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Abstract: The main intent of this paper is to present an exhaustive description of the most relevant
mathematical models for the electromechanical properties of heterostructure quantum dots. Models
are applied both to wurtzite and zincblende quantum dot due to the relevance they have shown
for optoelectronic applications. In addition to a complete overview of the continuous and atomistic
models for the electromechanical fields, analytical results will be presented for some relevant approx-
imations, some of which are unpublished, such as models in cylindrical approximation or a cubic
approximation for the transformation of a zincblende parametrization to a wurtzite one and vice
versa. All analytical models will be supported by a wide range of numerical results, most of which
are also compared with experimental measurements.
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1. Introduction

Quantum dot heterostructures have recently received much attention due to their
relevance for optoelectronic devices [1]. The electron spectrum of an ideal quantum dot is a
set of discreet levels material-, shape- and size-dependent, with a density of states given
by a delta function. Although an inhomogeneous broadening of spectra is usually caused
by some size and shape distribution of quantum dots, the possibility of changing growth
regimes leads to quantum dots with a different size, shape and density depending on the
requirements. There are numerous potential applications for semiconductor quantum dots.
To highlight a few recent examples, we can consider Polymer-QDs nanocomposites, which
are extensively studied, and find utility in optical/electrical sensors, light-emitting diodes,
as well as biological labeling/imaging [2]. Moreover, these nanocomposites hold promise
as recyclable photocatalysts for aqueous PET-RAFT polymerization [3].

The investigation of electromechanical fields in nanostructures and their interplay is
a subject that continues to attract growing interest. Semiconductor nanocrystals provide
an excellent platform for studying the quantum interactions between conduction and va-
lence electrons, phonons, and photons [4,5]. The ability to control various factors such as
nanostructure geometry (size and shape), material properties, charge transport, impuri-
ties, and external fields offers the opportunity to tailor device characteristics for specific
applications [5–14]. In order to optimize these processes for specific device applications, it
is essential to determine the distribution of coupled strain and electric fields, which may
involve piezoelectric and electrostrictive effects in some cases [15–19]. By obtaining the
distributions of electromechanical fields, it becomes possible to evaluate properties related
to quantum computing and optoelectronic devices, among others.

Traditionally, two approaches are employed to investigate electromechanical field
effects: atomistic methods and continuum methods [20–28]. Atomistic methods are com-
putationally intensive but offer detailed information at the inter-atomic scale, taking into
account the complete crystal lattice structure and the specific positions of atoms associated
with lattice points. These details become particularly significant as nanostructures approach
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dimensions comparable to the lattice constant. On the other hand, continuum models are
computationally efficient and provide accurate results for nanostructures with dimensions
significantly larger than the lattice constant. The advantage of continuum models lies in
their ability to reduce computation time, making them preferable and often necessary for
device calculations where multiphysics effects, such as electromechanical field interactions,
play a crucial role.

The purpose of this study is to provide, in the first part, a mathematically comprehen-
sive and exhaustive description of the two methods, considering important computational
aspects such as boundary conditions and convenient approximations for model implemen-
tation. The second part presents a series of examples that, although they cannot cover the
vast scientific production on the subject in recent decades, offer an overview of the various
applications of the models to Zincblende, Wurtzite, and Polytypic quantum dots.

2. Fundamental Equations for Continuum Model
2.1. The Strain Tensor

Under the action of applied forces, solid bodies exhibits a deformation, changing their
shape and volume [29]. If the position of any points of the body before the deformation
is given by the positions vector~r (with components x1 = x, x2 = y, x3 = z), after the
deformation we have a new value for the position~r ′ (with components x′i). So we can
define the following displacement vector:

~u =~r ′ −~r, (1)

with components ui = x′i − xi. The distance between two points of the body is given by

dl =
√

dx2
1 + dx2

2 + dx2
3 and dl′ =

√
dx′21 + dx′22 + dx′23 before and after the deformation,

respectively. Using dx′i = dxi − dui and substituting dui = (∂ui/∂xk)dxk we can write
using the general summation rule:

dl
′2 = dl2 + 2

∂ui
∂xk

dxidxk +
∂ui
∂xk

∂ui
∂xl

dxkdxl . (2)

Rearranging the second and third term we can finally write:

dl
′2 = dl2 + 2εikdxidxk, (3)

where we have defined a strain tensor:

εik =
1
2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
. (4)

In almost all general cases (for exceptions see Ref. [29]) if a body is subjected to a small
deformation all the components of the strain tensor are small, so neglecting the last term
in (4) as being of the second order of smallness we can write:

εik =
1
2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (5)

2.2. The Stress Tensor

For a body in mechanical equilibrium the resultant of all the forces on every single
portion of the body is equal to to zero. In THE case of deformation, some internal molecular
forces, defined as internal stresses, tend to return the body to equilibrium. These forces,
in THE absence of macroscopic electric fields, are near-action forces, which, acting on the
considered portion of the body by the surrounding parts, effect only the surface of the
portion itself.



