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Abstract: Anti-Stokes photoluminescence (ASPL) is an up-conversion phonon-assisted process of
radiative recombination of photoexcited charge carriers when the ASPL photon energy is above the
excitation one. This process can be very efficient in nanocrystals (NCs) of metalorganic and inorganic
semiconductors with perovskite (Pe) crystal structure. In this review, we present an analysis of the
basic mechanisms of ASPL and discuss its efficiency depending on the size distribution and surface
passivation of Pe-NCs as well as the optical excitation energy and temperature. When the ASPL
process is sufficiently efficient, it can result in an escape of most of the optical excitation together
with the phonon energy from the Pe-NCs. It can be used in optical fully solid-state cooling or optical
refrigeration.

Keywords: photoluminescence; anti-Stokes; halide perovskites; nanocrystals; phonons; optical
cooling; laser cooling

1. Introduction

Semiconductor bulk perovskite (Pe) materials and Pe-based low-dimensional struc-
tures such as nanocrystals (NCs) have attracted much attention as new optoelectronic
materials with outstanding optical and electronic properties [1,2]. In recent years, halide
Pe-semiconductors have been extensively studied for applications in optoelectronic devices,
including solar cells and light-emitting diodes [3–6]. The tunable bandgap of Pe-NCs
across the whole visible range [2,7] makes them favorable candidates in photovoltaics and
photonics. The bright excitonic photoluminescence (PL) of Pe-NCs is promising for a new
generation of light emitters with ultrahigh color purity [1,7,8].

Halide perovskites possess the crystal structure of ABX3-type, where A is an organic
or inorganic cation, such as methylammonium (MA), formamidinium (FA), and cesium
(Cs); B is a divalent metal cation (Pb, Sn and other); and X is a halide anion (Cl, Br, I or their
mixture) as schematically shown in Figure 1a. The bandgap energies and PL spectra of
Pe-NCs are determined by both their composition and sizes. The latter controls the band
gap and PL properties of those NCs due to an effect of quantum confinement for charge
carriers and excitons [7–11]. For example, colloidal CsPbX3 NCs are tunable in the spectral
region of 410–700 nm by changing the anion content and nanocrystal sizes (Figure 1b). This
is because the quantum size effect of the band gap of CsPbX3 NCs changes from about 2.4
to 2.7 eV when the mean NC sizes decrease from 11.8 to 2 nm, respectively [7]. PL spectra
of Pe-NCs typically represent narrow emission lines with a linewidth of 12–42 nm, a wide
color gamut covering up to 140% of the NTSC color standard, a high quantum yield (QY),
and radiative lifetimes in the range of 1–29 ns [7].
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Figure 1. (a) Halide perovskite crystal ABX3 structure where large blue circles correspond to the first 

cations as CH3NH3+, Cs+, and CH(NH2)2+; violet circles depict the anions as Cl−, Br−, and I−; and brown 

circles depict the second cation as Pb2+ and Sn2+. Reprinted from Ref. [8]; (b) representative images 

of the luminescent colloidal solutions of CsPbX3 NCs and their PL spectra. Reprinted from Ref. [7]. 

Halide Pe-NCs are low-cost and high-quality materials which can be synthesized by 

facile methods, such as hot injection [7] and ligand-assisted reprecipitation (LARP) [9,10]. 

Due to the polar bonds in halide perovskites, the Fröhlich coupling of charge carriers to 

longitudinal optical (LO) phonons determines the strong electron–phonon interaction [12] 

which promotes the up-conversion radiative process at the expense of phonon energy and, 

thus, provides a phenomenon of the anti-Stokes photoluminescence (ASPL) [13]. The latter 

is a phonon-mediated up-conversion radiative recombination where thermal energy of 

the emitting material combines with an absorbed low energy photon to produce higher 

photon energy [14,15]. 

The present review describes the latest results concerning ASPL and laser cooling in 

Pe-NCs. First, we discuss the fundamental concept of laser cooling, then we review the 

available information about up-conversion mechanisms and the role of electron–phonon 

interactions. After that we show practical approaches for PL efficiency maximizing and 

laser cooling implementations. 
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Figure 1. (a) Halide perovskite crystal ABX3 structure where large blue circles correspond to the first
cations as CH3NH3

+, Cs+, and CH(NH2)2
+; violet circles depict the anions as Cl−, Br−, and I−; and

brown circles depict the second cation as Pb2+ and Sn2+. Reprinted from Ref. [8]; (b) representative
images of the luminescent colloidal solutions of CsPbX3 NCs and their PL spectra. Reprinted from
Ref. [7].

Halide Pe-NCs are low-cost and high-quality materials which can be synthesized by
facile methods, such as hot injection [7] and ligand-assisted reprecipitation (LARP) [9,10].
Due to the polar bonds in halide perovskites, the Fröhlich coupling of charge carriers to
longitudinal optical (LO) phonons determines the strong electron–phonon interaction [12]
which promotes the up-conversion radiative process at the expense of phonon energy and,
thus, provides a phenomenon of the anti-Stokes photoluminescence (ASPL) [13]. The latter
is a phonon-mediated up-conversion radiative recombination where thermal energy of the
emitting material combines with an absorbed low energy photon to produce higher photon
energy [14,15].

