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Abstract: We analyse the efficacy of machine learning (ML) interatomic potentials (IP) in modelling
gold (Au) nanoparticles. We have explored the transferability of these ML models to larger systems
and established simulation times and size thresholds necessary for accurate interatomic potentials.
To achieve this, we compared the energies and geometries of large Au nanoclusters using VASP and
LAMMPS and gained better understanding of the number of VASP simulation timesteps required to
generate ML-IPs that can reproduce the structural properties. We also investigated the minimum
atomic size of the training set necessary to construct ML-IPs that accurately replicate the structural
properties of large Au nanoclusters, using the LAMMPS-specific heat of the Au147 icosahedral as
reference. Our findings suggest that minor adjustments to a potential developed for one system can
render it suitable for other systems. These results provide further insight into the development of
accurate interatomic potentials for modelling Au nanoparticles through machine learning techniques.

Keywords: machine learning potentials; gold nanoparticles; molecular dynamics; structures; heat capacities

1. Introduction

From the point of view of chemical applications, it is only relatively recently that
interest in gold nanoparticles has grown due to discoveries of their usefulness in several
fields, including catalysis and biomedical applications [1–4]. Common methods utilised to
investigate the properties of gold nanoparticles include quantum mechanical techniques,
which provide high accuracy but are computationally demanding and often unfeasible.
Molecular dynamics simulations rely on the quality of the underlying interatomic potentials,
functions of the potential energy in terms of the atomic positions, and require costly ab initio
calculations to obtain chemical accuracy. Machine Learning Interatomic Potentials (ML-IPs)
directly target the potential energy surface through neural networks, thus avoiding costly
calculations. In our previous work, we investigated their applicability to the properties of
gold nanoparticles [5].

To benchmark against high-accuracy ab initio calculations, we limited ourselves to
the 20-atom gold cluster and have discussed related works therein. However, in gold
clusters containing up to 20 atoms, all of the gold atoms are located on the surface of the
cluster, and it is only for clusters with more than 30 atoms that interior gold atoms become
present. Significant internal structure starts to develop when there are around 50 atoms.
This structural difference is a critical consideration for the physical and chemical properties
of gold clusters, as surface and interior atoms may exhibit distinct electronic and chemical
behaviours [6]. We have thus extended our previous study to larger clusters, progressively
increasing cluster size towards bulk. Additionally, we have examined the question arising
from our previous investigation of transferability and applicability, the ability of an ML-
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trained potential to produce meaningful results for systems other than that which it was
trained on.

Previous density functional theory studies have explored the structural evolution
and stability of gold clusters beyond 20 atoms, with density functional calculations by
Nhat et al. revealing new stable forms in the range of 20 to 30 atoms [7]. Ouyang et al. [8]
applied neural network potentials and the basin-hopping method to search for global
minima of gold nanoclusters using Au58 as an example, as was also studied in an earlier
work by Jensen and Jensen [9] using a capacitance–polarisability interaction model to
reproduce the full polarisability tensors of medium-sized gold and silver clusters. Using
geometrical constructs, Mori and Hegmann [10] proposed likely stable structures following
a variety of classes of geometrical shapes to provide coordinates for clusters up to 1091
atoms. Additionally, optical excitation spectra of gold clusters of varying sizes have been
investigated by Stener et al. [11], while Engel et al. [12] have shown that the structural
and electronic properties of gold nanoparticles are influenced by the choice of support
material, with the shape of the metal clusters dependent on the preferred isolated structure,
the symmetry and distance of the preferred adsorption sites on the surface, and the relative
strength of the metal–metal interactions to the metal surface interactions.

As the size of a particle increases, we reach a limit where the surface atoms and their
interactions become negligible when compared to the bulk-like atoms that are chemically
inert [13]. To simulate this approximation, periodic boundary conditions can be applied
to a relatively small conventional or primitive cell, which enables the prediction of struc-
tural properties rather than functional properties. In contrast to crystalline nanoparticles,
amorphous Au nanoparticles lack a well-defined lattice structure and have a more complex
electronic structure due to the disordered atomic arrangement. The disordered surface
results in a larger number of low-coordination sites that are highly active catalytic sites,
which can be beneficial for application in catalysis [14].