Nanomaterials 2023, 13, 1820 3 of 37

If we want to express these forces, we have to consider the sum of all the forces on
all the volume elements dV of that portion of bodies

∫
~f dV, where ~f is the force per unit

volume. Because of Newton’s third law, they are equal to the sum of the forces exerted on
the portion by the surrounding parts, i.d., from what we said above, equal to an integral
over the surface of the portion.

From a theorem of vector analysis we know that an integral of a vector over an
arbitrary volume can be transformed into an integral over the surface of the volume if the
vector is the divergence of a tensor of rank two. This leads to:∫

~fidV =
∫

∂σik
∂xk

dV =
∮

σikdAk, (6)

with

~fi =
∂σik
∂xk

. (7)

The tensor σik is called the stress tensor, and σikdAk is the ith component of the force
on the surface elements dAk. It is also possible to show that the stress tensor is symmetric [29]:

σik = σki. (8)

At the mechanical equilibrium the internal stresses in every volume element must
be balanced, so that ~fi = 0. Thus the equilibrium equations for a deformed body can be
written as:

∂σik
∂xk

= 0. (9)

2.3. Free Energy

We want to derive now an expression of the free energy as a function of the strain
tensor. Multiplying the force ~fi =

∂σik
∂xk

by the displacement δui and integrating over the
volume V we can calculate the work δW done by the internal stress per unit volume:

∫
δWdV =

∫ (
∂σik
∂xk

)
δuidV, (10)

integrating by parts and considering an infinite medium not deformed at infinity we have [29]:

δW = σikδεik, (11)

so that we can write an expression for the internal energy dU at the thermodynamic
equilibrium for a reversible process at temperature T:

dU = TdS− dW = TdS− σikdεik, (12)

where S is the entropy of the system. Introducing the Helmholtz free energy of the body
F = U − TS we obtain:

dF = −SdT + σikdεik, (13)

which for constant temperature leads to:

σik =

(
∂F
∂εik

)
. (14)

The idea is to expand F in powers of εik with an assumption of small deformations,
and, if we consider an isotropic deformed body at constant temperature, its undeformed
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state is a state in absence of any external forces, i.d., σik = 0, and because of (14) this implies
that there are no linear terms in the expansion of F, which in terms of second order can be
written as:

F = F0 +
1
2

λεii
2 + µεik

2. (15)

The constant term F0 is the free energy of the undeformed body, and we will omit it in
the following. The quantities λ and µ are called Lamè coefficients. The expression of the free
energy for a crystal in a compression at constant temperature is, such as for isotropic bodies,
still a quadratic function of the strain tensor, but with a larger number of coefficients. The
general form for a deformed crystal is given by [29]:

F =
1
2

Ciklmεikε lm, (16)

where Ciklm is the rank four elastic modulus tensor, defined with the following symmetry
properties:

Ciklm = Ckilm = Cikml = Clmik. (17)

With (14) the stress tensor for a crystal in terms of strain tensor is given by:

σik =

(
∂F
∂εik

)
= Ciklmε lm. (18)

The elastic modulus tensor is usually expressed also as Cαβ, with α and β taking values
from 1 to 6 in correspondence with xx, yy, zz, yz, zx, xy.

2.4. Constitutive Relations

For a dielectric material there is an additional contribution given by AN electric field
to Equation (12):

dUelec. = ~E · d~D = EidDi, (19)

where ~E and ~D are the electric field and electric displacement vectors, respectively. So the
total internal energy reads:

dU = TdS + σikdεik + EidDi, (20)

and it is also possible to define in a similar way another thermodynamic potential,
the enthalpy:

dH = TdS− εikdσik − DidEi. (21)

For an isentropic process, by applying the chain rule to the derivates of U and H, we
can express some thermodynamic identities:

eikl =

(
∂Di
∂εkl

)
= −

(
∂σkl
∂Ei

)
(piezoelectric coefficient) (22)

ε̂ik =

(
∂Di
∂Ek

)
(permittivity tensor) (23)

Ciklm =

(
∂σik
∂ε lm

)
(elastic modulus tensor). (24)
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For small isentropic variation we can therefore write:

dDi =

(
∂Di
∂Ek

)
dEk +

(
∂Di
∂εkl

)
dεkl = ε̂ikdEk + eikldεkl

dσkl =

(
∂σkl
∂Ei

)
dEi +

(
∂σkl
∂εmn

)
dεmn = −eikldEi + Cklmndεmn, (25)

so we can write the constitutive relations for the relative finite quantities:

Di = ε̂ikEk + eiklεkl

σkl = −eiklEi + Cklmnεmn, (26)

2.5. Strain Field in Quantum Dot

The lattice constants in semiconductor heterostructures vary with coordinates, and the
lattice mismatch between the quantum dot structure and the matrix material in which it is
embedded generates an intrinsic local strain field different from zero [25]. The free elastic
energy can be written as:

F =
∫

V
d~r

1
2

Ciklm(~r)εik(~r)ε lm(~r), (27)

where V is the total volume of the system. To take into account lattice mismatch (cfr.
Figure 1), the strain tensor is represented as (i, j = x, y, z):

εij = ε
(u)
ij + ε

(0)
ij , (28)

where ε
(0)
ij is the tensor of local intrinsic strain and ε

(u)
ij is the local strain tensor dependent

on positions [30], given by (5). The contribution of internal strain has been neglected in
Equation (28).

Figure 1. Tensor of local intrinsic strain and local strain tensor.

2.5.1. Zincblende Quantum Dot

The elastic energy density for a crystal with zincblende symmetry read [25]:

F =
1
2
[C11(ε

2
xx + ε2

yy + ε2
zz) + 2C12(εxxεyy + εxxεzz + εyyεzz) + 4C44(ε

2
xy + ε2

xz + ε2
yz)], (29)

since the only linearly independent elastic constants for a zincblende structure are given by:

C1111 ≡ C11 C1122 ≡ C12 C2323 ≡ C44. (30)

The intrinsic strain tensor is given by:

ε
(0)
ij = δija, (31)



Nanomaterials 2023, 13, 1820 6 of 37

with a =
amatrix−aQD

amatrix
in the dot and zero otherwise. Here amatrix and aQD are the lattice

constants of the matrix and the quantum dot, respectively.

2.5.2. Wurtzite Quantum Dot

The elastic energy density for a crystal with wurtzite symmetry is given by [25]:

F =
1
2
[C11(ε

2
xx + ε2

yy) + C33ε2
zz + 2C12εxxεyy + 2C13εzz(εxx + εyy) + 4C44(ε

2
xz + ε2

yz) + 2(C11 − C12)ε
2
xy] (32)

In a crystal with wurtzite symmetry the linearly independent elastic constants are:

C1111 ≡ C11; C1122 ≡ C12; C1133 ≡ C13;

C3333 ≡ C33; C2323 ≡ C44; C2121 ≡ (C11 − C12)/2. (33)

The tensor of local intrinsic strain is given by:

ε
(0)
ij = (δij − δizδjz)a + δizδjzc, (34)

with a =
amatrix−aQD

amatrix
and c = cmatrix−cQD

cmatrix
the lattice mismatch in the hexagonal plane and the

c axis, respectively. The parameters amatrix, cmatrix, and aQD, cQD are the lattice constants of
the matrix and the quantum dot, respectively. The c axis is the axis of the sixfold rotational
symmetry of the wurtzite material, which we take coincident with the z axis.

2.6. Piezoelectric Field in Quantum Dot

Under an applied stress some semiconductors develop an electric moment with mag-
nitude proportional to the stress [25,31]. The induced polarization is related to the strain
tensor by the piezoelectric coefficients (22):

Pi(~r) = eilm(~r)ε lm(~r), (35)

the index ilm run over the spatial coordinates, namely: e111 e122 e133 e123 e113 e112
e211 e222 e233 e223 e213 e212
e311 e322 e333 e323 e313 e312

. (36)

For some wurtzite nitrides we have also to take in account a spontaneous polarization
Psp, whose polarity depends on the last anion or cation at the surface. The total polarization
generates a piezoelectric field EP, which in the absence of external charges can be evaluated
by solving the Maxwell-Poisson equation:

~∇ · ~D(~r) = 0, (37)

where the displacement vector ~D is given by Equation (26).

2.6.1. Zincblende Quantum Dot

Converting from tensor notation to matrix notation by:

eilm =

{
eik, k = 1, 2, 3;

1
2 eik, k = 4, 5, 6;

, (38)

the independent piezoelectric coefficients for a zincblende structure are given by: 0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

, (39)
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so that we can write for the polarization in terms of components:

Px = e14εyz,
Py = e14εxz,
Pz = e14εxy,

(40)

while for the permittivity tensor we have:

ε̂Zb =

 ε̂ 0 0
0 ε̂ 0
0 0 ε̂

, (41)

where ε̂ is a constant value material dependent.