The present review describes the latest results concerning ASPL and laser cooling in
Pe-NCs. First, we discuss the fundamental concept of laser cooling, then we review the
available information about up-conversion mechanisms and the role of electron–phonon
interactions. After that we show practical approaches for PL efficiency maximizing and
laser cooling implementations.

2. The Concept of Optical Refrigeration

The concept of optical refrigeration (laser cooling) by one-photon up-conversion
luminescence dates back to 1929 when Pringsheim proposed removing thermal vibrational
energy via optical emission [14]. In a solid-state system, optical cooling is assumed to be
realized under excitation with a photon together with phonon absorption, and it can result
in the removal of thermal energy ∆E (see Figure 2a). The cooling rate can be controlled
using an optical pump, e.g., laser irradiation [15]. The main energy flows during optical
cooling are schematically shown in Figure 2b. The optical pump results in a transition from
the ground electron state “0” in a solid sample to the excited ones “1” and “2”, while the
coolant and cold reservoir represent the optically excited sample. The excited energy levels
are coupled through phonon-assisted transitions (see Figure 2b).

For the simplified case of a three-level system (Figure 2a), the cooling quantum
efficiency, which is defined as the ratio of the cooling power to the absorbed power, can be
described by the following expression [15]:

η = ηASPLEASPL/Eabs − 1 (1)

where ηASPL is the quantum yield of ASPL, and EASPL and Eabs are the photon energies
of ASPL and the absorbed photon, respectively. The latter energies can be also expressed
through the corresponding ones in the discussed three-level system (see Figure 2a). When
the optical cooling in a real solid-state system with a quasi-continual spectrum of the
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electron energy states is considered, one should use the spectrally integrated value of EASPL
in Equation (1).
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Figure 2. (a) Schematic illustration of the PL excitation and emission (thin vertical arrows) and ASPL
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In a sample with ηASPL ≈ 1, the cooling quantum efficiency is determined by the
following energy ratio:

η ≈ (EASPL −Eabs)/Eabs = ∆E/Eabs (2)

where ∆E is related to the absorbed phonon energy.
One can use Equation (1) to estimate the cooling efficiency for any given material

using just the experimental spectroscopic parameters. In practice, the main condition for
positive cooling efficiency corresponds to the following requirement:

ηASPL > Eabs/EASPL = 1 − ∆E/EASPL (3)

On the one hand, Equation (3) shows that the requirement for ASPL efficiency is
easily achieved when the absorbed phonon energy per one ASPL photon is larger. On
the other hand, the Eabs value should be sufficiently high to minimize the multi-phonon
relaxation [15]. In the case of ηASPL ≈ 1, the energy removed via the ASPL process exceeds
the energy added by thermalization due to nonradiative recombination, and the material
finally demonstrates a net decrease in temperature.

Technological problems with material purity prevented any observations of the laser
cooling effect in solids for a long time, until 1995 when the effect was observed in ytterbium-
doped glass [16]. Later, rare earth metal-doped glasses were widely used for studying and
demonstrating optical cooling, recently reaching temperatures as low as 91 K [17], i.e., close
to the thermodynamic limit of that material system [18]. This is due to the suitable energy
spacing and high fluorescence external quantum efficiency [19,20].

As for the efficiency of all solid-state optical cooling, direct band gap semiconductors
have several advantages over materials with rare earth [16,17] and fluorescent dyes [21,22],
such as high absorption and lower achievable temperature due to the quantum statistics of
charge carriers [23]. This is due to the difference in the ground state populations in rare
earth-doped systems and in semiconductors. For the low temperatures below 100 K in the
rare earth-doped systems, the population at the top of the ground state strongly decreases
due to the Boltzmann statistics of carriers, making the cooling process inefficient. To the
contrary, in semiconductors, charge carriers obey the Fermi–Dirac statistics, which does not
lead to the population decrease in the lower energy valence band even at temperatures close
to the absolute zero. Moreover, semiconductor optical coolers could be integrated into opto-
electronic devices more easily. The main problem that hindered experimental observation
of laser cooling in semiconductors was low luminescence extraction efficiency [24,25]. A
theory of semiconductor cooling was first proposed in Refs. [26,27], but it did not consider
such important effects as luminescence trapping and red-shifting due to its reabsorption.
The problem was solved in Ref. [28] where the authors described laser cooling in semi-
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conductor structures for arbitrary external efficiency and considered for the first time the
luminescence red-shift due to the reabsorption. The proposed theory was combined with
the established plasma theory of semiconductor optical absorption including many-body
Coulomb effects and band filling. Experimental conditions needed to attain net cooling in
GaAs were derived. Finally, it was theoretically predicted to be able to reach temperatures
below 10 K via the ASPL-assisted optical cooling [28,29]. Unfortunately, the optical cooling
of bulk semiconductors for such low temperatures has not been demonstrated yet. For
example, the bulk crystalline GaAs requires a minimum extraction efficiency of about 25%
at the optimal carrier density that can be hardly achieved due to the large refractive index
in GaAs [29].

