1. XRD pattern of PBT with different
betaine content; Table S1. Parameters for Langmuir and Freundlich isotherms for the adsorption
of phenol on OB, PBT; Table S2. Adsorption kinetics of phenol on OB, PBT; Figure S2. Adsorption
kinetics of methylene blue on PBT; Table S3. Adsorption kinetics of methylene blue on PBT; Figure S3.
Adsorption kinetics of lead ions on PBT; Table S4. Adsorption kinetics of lead ions on PBT.
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