2.6.2. Wurtzite Quantum Dot

In a crystal with wurtzite symmetry the only nonzero component for the spontaneous
polarization is along the z-axis (the axis of the sixfold rotational symmetry, as we already
mentioned), while the independent piezoelectric coefficients are: 0 0 0 0 e15 0

0 0 0 e15 0 0
e31 e31 e33 0 0 0

, (42)

so nominally the components of the polarization are:

Px = e15εxz,
Py = e15εyz,
Pz = e31(εxx + εyy) + e33εzz + Psp,

(43)

and the permittivity tensor is given by:

ε̂Wz =

 ε̂11 0 0
0 ε̂11 0
0 0 ε̂33

, (44)

with ε̂11 and ε̂33 constant values material dependent.

2.7. Governing Equations for Electromechanical Fields

The governing equations for the electromechanical fields in an heterostructures quan-
tum dot are given by the already mentioned equilibrium Equation (9)— also known as
Navier’s static equation–and Maxwell-Poisson Equation (37) which we rewrite here:

∂σij

∂xj
= 0

∇ ·D = 0, (45)

From Equation (45) we obtain a set of four coupled equations in the electromechanical
fields. The expression for the stress tensor and the electric displacement are given by the
constitutive relations (26), which we express in a more convenient way here:

σik = Ciklmε lm + eikn
∂V
∂xi

, Di = −εin
∂V
∂xi

+ eilmε lm + Psp,i, (46)

where V is the electric potential.
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2.7.1. Zincblende Quantum Dot

Equation (45) using (5) for a zincblende structure read nominally:

∂

∂x

(
C11

∂ux

∂x

)
+

∂

∂y

(
C44

∂ux

∂y

)
+

∂

∂z

(
C44

∂ux

∂z

)
+

∂

∂x

(
C12

∂uy

∂y

)
+

∂

∂y

(
C44

∂uy

∂x

)
+

∂

∂x

(
C12

∂uz

∂z

)
+

∂

∂z

(
C44

∂uz

∂x

)
+

∂

∂y

(
e14

∂V
∂z

)
+

∂

∂z

(
e14

∂V
∂y

)
+

∂

∂x

[(
C11 + 2C12

)
a
]
= 0

∂

∂x

(
C44

∂ux

∂y

)
+

∂

∂y

(
C12

∂ux

∂x

)
+

∂

∂x

(
C44

∂uy

∂x

)
+

∂

∂y

(
C11

∂uy

∂y

)
+

∂

∂z

(
C44

∂uy

∂z

)
+

∂

∂y

(
C12

∂uz

∂z

)
+

∂

∂z

(
C44

∂uz

∂y

)
+

∂

∂x

(
e14

∂V
∂z

)
+

∂

∂z

(
e14

∂V
∂x

)
+

∂

∂y

[(
C11 + 2C12

)
a
]
= 0

∂

∂x

(
C44

∂ux

∂z

)
+

∂

∂z

(
C12

∂ux

∂x

)
+

∂

∂y

(
C44

∂uy

∂z

)
+

∂

∂z

(
C12

∂uy

∂y

)
+

∂

∂x

(
C44

∂uz

∂x

)
+

∂

∂y

(
C44

∂uz

∂y

)
+

∂

∂z

(
C11

∂uz

∂z

)
+

∂

∂x

(
e14

∂V
∂y

)
+

∂

∂y

(
e14

∂V
∂x

)
+

∂

∂z

[(
C11 + 2C12

)
a
]
= 0

∂

∂y

(
e14

∂ux

∂z

)
+

∂

∂z

(
e14

∂ux

∂y

)
+

∂

∂x

(
e14

∂uy

∂z

)
+

∂

∂z

(
e14

∂uy

∂x

)
+

∂

∂x

(
e14

∂uz

∂y

)
+

∂

∂y

(
e14

∂uz

∂x

)
+

∂

∂x

(
ε̂

∂V
∂x

)
+

∂

∂y

(
ε̂

∂V
∂y

)
+

∂

∂z

(
ε̂

∂V
∂z

)
= 0 (47)

2.7.2. Wurtzite Quantum Dot

The explicit expression for Equation (45) using (5) is given by:

∂

∂x

(
C11

∂ux

∂x

)
+

∂

∂y

[
(C11 − C12)

2
∂ux

∂y

]
+

∂

∂z

(
C44

∂ux

∂z

)
+

∂

∂x

(
C12

∂uy

∂y

)
+

∂

∂y

[
(C11 − C12)