The optical properties of bulk gold were first studied by Christensen et al. [15], who
calculated the energy band structure using the relativistic augmented-plane-wave method.
Their calculations revealed that the shifts and splittings due to relativistic effects were of
the same order of magnitude as the gap.

2. Computational Details

In our previous investigation [5], we performed extensive MD calculations on the
lowest energy structure of the Au20 nanocluster (Figure 1) and two isomers with the Vienna
Ab Initio Simulation Package (VASP) [16,17], to use as training set to build an interatomic
potential. The DeePMD package [18,19] was then used to parameterise the potential and
calculate properties with the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [20] package. We found good agreement between the two approaches as
discussed in that work.

We have continued this methodology for the current investigation, adapting for size.
The cubic supercell, with a lattice parameter of 30 Å, encompassed all finite clusters,
with up to 147 atoms, of the structures examined, whereas a (2 × 2 × 2) expansion of the
conventional Au cell has been used for the bulk calculations. The Perdew–Burke–Ernzerhof
(PBE) generalised gradient approximation (GGA) was used for the exchange–correlation
functional [21]. VASP core–valence interaction was described using projector augmented-
wave (PAW) potentials, with periodic plane waves used to represent valence electrons with
a cutoff energy of 520 eV. The energy and forces tolerance for structural relaxation were
10−6 eV and 10−6 eVÅ−1, respectively. Equations of motion were integrated using the
velocity Verlet algorithm with a time step of 2.5 fs. Temperature stabilisation of the system
was achieved through the use of a Nosé–Hoover thermostat, with a temperature-damping
parameter of 10 time steps. This deterministic method relies on the extended system idea,
introducing an additional degree of freedom s to represent the thermal reservoir, ensuring
ergodicity within the canonical ensemble was used to calculate properties.
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Figure 1. The Gold Au20 structure.

Calculations for the amorphous structures were obtained from VASP and LAMMPS
calculations by first running at elevated temperature, and then quenching the resulting
structure to 0 K through a geometry relaxation.

3. Results and Discussion

With the question of transferability in mind, to explore whether the potential devel-
oped with the Au20 data is able to describe other small gold nanoclusters, we used this
potential to look at the structures of Au22, Au24, Au26 Au28, and Au30. Optimised structures
obtained for Au30 are given in Figure 2. These systems, and others, have already been
examined by Nhat et al. [7]. Generally, the predicted structures were topologically correct
in the sense the clusters had the correct overall shape with the atoms in approximately
the correct position. However, it was noticed that the bond lengths were systematically
predicted to be too long. For example, Figure 2a displays the structure predicted using
the potential derived from the Au20 data and many of the atoms are sufficiently far apart
that they do not qualify as having bonds. A geometry optimisation with VASP produces a
more compact structure, as in Figure 2b, with shorter bonds. Accordingly, the potential was
refined by including extra data obtained from geometry optimisations on Au28 and Au30.
This is a comparatively small amount of data, with only 80 energy and force evaluations
for Au28 and 71 for Au30. The data from Au28 were added to the training set, and the Au30
data to the validation set, and the training of the potential with DeePMD was repeated.
With this revised potential, the structure of Au30 predicted using LAMMPS is shown in
Figure 2c, and can be seen to be much closer to the VASP result. Note that the data for
Au30 were not used for training, so this result is a genuine prediction. The results for Au28
are also much improved. The coordinates of the final VASP- and LAMMPS-optimised
structures are given in Tables S1 and S2 of the Supplementary Materials.