The successful laser cooling of a semiconductor was experimentally demonstrated by
Zhang and co-workers in Ref. [30] where chemical vapor deposition was used to fabricate
CdS semiconductor structures, which were subwavelength in size in at least one dimension
(100 nm nanobelts), to reach maximal optical extraction efficiency of the ASPL emission
and then net cooling by 40 K.

Besides III-V and II-IV compound semiconductors, the ASPL process via an efficient
one-phonon-assisted up-conversion transition was also revealed in carbon nanotubes [31].
The photon up-conversion does not originate from common coherent two-photon absorp-
tion or anti-Stokes Raman processes. The observed phenomenon was attributed to an
efficient excitonic up-conversion processes. The highly efficient phonon-assisted exciton
up-conversion showing an energy gain much exceeding the thermal energy appeared
anomalous but could be understood as a consequence of rapid exciton migration along the
nanotube axis. The efficient exciton scattering by acoustic phonons or random extrinsic sur-
face potentials spatially separated the up-converted excitons from their original localized
state immediately after up-conversion and strongly reduced their probability of returning
to this original state. Such unique exciton dynamics emerging in a carbon nanotube with
embedded 0D-like localized states enabled efficient phonon-assisted exciton up-conversion
with an energy gain exceeding the thermal energy by one order of magnitude at room
temperature. While the ASPL efficiency in carbon nanotubes was far for optical cooling
realization, this effect was assumed to be useful for applications in energy harvesting,
optoelectronics, and bioimaging in the near-infrared (NIR) optical range [31].

To achieve efficient optical cooling in semiconductors, one should consider materials
which combine strong electron–phonon coupling, high PL quantum yield (PLQY), and
nanoscale size (in at least one dimension for good optical extraction of ASPL). High
quality colloidal nanocrystals–quantum dots (QDs) can be synthesized with large PLQY
and demonstrated well resolved ASPL [32–34]. In this context, halide perovskites are
considered as promising candidates for semiconductor optical cooling [13,35–40]. Further,
we will also discuss the restrictions in optical cooling of lead halide perovskites and propose
possible ways to overcome the existing problems, among them the stability of Pe-NC-based
structures and films and engineering of optimized structures of future optical cooling
devices which possesses sufficient cooling efficiency for practical needs.

The bulk halide perovskites demonstrate excellent optical and electronic properties,
such as strong optical absorption with a sharp absorption edge resulting from low defect
density, high carrier mobility, and PLQY [41–46]. Due to the highly efficient radiative recom-
bination with a small shift between the PL peak and the absorption edge, a phenomenon of
repeated photon emission and reabsorption occurs (photon recycling). The photon recy-
cling first observed in Ref. [47] allowed the assumption that Pe-semiconductors have an
internal efficiency of almost 100% [48]. Moreover, the observed efficient ASPL [36,38] and
strong electron–phonon interactions [12] have also been reported in lead halide perovskites,
suggesting their potential for optical cooling.
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3. Up-Conversion Mechanisms

In a solid-state system, the additional energy required for the ASPL excitation is usually
provided by internal thermal energy in the form of phonon–lattice vibrations [15]. Pe-NCs
are among the most promising materials for effective up-conversion due to their unique
optical properties [7–9] and strong electron–phonon interaction [12,49–51]. Well-resolved
up-conversion luminescence was observed in Pe-NCs [39,40,52,53], thin films, a thick single
crystal of CH3NH3PbI3 [38], and two-dimensional perovskite (C6H5C2H4NH3)2PbCl4 [54].

Temperature dependent ASPL was observed in thin films of CH3NH3PbBr3 NCs with
a size of about 7 nm deposited on glass substrates [39]. The ASPL efficiency, which was
quantified by ηASPL, increased 50-fold when the initial temperature of the sample increased
from 100 K to room temperature. The thermally activated ASPL exhibited an activation
energy of about 80 meV. At room temperature, the ASPL efficiency was about 60%, and
it depended linearly on the excitation intensity. While the investigated Pe-NCs can be
considered promising candidates for the demonstration of optical cooling in thin solid
films; their optical properties require further improvement.

All-inorganic colloidal-combined halide CsPb(Cl/Br/I)3 NCs were shown to be very
promising for laser cooling as they displayed well-resolved up-conversion emission via a
single-photon excitation process [37-40, 51]. An efficient ASPL from CsPbBr3 nanostructures
embedded in a host Cs4PbBr6 crystal was observed in Ref. [52]. The efficient ASPL with
exceptionally large phonon-assisted energy gains of up to 8 kBT on all-inorganic colloidal
Pe-NCs that goes beyond the maximum capability of only harvesting optical phonon
modes was revealed [53]. Comparison of the up-conversion efficiency in thin film and
thick crystal demonstrated up-conversion gains for thick crystal to be close to 70% that of
the thin film [38]. An effective up-conversion PL from a visible self-trapped exciton to an
ultraviolet free exciton in two-dimensional perovskite (C6H5C2H4NH3)2PbCl4 quantum
wells excited by the nanosecond pulse laser excitation was studied in Ref. [54].