2
∂uy

∂x

]
+

∂

∂x

(
C13

∂uz

∂z

)
+

∂

∂z

(
C44

∂uz

∂x

)
+

∂

∂x

(
e31

∂V
∂z

)
+

∂

∂z

(
e15

∂V
∂x

)
+

∂

∂x

[(
C11 + C12

)
a + C13c

]
= 0

∂

∂x

[
(C11 − C12)

2
∂ux

∂y

]
+

∂

∂y

(
C12

∂ux

∂x

)
+

∂

∂x

[
(C11 − C12)

2
∂uy

∂x

]
+

∂

∂y

(
C11

∂uy

∂y

)
+

∂

∂z

(
C44

∂uy

∂z

)
+

∂

∂y

(
C13

∂uz

∂z

)
+

∂

∂z

(
C44

∂uz

∂y

)
+

∂

∂y

(
e31

∂V
∂z

)
+

∂

∂z

(
e15

∂V
∂y

)
+

∂

∂y

[(
C11 + C12

)
a + C13c

]
= 0

∂

∂x

(
C44

∂ux

∂z

)
+

∂

∂z

(
C13

∂ux

∂x

)
+

∂

∂y

(
C44

∂uy

∂z

)
+

∂

∂z

(
C13

∂uy

∂y

)
+

∂

∂x

(
C44

∂uz

∂x

)
+

∂

∂y

(
C44

∂uz

∂y

)
+

∂

∂z

(
C33

∂uz

∂z

)
+

∂

∂x

(
e15

∂V
∂x

)
+

∂

∂y

(
e15

∂V
∂y

)
+

∂

∂z

(
e33

∂V
∂z

)
∂

∂z

[
2C13a + C33c

]
= 0

∂

∂x

(
e15

∂ux

∂z

)
+

∂

∂z

(
e31

∂ux

∂x

)
+

∂

∂y

(
e15

∂uy

∂z

)
+

∂

∂z

(
e31

∂uy

∂y

)
+

∂

∂x

(
e15

∂uz

∂x

)
+

∂

∂y

(
e15

∂uz

∂y

)
+

∂

∂z

(
e33

∂uz

∂z

)
+

∂

∂x

(
ε̂11

∂V
∂x

)
+

∂

∂y

(
ε̂11

∂V
∂y

)
+

∂

∂z

(
ε̂33

∂V
∂z

)
+

∂Psp

∂z
= 0 (48)
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2.8. Electromechanical Fields in Cylindrical Coordinates

In some configurations, it is possible to solve the electromechanical problem using a
cylindrical approximation. For a more detailed discussion on different aspects related to
the cylindrical approximation, it is possible refer to Refs. [32–37]. We want to derive an
expression for the strain tensors and the free elastic energy in cylindrical coordinates:

x = $cosϕ
y = $sinϕ
z = z

, (49)

so first we give the general transformation rules for a tensor w in a new system of coordi-
nates [38]:

w′ij = αikαjmwkm (Second rank tensor), (50)

w′ijk = αirαjsαktwrst (Third rank tensor), (51)

w′ijkl = αimαjnαkpαlqwmnpq (Fourth rank tensor), (52)

where α are the direction cosines of the axes of the new system with respect to the old
one. Using these rules we derive the following relations between the strain tensor and the
displacement vectors in a system of cylindrical coordinates:

ε$$ =
∂u$

∂$
, εϕϕ =

1
$

∂uϕ

∂ϕ
+

u$

$
, εzz =

∂uz

∂z
,

ε$ϕ =
1
2

(
1
$

∂u$

∂ϕ
+

∂uϕ

∂$
−

uϕ

$

)
, ε$z =

1
2

(
∂u$

∂z
+

∂uz

∂$

)
, εϕz =

1
2

(
∂uϕ

∂z
+

1
$

∂uz

∂ϕ

)
, (53)

and we can also derive some useful identities between the strain tensor in cartesian and
cylindrical coordinates:

εxx + εyy = ε$$ + εϕϕ,

εzz = εzz,

εxz
2 + εyz

2 = ε$z
2 + εϕz

2,

εxx
2 + εyy

2 + 2εxy
2 = ε$$

2 + εϕϕ
2 + 2ε$ϕ

2,

εxxεyy − εxy
2 = ε$$εϕϕ − ε$ϕ

2, (54)

which can be used to write an expression for the free elastic energy both for a zincbl-
ende structure:

F =
1
2

C11(ε
2
$$ + ε2

ϕϕ + ε2
zz) + C12(ε$$εϕϕ + εϕϕεzz + ε$$εzz) + 2C44(ε

2
$ϕ + ε2

ϕz + ε2
$z), (55)

and for a wurtzite structure:

F =
1
2

C11(ε
2
$$ + ε2

ϕϕ) +
1
2

C33ε2
zz + C12ε$$εϕϕ + C13(εϕϕεzz + ε$$εzz)