(a) (b) E = −77.933 eV (c) E = −79.460 eV

Figure 2. Structures of Au30 produced (a) using the potential trained on Au20, (b) using VASP and
(c) using a modified ML potential.
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The LAMMPS structure of Au30 is not in perfect agreement with that from VASP,
but it is sufficiently improved by just the addition of a few extra data points, such that it
was worth seeing whether this process could be extended. Therefore, we systematically
expanded the size of the clusters considered. These small clusters examined so far are
all of cage-like topology, but there is nothing (except for one atom in the case of Au30)
inside the cage; i.e., for these examples, all the atoms are on the surface of the cluster.
This can be seen if one looks at the structures given by Nhat et al. [7]. As mentioned
in the introduction, significant internal structure in nanoclusters starts to develop when
there are around 50 atoms (see for example Ouyang et al. [8]), and so we next considered
the isomers of Au55 and Au58. There are suggested structures [10] for a large number of
potential nanoclusters, including three for Au55, based on geometric arguments rather than
calculations. We used three proposed Au55 structures, described as Cube, Icosahedron and
Decahedron. Coordinates for these are given in the supplementary data of Ref. [10]. There
are also published calculations on Au58 in Refs. [8,9]. As with Au30, it was found necessary
to make an adjustment to the potential, using additional geometry optimisations with
VASP. The calculations on Au55 (190 energy and force evaluations across all 3 isomers) were
added to the training set, and those on Au58 (71 evaluations) to the validation data, and the
training with DeePMD was repeated. The VASP structures for Au55 and the resulting
equivalent LAMMPS results using the updated potential are shown in Figure 3.

Cube Icosahedron Decahedron
VASP E = −148.172 eV VASP E = −148.680 eV VASP E = −147.487 eV

LAMMPS E = −148.162 eV LAMMPS E = −148.361 eV LAMMPS E = −148.062 eV

Figure 3. Structures of Au55 from VASP.

The predicted structures of the Au55 isomers with VASP and LAMMPS are in close
agreement, sufficiently so that it is difficult to tell the two set of results apart from just the
images (the images in the figure are those from VASP). The full coordinates from both sets
of calculations are given in Tables S3–S8 in the Supplementary Materials. The closeness
of the two structures can be seen by comparing the bond lengths. For the icosahedral
structure, this is shown in Figure 4.

There are 3 (or possibly 4) groups of bond lengths, and the values obtained from VASP
and LAMMPS are in close agreement. The root mean square difference (RMSD) between
the 2 set of values is 0.006 Å. The equivalent results for the cube and decahedron versions
of Au55 show RMSD values of 0.010 Å in both cases. The equivalent plots are in Figure S1
in the Supplementary Materials.

The predicted geometries for Au58 from VASP and LAMMPS, using the same potential
in LAMMPS as for Au55, are in Figure 5 and Tables S9 and S10 in the Supplementary
Materials. Again, the structures agree closely visually. Note that Au58 is not included in
the training data, so this is a prediction.



Nanomaterials 2023, 13, 1832 5 of 11

Figure 4. Comparison of bond lengths (in Å) of icosahedral Au55 from VASP and LAMMPS.

VASP E = −159.119 eV LAMMPS E = −158.893 eV

Figure 5. Structures of Au58 using VASP and LAMMPS.

However, the bonding in Au58 is very different to that in the Au55 isomers. The latter
have much symmetry and only a few unique bond lengths, as seen in Figure 4, but in Au58
the bonds are all different; i.e., it is an amorphous structure, as in Figure 6. The VASP and
LAMMPS structures have an RMSD in the bond lengths of 0.038 Å.

Figure 6. Comparison of bond lengths (in Å) of Au58 from VASP and LAMMPS.

The clusters Au55 and Au58 are large enough to have some internal structure, and hav-
ing adjusted the potential to describe these, it was worth checking whether it could now
provide the structures of still larger clusters. By expanding to about 150 atoms, the internal
structure becomes more complex. Mori and Hegmann [10] have approximate structures



Nanomaterials 2023, 13, 1832 6 of 11

for Au147 based on geometric arguments rather than actual calculations, and there exist
other calculations on Au147; e.g., Ref. [22]. It is found that geometry relaxations on these
approximate structures [10] using VASP and LAMMPS agree, as in Figure 7, without any
further re-parameterisation, i.e, the potential which described systems up to Au58 also
works for Au147.

Cube Icosahedron Decahedron
VASP E = −417.731 eV VASP E = −420.674 eV VASP E = −418.248 eV

LAMMPS E = −418.787 eV LAMMPS E = −419.309 eV LAMMPS E = −419.082 eV

Figure 7. Structures of Au147 computed with VASP.