Let us now focus on the intrinsic mechanisms leading to the up-conversion PL and
ASPL. Based on the experimentally observed nearly linear dependence of the ASPL intensity
on pump power, the ASPL excitation was assumed, which was mediated by virtual levels or
defect states [55]. The latter states are located within the band gap, and they are considered
intermediate energy levels for the excited ASPL in CsPbBrI2 NCs [55] and CsPbBr3 quantum
dots [56]. However, treating CsPbBr3 NCs with NH4SCN removed the trap states and
increased the PLQY to near unity, which resulted in an increase in the ASPL quantum yield
of such treated Pe-NCs [57].

Efficient PL and ASPL observed in colloidal CsPbBrI2 NCs under intense laser ex-
citation tunable in the visible and NIR spectral regions (Figure 3a) were explained by
considering linear and super-linear dependences of the luminescence on excitation inten-
sity [55]. In general, the emission intensity, I, depended on the excitation power, P, in the
following way: I∼Pn, where n is the number of required photons to populate the excited
states. The value of n was approximately equal to unity when the wavelength of the laser
photons was shorter than 680 nm (Figure 3b). It means that the emission occurs due to
the single-photon process. For the laser photon wavelength longer than 700 nm, the PL
emission involved a two-photon process. The single photon up-conversion photolumi-
nescence was attributed to the radiative recombination of charge carriers from surface
to band gap states and the two-photon emission to the carrier recombination from the
conduction to the valence bands. A simplified energy diagram was proposed to illustrate
the up-conversion mechanisms in CsPbBrI2 NCs (Figure 3c). When photon energy exceeds
the band gap (Eex > 1.978 eV), electrons in the valence band transfer to the conduction band,
and the subsequent recombination of electrons and holes produces the normal PL emission
(red down arrow in Figure 3c). When photon energy is slightly less than the band gap
(1.824 eV < Eex < 1.944 eV), electrons in deep trap states (yellow dashed lines) are excited
and transferred to the surface state. However, the generated holes in the deep trap states are
unstable and quickly transfer to the valence band. Subsequent recombination with surface
state electrons produces the up-conversion luminescent emission, i.e., ASPL. With further
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photon energy reduction (1.784 eV < Eex < 1.824 eV), only shallow trap states (green dashed
lines) can be excited. Some incident photons are absorbed by these shallow trap states,
producing single-photon up-conversion emission. However, shallow trap state density is
too low to absorb all available photons. The remaining photons are absorbed by electrons
in the valence band and transferred to the conduction band by a two-photon process (TP,
blue arrow in Figure 3c).
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Figure 3. (a) PL intensity of CsPbBrI2 NCs excited by 650–900 nm wavelength incident photons;
(b) n values of the I~Pn dependence for CsPbBrI2 NCs excited by different wavelength laser;
(c) Simplified energy diagram and up-conversion PL. CB, conduction band; VB, valence band;
SS, surface state; STS, shallow trap state; DTS, deep trap state; TP, two-photon process. Reprinted
from Ref. [55].

Recently, self-trapped excitons were proposed as an intermediate energy level for
single photon up-conversion [58]. In the case of above gap excitation, self-trapped excitons
lead to the additional PL with a large Stokes shift in addition to the free exciton emission.
Single trapped excitons as photoinduced transient defects are generated based on the lattice
polarization and deformation caused by the above gap excitation of charge carriers [59].

Zhang and co-workers analyzed CsPbX3 NCs embedded in glasses and observed
efficient ASPL, which depended on excitation wavelength and power and was explained
by a phonon-assisted single-photon process [60]. In this study, femtosecond transient
absorption spectra revealed that free excitons were formed with the assistance of phonons
under single-photon excitation. A few ps free excitons thermally dissociated into free
carriers resulted in the appearance of ASPL. The Urbach tail states derived from deformed
[PbX6] octahedra on the outer region of CsPbX3 NCs were proposed to be intermediate
states for the ASPL. The Urbach tail formation was explained by an effect of the surface
tension of NCs and their interaction with the local environment. Excitons were supposed
to be generated upon sub-gap excitation followed by localization on the Urbach states.
Through electron–phonon coupling, these localized excitons changed into free excitons to
generate exciton bleaching, and then thermally dissociated into free carriers accompanied
by band edge bleaching, leading to an efficient ASPL.
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Near-infrared ASPL was also observed in Yb/Nd co-doped CaTiO3 microcrystals,
and it was explained by considering an up-conversion excitation via the phonon-assisted
energy transfer between Yb3+ and Nd3+ ions [61]. The former ions are excited via the
2F7/2 - 2F5/2 transition by absorbing photons emitted by a 980 nm laser, and the excitation
energy is subsequently transferred to Nd3+ ions by phonon assistance (Figure 4). The
phonon energy of CaTiO3 is about 470 cm−1 [62], which can provide several phonons for
energy transfer. As the temperature increases, the CaTiO3 lattice vibration increases and the
number of phonons grows, so the efficiency of phonon-assisted energy transfer increases
and ASPL intensity increases. Because the APL intensity exhibited an enhancement with
temperature growth, it was proposed for optical temperature sensor applications. The
proposed ASPL thermometer needed only 16 mW/mm2 power density, and its sensitivity
was 1.52% K−1 [61].
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4. The Role of Electron–Phonon Interaction

The strong electron–phonon interaction is usually considered an origin of the unique
electrical and optical properties of both the bulk perovskites [12,50] and Pe-NCs [51,53].
It is assumed to lead the following optical phenomena: (i) enhanced ASPL [38–40,63]
and (ii) slow hot-carrier cooling [64,65]. One of the outstanding characteristics of halide
perovskites is their low optical phonon frequencies, attributed to the heavy lead ions. The
linewidth of the phonon absorption is very broad at room temperatures. It means that
optical phonons are overdamped due to the anharmonicity of the large phonons caused by
the soft lattice nature of halide perovskites [65]. The anharmonicity influences the electron–
phonon interaction characteristics [51]. The unique properties of halide perovskites are
considered to be due to the large electron–phonon coupling constant, which can promote
the formation of polarons [65,66].

Fröhlich proposed a model to describe the long-range interaction between an electron
and polar optical phonons in ionic crystals or polar semiconductors [67,68]. According to
this model, the strength of the electron–phonon interaction is quantified using the Fröhlich
coupling constant, which is defined by the following expression [51]:

α =
(

ε−1
∞ − ε−1

0

)√
mee4/2}3ωLO, (4)

where ε∞ and ε0 are the high-frequency and low-frequency limits of the dielectric function,
respectively; me is the effective mass of the electron; and ωLO is the LO–phonon frequency.
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To analyze the electron–phonon interaction in halide perovskites, one can consider a
steepness parameter of the temperature dependence of Urbach energy, which is expressed
as follows [51]:

σ0 = s·B/ER, (5)

where s is a dimensionless parameter dependent on the geometrical structure of the lattice,
B is the band width, and ER is the lattice relaxation energy.

Figure 5 plots the reciprocal value of the steepness parameter as a function of the
Frohlich coupling constant for different materials [51]; III–V and II–VI semiconductors
with weak electron–phonon coupling are situated on the lower left side of the scheme. On
the upper right side of this scheme, one can find insulators with strong electron–phonon
coupling. Halide perovskites do not belong to any of these groups, and they form a separate
group, which reveals the strong electron–phonon interaction and low probability of the
exciton self-trapping.
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The electron–phonon interaction in CH3NH3PbX3 lead halide perovskites was studied
by observing the Landau levels and high-order excitons at weak magnetic fields when the
cyclotron energy is much smaller than the LO–phonon energy [51]. It was revealed that by
changing the halogen from I to Br to Cl, the electron–phonon coupling becomes stronger,
which results in the larger effective mass enhancement caused by polaron formation. The
presence of phonon screening of the electron-hole Coulomb interaction was revealed. It
was proposed that the difference in the LO phonon energy can be due to the halogen
dependence of the exciton binding energy.

Temperature dependent ASPL was observed in thin films of CH3NH3PbBr3 NCs with
a size of about 7 nm deposited on glass substrates [39]. The ASPL efficiency, which was
quantified by ηASPL, was found to increase 50-fold when the initial temperature of the
sample increased from 100 K to room temperature. The thermally activated ASPL exhibited
an activation energy of about 80 meV. At room temperature, the ASPL efficiency was about
60% and it depended linearly on the excitation intensity. While the investigated Pe-NCs
are considered promising candidates for the demonstration of optical cooling in thin solid
films, their optical properties are required for further optimization.

Size-dependent room temperature ASPL in CH3NH3PbX3 Pe-NCs with mean sizes
varying from about 6 nm to 120 nm was investigated, and the observed enhancement
of ASPL intensity with the reduction in the mean NC size was explained by the strong
electron–phonon interaction and size-dependent energy bandgap [40,63]. It was assumed
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that excitons in an ensemble of larger nanocrystals (smaller bandgap) could be formed
either without phonon participation or through one-photon absorption accompanied by
simultaneous participation of several phonons to provide the momentum conservation
in the direct gap semiconductor (Figure 6a). On the one hand, the radiative decays of
such excitons provide either normal Stokes PL or the ASPL emission with relatively low
efficiency. On the other hand, the ASPL emission in small Pe-NCs can be excited via
simultaneous one-photon and one-phonon absorption (Figure 6b) The latter occurs in
the regime of the strong quantum confinement in Pe-NCs that results in the breaking of
the quasi-momentum selection rule [63] because it is favorable in small semiconductor
NCs [69].
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5. PL Efficiency Enhancement

Because high efficiency of the ASPL process is required for optical cooling applications
(see Equation (2)), let us discuss the possible approaches for its enhancement in Pe-NCs
and the main practically achieved results on this issue. While one ASPL quantum can
take away energy ∆E, which corresponds to the energy difference between incident and
emitted photons and accounts typically for several tens of meV, one act of the nonradiative
photon absorptions gives an energy in the order of 1 eV [15]. Thus, to remove the energy in
total, it is necessary to have a high QY, i.e., around 95% and higher. Ha and co-authors [36]
calculated the theoretical threshold of QY for optical cooling in the case of CH3NH3PbI3
NCs (Figure 7).
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Recent studies in the field of Pe-NCs have shown that their optical properties are
mostly determined by the quality of synthesized NCs. Structural defects acting as trap
states are the key factor that limit not just QYs but also the stability of those Pe-NCs [70,71].
Removing surface trap states can enhance radiative recombination pathways and ho-
mogenize the exciton concentration, suppressing nonradiative recombination [71,72]. In
addition to defect trap states and nonradiative recombination processes, the following are
the known limiting factors of QY: weak exciton binding, slow cooling of long-lived hot
carriers, deep-level defects, and ion migration [70,71].