Like the structures for Au55, it is not possible to distinguish the VASP and LAMMPS
structures just from the images (full coordinates of all isomers are in Tables S11–S16) of the
Supplementary Materials. The bond lengths show the pattern seen in Au55, with compara-
tively few unique values, and close agreement between VASP and LAMMPS. The result for
the icosahedral isomer is shown in Figure 8, with the equivalent graphs for the other two
isomers in Figure S2 of the Supplementary Materials. The RMSD for the bond lengths is
0.015, 0.018 and 0.015 Å for the icosahedral, decahedral and cubic isomers, respectively.

Figure 8. Comparison of bond lengths (in Å) of icosahedral Au147 from VASP and LAMMPS.

Reproducing the VASP results for Au147 with a potential parameterised on smaller
systems is an interesting and promising result. However, it should be noticed most struc-
tures mentioned so far are symmetric, and there are suggestions that these particles are
actually amorphous, i.e., irregular, non-crystalline structures( e.g., Ref. [22]) so there may
be many low-lying minima on the Au147 surfaces which could be examined.

Figure 9 shows two amorphous structures of Au147 (coordinates in Tables S17 and
S18 of Supplementary Materials). There are probably many such structures, so the images
may correspond to different local minima. What is significant, however, is that in both
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cases the energy is lower than that of the most stable symmetric structure, the isocahedral
configuration; see Figure 7b. Tarrat et al. [22], using DFT calculations, found many such
structures, so it is not surprising that our VASP calculations could also find an amorphous
example, but it is interesting that our ML-IP can reproduce this, even though it was not
parameterised on this system.

VASP E = −421.745 eV LAMMPS E = −423.092 eV

Figure 9. Amorphous Structures of Au147 using VASP and LAMMPS.

Another caveat is that although the structures are reproduced correctly, the energy
differences between various isomers of Au55 and Au147 from LAMMPS may not be reliable,
though they are at least in the same order as the VASP calculations.

Regarding the question of time and size thresholds, in Ref. [5] we used many data
points to determine the ML-IAP of Au20 to ensure we were benchmarking at a high
accuracy. This made us wonder whether similar accuracy could be achieved with less
data. Accordingly, we tested the accuracy of the ML-IPs generated from six different VASP
MD timescales by calculating the specific heat of a structure of Au20. We chose the global
minimum (c.f. Figure 1) due to its stable energy configuration with respect to the other
isomers considered in our previous work. The specific heat was calculated using the energy
fluctuation model, as reported in our previous work. The Cv converge when the ML-IPs
were generated using more than 5300 simulation timesteps; see Table 1. This is in line with
the ML optimisation tests that indicate discrepancies in the forces between the training and
validation for simulation lengths below 5300 timesteps. Figure 10 shows the convergence
of the training process showing the RMSE of the training and validation sets for each set of
data. In particular, it should be noted that the energy converges with much fewer points
than the force, which is of relevance as the specific heat calculation depends on the forces.

Table 1. Specific heat of Au20 global minimum calculated by energy fluctuation of LAMMPS sim-
ulations. Five different ML-IPs were generated using different VASP MD simulations timelengths.
The Timesteps column indicates the length of the ab initio simulations used to generate the ML-IPs.

Specific Heat

Timesteps Cv (J/K/mol)

700 16.67
1300 17.79
2700 17.17
4000 16.98
5300 19.05
7000 18.95
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 10. DeepMD Energy (left panels) and Force (right panels) optimisation convergence test,
performed using six different VASP simulation lengths on the Au20 global minimum: 700 (a,b),
1300 (c,d), 2700 (e,f), 4000 (g,h), 5300 (i,j) and 7000 (k,l).
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The scalability of the ML-IP was investigated using an Au147 icosahedron as reference.
Four ML-IPs were generated by considering VASP MD performed on either one structure
or the combination of two structures. Specifically, the ML-IPs are labelled IP-Au20, IP-
Au20+bulk, IP-Au147-ico and IP-Au147-amorph, where the ML-IPs were generated from
Au20, Au20 and bulk Au, icosahedral Au147 and amorphous Au147 VASP MD simulations,
respectively. The aim was to determine the smallest number of atoms, contained in a cell
used in VASP MD simulation, required for constructing a “universal” ML-IP. To check the
accuracy of ML-IPs, LAMMPS molecular dynamics simulations were performed, and the
specific heats of the NPs were calculated from energy fluctuations.