Various approaches to overcome the abovementioned limitations have been
reported [71–75]. They can be divided into three main categories: (i) nanoscaling;
(ii) synthesis methods and perovskite compound modifications; (iii) surface engineering
via surface ligand development.

Decreasing perovskite particle sizes down to the nanoscale (or decreasing perovskite
dimensionality to 2D, 0D) leads to the exciton’s confinement. The more an exciton is
confined to the higher binding energy, the shorter its diffusion length. Increasing the exciton
binding energy and decreasing the exciton diffusion length improve the PL efficiency of Pe-
NCs [74]. According to Kim and co-workers [75], Pe-NCs of 11–27 nm sizes demonstrate the
highest QY, while further size deduction leads to a decrease in the QY values. The decrease
can be attributed to the increase in trap-assisted recombination of excitons at surface traps
due to the increased surface-to-volume ratio because the trap-assisted recombination is
mainly related to the nonradiative recombination [75].

Synthesis method modifications and post-synthesis doping of Pe-NCs are mainly
aimed to reduce the density of halide vacancies, which are the well-recognized defects
represented by the emergence of metallic lead in convenient Pe-semiconductors [76]. These
metallic sites act as non-radiative recombination centers for electron trapping facilitating
nonradiative mechanisms [77]. Cho and co-workers [78] prevented the formation of metallic
lead (Pb) atoms through a small increase in methylammonium bromide’s (MABr) molar
proportion during MAPbBr3 PNCs synthesis. Thiocyanate salts, such as NH4SCN or
NaSCN, were used by Koscher and co-workers [79] to remove metallic Pb and to enhance
QY of Pe-NCs from 92% to 99% for fresh samples and from 63% to 100% for aged ones
(stored for a few months).

Liu and co-workers [80] showed that a high room temperature PL QY of up to 100%
can be obtained in CsPbI3 perovskite quantum dots (QDs), signifying the achievement of
almost complete elimination of the trapping defects. Their improved synthetic protocol that
involves introducing the organo–lead compound trioctylphosphine–PbI2 (TOP–PbI2) as
the reactive precursor also led to a significantly improved stability for the resulting CsPbI3
QD solutions.

Partial replacement of Pb atoms in the perovskite structure was proposed to improve
and modify PL properties of Pe-NCs. Moreover, this provides better commercialization
possibilities of perovskites due to a decrease in Pb contamination. The substitution of Pb2+

by Mn2+ causes orange light emission and improves the radiative carrier recombination
dynamics. A near-unity PLQY was achieved for a Mn:Pb molar ratio of 3:1 in combination
with CdCl2 post-synthesis treatment [81]. Partial substitution of Pb by Sr in iodine red-
emitting Pe-NCs significantly increases the stability of their PL properties and also increases
QY for a long period of time [82] (Figure 8).

Yong and co-workers [83] reported a general strategy for the synthesis of all-inorganic
violet-emitting Pe-NCs with near-unity QY through engineering of the local order of the
lattice using nickel ion doping.
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Yb3+ doping of CsPbCl3 Pe-NCs allowed an additional mechanism to enhance PL
efficiency due quantum cutting, i.e., when one high-energy photon is absorbed and then
two low-energy photons are generated. Milstein and co-authors [84] demonstrated that
excitonic perovskite PL is almost suppressed in this case, and PL from Yb3+ states with
PLQY significantly above 100% can be achieved (up to 170% from the theoretical limit
of 200%).

Ligand engineering approaches for the PL QY enhancement of Pe-NC aim to improve
surface passivation for better stability [76,77]; prevent agglomeration, which leads to loss
of nanoscale advantages [70–74]; improve homogeneity [63,76]; and reduce the isolating
effect of ligands for LED applications [85,86]. For example, Di Stasio and co-workers [85]
proposed a facile route to enhance the photophysical properties of FAPbBr3 NCs via
synthesis with short-chain capping ligands such as octylamine and octanoic acid, i.e., the
simultaneous additions of oleic acid and PbBr2 to the redispersed material in toluene, prior
to purification with methyl acetate. The oleic acid addition removes Pe-NC aggregates,
while PbBr2 provides an excess of Br− anions to passivate the halide defects and strengthen
the ligand binding on the NCs’ surfaces. The resulting QY > 95% of the exciton PL was
achieved for a thin film of CsPbBr3 NCs [86].

The surface coverage of Pe-NCs can be improved by mixing those NCs with poly-
mers, such as polymethylmethacrylate (PMMA) [87], polyvinylpyrrolidone [88], and
polystyrene [89]. The PMMA matrix, having a low dielectric permittivity, increases the
exciton binding energy in Pe-NCs, and the photoluminescence QY of the Pe-NC film in-
creases up to 92%, which is explained by an effect of the dielectric confinement for excitons
in Pe-NCs [87]. Furthermore, the polymer coatings improve long-term storage of Pe-NCs
without significant losses in their QY [87–89].

To improve ligand binding and to minimize degradation of the PL QY during long-
term storage, a post-synthetic treatment with didodecyldimethylammonium bromide
(DDAB) has been proposed [90–92]. Due to the strong binding with negatively charged
sites in Pe-NCs, DDAB forms a hydrophobic monolayer, increasing the long-term stability
of the structural and luminescent properties of the ligand-passivated Pe-NCs. For example,
Bodnarchuk and co-authors [90] used DDAB and DDAB+PbBr2 post-synthetic treatment of
CsPbBr3 colloidal solutions, which had a low initial PL QY below 70%. The post-synthetic
treatment of Pe-NCs resulted in the PL QY increasing up to 100% (Figure 9). Additionally,
it was shown that the surface modification by DDAB does not affect PL peak position and
does not cause its broadening [90,91].
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6. Optical Cooling Implementation

The recent results that have been discussed demonstrate that if crystalline perovskites
and colloidal Pe-NCs can be prepared with low trap densities, then high external PL quan-
tum efficiency is achieved. Thus, the necessary condition for optical cooling realization [15]
is practically achievable (see Equation (2)); its implementation is currently an urgent task.
Indeed, the high PL efficiencies of bulk and low-dimensional perovskites and Pe-NCs under
and above band gap excitations are also advantageous for efficient ASPL excitation in these
materials under phonon-assisted one-photon absorption processes [13,36–40,60,63].

A new strategic approach for engineering the optical properties of perovskite nanopar-
ticles to achieve optical cooling was proposed in Ref. [93]. The authors theoretically
demonstrated the optimization of ASPL efficiency in MAPbI3 nanoparticles via excitation
of Mie resonances both at emission and absorption wavelengths. The optimized theoretical
photo-induced temperature decrease was achieved for a hybrid halide perovskite 530 nm
nanoparticle on a glass substrate by more than 100 K under cw illumination at 980 nm and
intensities being about 7 × 106 W/cm2. The numerical and analytical modeling revealed
that the highest cooling efficiencies for halide perovskite nanoparticles correspond to the
excitation of magnetic type Mie modes (magnetic octupole at the emission and magnetic
quadrupole at absorption).

Ref. [36] presented bight examples of the realization of net cooling by 23.0 K in microm-
eter thick 3D CH3NH3PbI3 (MAPBI3) and by 58.7 K in exfoliated 2D (C6H5C2H4NH3)2PbI4
(PhEPbI4) perovskite crystals directly from room temperature. Three-dimensional platelets
were grown using vapor phase synthesis, and 2D samples were exfoliated from a bulk
crystal obtained via solution synthesis. Figure 10a,c demonstrate the Stokes PL at 296 K and
the corresponding absorption spectra for the 3D and 2D abovementioned perovskites, re-
spectively. The PL peaks are at 770 nm and 529 nm for the 3D and 2D samples, respectively.
Towards the band tail, the absorption decreases and reaches zero, demonstrating that there
should not be any substantial phonon-assisted ASPL beyond this wavelength. The possible
cooling regime corresponds to the situation, when the excitation photon energy is less than
mean PL emission (the green area in Figure 10a,c). The intensity on ASPL versus pump
power is shown in Figure 10b,d. The inset in Figure 10b shows that for the 3D case, below a
certain excitation power, the ASPL intensity linearly depends on laser power. Such behavior
corresponds to the domination of the phonon-assisted up-conversion. The deviation from
the linear dependence above this power is possibly due to the sample degradation at high
laser powers. For 2D perovskite, the linear dependence of ASPL intensity on pump power
was revealed in the entire range of pump intensities, revealing that up-conversion is a
phonon-assisted process (see Figure 10d).
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Figure 10. PL/ASPL and optical absorption spectra of 3D (2D) perovskites are shown in panels (a–d),
respectively. (a,c) PL and the absorption spectra at 296 K. The green area indicates possible cooling
regime. (b,d) ASPL spectra at 296 K. The insets to (b,d) show the PL intensity dependences on
excitation power, the inset to (b) also shows the peak position as a function of pump power. Reprinted
from Ref. [36].

To measure the cooling effect of the crystals, the pump–probe luminescence thermom-
etry technique, which was previously used in rare earth-doped materials and semiconduc-
tors, was adopted [94]. For the 3D perovskite platelet, the PL redshift was revealed during
pumping at 785 nm, indicating a cooling process. In contrast, 760 nm pumping leads to a
blue-shifted band edge, thus indicating a heating process. After switching off the pump
lasers, the photoluminescence spectra returned to their original position indicating that the
cooling/warming cycle is reversible. It was demonstrated that the 3D perovskite crystal
could be cooled by a maximum of 23 K from room temperature if pumped by 785 nm with
a power of 0.66 mW. The normalized cooling power density is shown in Figure 11a.