To assess the accuracy of the specific heat calculated using the four ML-IPs in LAMMPS
simulations, the Au147-ico specific heat was considered the reference value of 20.01 J/K/mol
(see Table 2). The results show that using IP-Au20 resulted in an error of 19.65% with
respect to the one calculated using IP-Au147-ico. However, using IP-Au20+bulk signif-
icantly increased the accuracy, reducing the relative error to 3.76%. Additionally, using
IP-Au147-amorph resulted in an error of 2.34%. The results suggest that a good ML-IP can
be generated by considering a training set that includes information on the surface and
bulk, without the need for additional information. Indeed, the ML-IP generated by only
considering VASP bulk and Au20 simulations helped to recover the error caused by the
large surface-to-volume ratio of a small nanocluster.

Table 2. Specific heat relative errors calculated using four different ML-IPs in LAMMPS MD simula-
tions. The errors are relative to the Au147-ico MLIP Cv = 20.01 J/K/mol.

Specific Heat

ML-IP Relative Error (%)

IP-Au20 19.65
IP-Au20+bulk 3.76
IP-Au147-amorph 2.34
IP-Au147-ico 0.00

4. Conclusions

Our preliminary investigation of the applicability of ML-IPs to the properties of
gold nanoparticles [5] highlighted many areas for further investigation, largely related
to accuracy and reducing time-to-solution of our calculations. Of main interest was the
transferability of the potentials we had already created to other systems. In order to
explore this, we extended our calculations to larger nanoclusters, firstly looking at Au28
and Au30. We found that the original potential developed for Au28 was not sufficient but
all that was needed was a few extra training points obtained from geometry optimisations.
Subsequently, we extended the study to multiple structures of Au55 and Au58, which is
the size at which the clusters acquire an internal structure. Again, we found that a few
extra geometry calculations (on Au55) were sufficient. This updating process resembles the
idea of “delta learning” as illustrated in other papers, whereby a potential is used until it
exceeds the region for which it has been trained, and then it is updated; see, e.g., Ref. [23].
Finally, this last potential could be used for Au147 without further modification, which is a
useful indication that potentials developed on one system can be applied to another.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano13121832/s1, Table S1: Geometry of Au30 as optimised
by VASP; Table S2: Geometry of Au30 as optimised by LAMMPS; Table S3: Geometry of Au55
(decahedral) as optimised by VASP; Table S4: Geometry of Au55 (decahedral) as optimised by
LAMMPS; Table S5: Geometry of Au55 (cube) as optimised by VASP; Table S6: Geometry of Au55
(cube) as optimised by LAMMPS; Table S7: Geometry of Au55 (icosahedral) as optimised by VASP;
Table S8: Geometry of Au55 (icosahedral) as optimised by LAMMPS; Table S9: Geometry of Au58
optimised by VASP; Table S10: Geometry of Au58 optimised by LAMMPS; Table S11: Geometry of

https://www.mdpi.com/article/10.3390/nano13121832/s1
https://www.mdpi.com/article/10.3390/nano13121832/s1
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Au147 (decahedron) optimised with VASP; Table S12: Geometry of Au147 (decahedron) optimised
with LAMMPS; Table S13: Geometry of Au147 (cube) optimised with VASP; Table S14: Geometry of
Au147 (cube) optimised with LAMMPS; Table S15: Geometry of Au147 (icosahedral) optimised with
VASP; Table S16: Geometry of Au147 (icosahedral) optimised with LAMMPS; Table S17: Geometry of
Au147 (amorphous) optimised with VASP; Table S18: Geometry of Au147 (amorphous) optimised
with LAMMPS; All coordinates are in Ångstrom. Figure S1: Comparison of bond lengths of cube
and decahedron versions of Au55; Figure S2: Comparison of bond lengths of cube and decahedron
versions of Au147.
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