A maximum cooling effect of 35 K/mW around 780–785 nm was revealed [36], which
strongly exceeds the results obtained previously for CdS nanobelts [30]. Theoretical cal-
culations were performed using the theory discussed in Refs. [25,26]. The same results
were obtained for 2D perovskites. The maximum cooling by 58.7 K directly from room
temperature was achieved with 565 nm laser excitation. The authors of Ref. [32] also
demonstrated an actual perovskite optical cooler in which CdSe nanobelts coupled to a 2D
perovskite were cooled by 28 K from room temperature.

The first demonstration of optical cooling driven by colloidal semiconductor nanocrys-
tal up-conversion was performed in Ref. [37]. In this study, CsPbBr3 NCs were shown to
cool down during the up-conversion of 532 nm continuous-wave (cw) laser excitation; the
resultant ASPL spectrum was collected continuously or at regular intervals during the
course of the experiment. The Raman thermometric analysis of the substrate on which
the nanocrystals were deposited further verified a decrease in the local temperature by at
least 25 K during optical pumping. The Arrhenius behavior of the ASPL yield was used to
estimate the change in temperature of Pe-NCs during below-gap excitation.
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Figure 11. Net laser cooling for 3D (panel (a)) and 2D (panel (b)) perovskites. Panels demonstrate
measured maximum normalized cooling power density (filled circles) and theoretical calculations
within the theory presented in [25] (solid curve). Reprinted from Ref. [36].

According to the results of Ref. [37], the optical cooling rate and achievable temperature
were dependent on the excitation laser fluence. The temperature change of the environment
around Pe-NCs was analyzed by monitoring the anti-Stokes to Stokes Raman scattering
ratio of a silicon substrate on which Pe-NCs were deposited. This analytical thermometry
technique measured the temperature-dependent phonon mode population of silicon to
obtain the local temperature of the substrate. During below-gap excitation, the ASPL
spectra changed over time, decreasing in intensity as a function of excitation fluence and
demonstrating a red-shift of the spectral position of the PL peak. During ASPL, each
up-conversion event can be considered a cooling cycle that removes thermal energy by
decreasing the population of the phonon modes of the Pe-NCs. The decrease in the phonon
mode population reduces ASPL yield and removes an amount of thermal energy. This
photoinduced thermal deactivation is manifested in a fluence dependence of the ASPL’s
rate of signal decay observed by the authors experimentally. Higher laser fluence removed a
larger amount of thermal energy causing a faster decay of the ASPL intensity (see Figure 12).
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Figure 13 shows temperature transients during the optical cooling experiment per-
formed in Ref. [37]. The sample was pumped below gap with a fluence of 300 W/cm2 such
that thermal energy was removed faster than it was replaced by the surrounding environ-
ment of Pe-NCs in the optical spot. The temperature dropped exponentially and reached
approximately 10◦C in 2 min. The excitation fluence was then decreased to 30 W/cm2,
below the fluence threshold necessary to overcome the heat flux from the environment
into the nanocrystals. When the fluence was decreased below the cooling threshold, the
nanocrystal temperature started to increase. The laser was blocked for 5 min to demon-
strate the continued reversal of the decay in ASPL intensity. After approximately 20 min,
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nanoparticles demonstrated room temperature (1400 s). Additionally, the authors studied
the cooling of a silicon substrate. Both the temperature dependent yield of ASPL and the
anti-Stokes and Stokes Raman scattering of CsPbBr3 NCs demonstrated the net decrease
in temperature. The final temperature of the silicon substrate was −1.7◦C, and the final
temperature of Pe-NCs was estimated to be −5◦C. The observed cooling is comparable in
magnitude with the results obtained for 2D perovskites [36].
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7. Perspectives and Conclusions

The investigations of various inorganic and metalorganic perovskites as well low-
dimensional Pe-structures and Pe-NCs discussed previously demonstrate efficient phonon-
assisted anti-Stokes photoluminescence under relatively low-intensive optical excitation,
which is commonly realized by cw laser irradiation in the visible and NIR spectral ranges.
The high ASPL quantum yield, which should be close to unity, and the strong coupling of
the exciting photons and phonons, are necessary conditions to achieve net optical cooling.
While the fundamental issues of both the luminescence mechanism and electron–phonon
interaction in perovskites are nearly understood, an enhancement of the electron–phonon
coupling and ASPL efficiency in Pe-NCs are still actual tasks for optical cooling applications.

Recently, several approaches and strategies for the improvement of ASPL efficiency
and stability of Pe-NC-based structures and films are proposed and realized. Preparation
and employment of surface-passivated Pe-NCs with narrow size distribution seem to be a
promising strategy for the practical realization of all-solid optical cooling. Another actual
task consists of engineering an optimized structure for a future optical cooling device (all-
solid optical refrigerator) which possesses sufficient cooling efficiency for practical needs.
However, considering the impressive results of recent years in improving the parameters
of semiconductor perovskites for solar cells and light-emitting devices, it can be expected
that low-dimensional Pe-semiconductors and Pe-NCs can also be further optimized for
applications in optical cooling technologies. Among the possible applications of all-solid-
state laser cooling are infrared cameras, ultra-stable laser resonators, spectrometers and
optical detectors, low-noise optical amplifiers which require the absence of vibrations, and
other existing and future photonic devices; their performance of is hard to achieve using
traditional cooling technologies.
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