+ 2C44(ε
2
ϕz + ε2

$z) + (C11 − C12)ε
2
$ϕ. (56)

2.8.1. Governing Equations in Cylindrical Coordinates for a Zincblende Quantum Dot

Zincblende materials are not axisymmetric, so in order to reduce the problem to a two
dimensional model in cylindrical coordinates, we need to make an isotropic assumptions.
This entails that we disregard piezoelectricity in this model. To derive this assumption, we
write the elastic tensors in a new system of complex coordinates:{

ξ = x + iy
η = x− iy

, (57)
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Because of (17) we write in this system:

Cξηξη = Cηξξη = Cξηηξ = Cηξηξ , (58)

and

Cξξηη = Cηηξξ . (59)

Using the properties of transformation (52) for a fourth order tensor we get:
Cxxxx = 2Cξξξξ + 4Cξηξη + 2Cξξηη

Cxxyy = −2Cξξξξ + 4Cξηξη − 2Cξξηη

Cxyxy = −2Cξξξξ + 2Cξξηη

. (60)

To impose an isotropic cylindrical symmetry we apply a rotation to the coordinates:{
ξ ′ = ξeiϕ

η′ = ηe−iϕ , (61)

with the constrain that the elastic tensor must be independent on this rotation, which
leads to: 

Cξ ′ξ ′ξ ′ξ ′ = ei4ϕCξξξξ

Cξ ′η′ξ ′η′ = Cξηξη

Cξ ′ξ ′η′η′ = Cξξηη

. (62)

The constraint is satisfied only if Cξξξξ = 0, so Equation (60) becomes:
Cxxxx = 4Cξηξη + 2Cξξηη

Cxxyy = 4Cξηξη − 2Cξξηη

Cxyxy = 2Cξξηη

, (63)

which gives:

Cxxxx − Cxxyy = 2Cxyxy, (64)

which using the compact notation for the elastic tensors can be written as:

2C44 + C12 = C11, (65)

which is the cylindrical isotropic assumption we were looking for. By applying this assumption
we can derive the constitutive relations for a zincblende quantum dot in cylindrical coordinates:

σ$$ = C12(ε$$ + εϕϕ + εzz + 3a) + 2C44(ε$$ + a)

σϕϕ = C12(ε$$ + εϕϕ + εzz + 3a) + 2C44(εϕϕ + a)

σzz = C12(ε$$ + εϕϕ + εzz + 3a) + 2C44(εzz + a)

σ$ϕ = 4C44ε$ϕ

σϕz = 4C44εϕz

σ$z = 4C44ε$z, (66)

Using the isotropic assumption (65) we can derive a set of equations governing the
rotational invariant in cylindrical coordinates for a zincblende quantum dot for the strain
fields, and to separate the problem in a ($, z) part and a ϕ part. With adequate boundary
conditions we can remove the angular dependence, which in terms of displacement leads
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to uϕ = 0; therefore we write here only the equations $ - and z -dependent, which we have
used in our two-dimensional models:

∂

∂$

[
(C12 + 2C44)

∂u$

∂$

]
+

∂

∂z

(
C44

∂uz

∂z

)
+

∂

∂$

(
C12

∂uz

∂z

)
+

∂

∂z

(
C44

∂uz

∂$

)
+

∂

∂$

(
C12

$
u$

)
− 2C44

$2 u$ +
2C44

$

∂u$

∂$
+

∂

∂$

[
(3C12 + 2C44)a

]
= 0

∂

∂$

(
C44

∂u$

∂z

)
+

∂

∂z

(
C12

∂u$

∂$

)
+

∂

∂$

(
C44

∂uz

∂$

)
+

∂

∂z

[
(C12 + 2C44)

∂uz

∂z

]
+

∂

∂z

(
C12

$
u$

)
+

C44

$

∂u$

∂z
++

C44

$

∂uz

∂$
+

∂

∂z

[
(3C12 + 2C44)a

]
= 0. (67)

2.8.2. Governing Equations in Cylindrical Coordinates for a Wurtzite Quantum Dot

In cylindrical coordinates the constitutive relations (46) for a wurtzite quantum dot
take the form:

σ$$ = C11ε$$ + C12εϕϕ + C13εzz + (C11 + C12)a + C33c + e31
∂V
∂z

,

σϕϕ = C11εϕϕ + C12ε$$ + C13εzz + (C11 + C12)a + C33c + e31
∂V
∂z

,

σzz = C33εzz + C13(ε$$ + εϕϕ) + 2C13a + C33c + e33
∂V
∂z

,

σ$ϕ = (C11 − C12)εrϕ,

σϕz = 2C44εϕz + e15

(
1
$

)
∂V
∂ϕ

,

σ$z = 2C44ε$z + e15
∂V
∂$

,

D$ = 2e15ε$z − ε̂11
∂V
∂$

,

Dϕ = 2e15εϕz − ε̂11

(
1
$

)
∂V
∂ϕ

,

Dz = e31(ε$$ + εϕϕ) + e33εzz − ε̂33
∂V
∂z

+ Psp, (68)

and inserting these relations in Equation (45) we obtain a set of coupled equilibrium
equations for the strain and the electrical fields in cylindrical coordinates:

∂σ$$

∂$
+

(
1
$

)
∂σϕ$

∂ϕ
+

∂σz$

∂z
+

(
1
$

)
(σ$$ − σϕϕ) = 0,

∂σ$ϕ

∂$
+

(
1
$

)
∂σϕϕ

∂ϕ
+

∂σzϕ

∂z
+

(
2
$

)
σ$ϕ = 0,

∂σ$z

∂$
+

(
1
$

)
∂σϕz

∂ϕ
+

∂σzz

∂z
+

(
1
$

)
σ$z = 0,

∂D$

∂$
+

(
1
$

)
D$ +

∂Dz

∂z
= 0. (69)

These equations are invariant with respect to rotations around the z axis (in spite
of the lack of axisymmetry of the underlying wurtzite lattice[39]); hence solutions can
be separated into a ($, z) part and a ϕ part. If we apply these equations to a cylindrical
symmetric wurtzite quantum dot, with adequate boundary conditions, the axisymmetry of
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the system (equations and geometry) leads to the absence of angular dependence, therefore
uϕ = 0. We can write the remaining equations in the following instructive form:

LU = f , (70)

where U ≡ (ur, uz, V), L is a second-order differential operator given by:

L =


∂

∂$ C11
∂

∂$ + ∂
∂z C44

∂
∂z +

1
$

∂
∂$ C12 + C11

∂
∂$

1
$

∂
∂$ C13

∂
∂z +

∂
∂z C44

∂
∂$

∂
∂$ e31

∂
∂z +

∂
∂z e15

∂
∂$

∂
∂$ C44

∂
∂z +

∂
∂z C13

∂
∂$ + ∂zC13

1
$ + C44

1
$

∂
∂z

∂
∂$ C44

∂
∂$ + ∂

∂z C33
∂
∂z + C44

1
$

∂
∂$

∂
∂$ e33

∂
∂z +

∂
∂z e15

∂
∂$ + e15

1
$

∂
∂$

∂
∂$ e15

∂
∂z + e15

1
$

∂
∂z +

∂
∂z e31

∂
∂$ + ∂

∂z e15
1
$

∂
∂$ e15

∂
∂$ + e15

1
$

∂
∂$ + ∂

∂z e33
∂
∂z − ∂

∂$ ε̂11
∂

∂$ −
∂
∂z ε̂33

∂
∂z − ε̂11

1
$

∂
∂$

, (71)

and f is the source term given by

f =

 −
∂

∂$ [(C11 + C12)a + C33c]
− ∂

∂z [2C13a + 2C13c]
− ∂

∂z Psp

. (72)

Because the functions appearing in the source term are piecewise constant what we in
reality have are surface sources for the strain and the electric potential (the discontinuities
appear at the interfaces).

3. The Valence Force Fields Model

The atomistic valence force field model was first applied to study the lattice dynamics
of diamond by Musgrave and Pople [20]. Later, Nusimovici and Birman [21] developed a
model for wurtzite semiconductors with eight adjustable parameters. The most popular
valence force fields scheme is probably due to Keating [22], where two parameters α and β
are used. This model applies to covalent semiconductors.

From an atomistic point of view we can divide the requirements of an elastic strain
energy Fs into two groups:

1. General conditions: rotational and displacement invariance.
2. Conditions imposed by the symmetry of the crystal structure.

For the sake of simplicity we consider any general type of deformation and we assume
that the elastic strain depends only on the positions of the nuclei. The latter is only valid in
nonmetallic crystals, since in this case the Born-Oppenheimer approximation ensures that
the electrons completely follow the nuclei. So the following models of valence force fields
hold only with the condition that the forces on the electrons are always negligible [40]. The
requirement that the energy is invariant under any arbitrary displacement of the lattice is
satisfied if Fs depends only on the difference between nuclear positions:

Fs = Fs(~xk −~xl) = Fs(~ukl), (73)

where ~ukl = ~xk − ~xl and ~xk is the position vector of the kth nucleus after deformation.
However, Fs must be invariant under a transformation in which the atoms are displaced
by a rigid rotation of the crystal, and ~ukl are not invariant under such a transformation,
since they transform as vectors. We can form an invariant from scalar products of ~ukl and
functions of such products:

λklmn = (~ukl · ~umn − ~Ukl · ~Umn)/2a, (74)

where a is the lattice constant, ~Ukl = ~Xk − ~Xl and ~Xk is the position vector the kth nucleus
in the undeformed crystal. The final term is included so that the invariant is equal to zero
when the deformation is removed. The energy Fs is a function of a large number of λklmn,
and since these are small, we can use them as a basis for a series expansion of Fs. We
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disregard the constant term, while the linear terms vanish if the energy is an extremum at
equilibrium. So for small strain we can write using the summation convention:

Fs =
1
2

Bpqrs
klmnλklmnλpqrs + O(λ3). (75)

The coefficients Bpqrs
klmn must be positive definite in order to ensure that Fs is a definite

minimum. We still have more terms λklmn than necessary because most of the coeffi-
cients Bpqrs

klmn are not independent. It was shown that there are only 3N − 6 independent
invariants [22], which have to be determined from the crystal structure.

We consider a slightly deformed primitive structure, which we can figure as a large
number of parallelepipeds with atoms at each of the eight corners. Without deformations,
all parallelepipeds are identical unit cells. The arrangement of the eight atoms on the
corners of a cell is given by 18 scalar products, and a convenient set of these is obtained by
taking the squares of the lengths of the 12 edges of the cell and the 6 off-diagonal products,
i.e., the angles between vectors, represented by arcs in Figure 2.

Figure 2. The unit cell with the six off-diagonal products.

The four atoms of the adjacent cell which are not already fixed by the above scalar
products are determined by the eight remaining edge lengths of this cell and by four more
angles. The rest of the crystal is included by adding cells and using only the necessary scalar
products for the atom positions. We have three different types of lattice points according
the number of necessary scalar products. First, the points lying along three lines passing
through point 0 (see again Figure 2) in the initial cell and parallel to the three basis vectors
of the undistorted lattice, which are associated with three diagonal products (edge lengths)
and three off-diagonal products (angles), as shown in Figure 3a.

Second, we have the points in the reference planes, but off the reference lines, associ-
ated with three diagonal products but only one off-diagonal product, as shown in Figure 3b.
Finally, we have the points which do not lie in the above mentioned planes, associated
with three diagonal scalar products but no off-diagonal products, as shown in Figure 3c.
This nonuniformity in the distribution of the scalar products is clearly undesirable, and we
can remove it by invoking the invariance of a crystal under the operations of the relevant
translation subgroup, and by the assumption that interactions over distances of the order
of the crystal dimensions are negligible. This assumption is necessary, especially if we are
not considering a bulk material, such as in a heterostructure quantum dot.

We write ~x1(l),~x2(l),~x3(l) as the position vectors of three neigbors of the atom cell (l)
relative to this latter atom and which become the lattice basis vectors when the distortion is
removed; so that we can rewrite (75) in the following way:

Fs =
1
2 ∑

l,l′

3

∑
m,n,m′ ,n′=1

Bmnm′n′(l − l′)λmn(l)λm′n′(l
′) + · · ·, (76)

where

λmn(l) = (~xm(l) ·~xn(l)− ~Xm · ~Xn)/2a, (77)
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and is symmetric in (m, n), the sums over l, l′ run over all the unit cells, and Bmnm′n′(l − l′)
is invariant under all the operations of the space group, it is positive, defined and falls off
rapidly as (l − l′) increases, in order to have a convergent expression.

Figure 3. Types of lattice points according the number os associated scalar products: (a) points on the
references lines, (b) points in the references planes but off the references lines, (c) ohter points.

We can extend this formulation to the case of nonprimitive structures: for a diatomic
structure one suitable set of scalar products consist of a set, just as the previous one, but
using the atoms on one sublattice together with three extra scalars per unit cell of the
diatomic structure is necessary to locate the B atom relative to the A atom. However, a
more convenient set is given by using ~x1(l),~x2(l),~x3(l) as the position vectors of the B
atoms in the neighboring unit cells relative to the A atom of cell (l) and ~x4(l) as the position
vectors of the atom B in the cell (l) relative to the A atom there. Thus, we can write Fs as:

Fs =
1
2 ∑

l,l′

4

∑
m,n,m′ ,n′=1

Bmnm′n′(l − l′)λmn(l)λm′n′(l
′) + · · ·. (78)

In the same way it is possible to extend the formulation to structures with a greater
number of atoms per unit cells. Within the harmonic approximation Equation (78) becomes:

Fs =
1
2

Kmn
ab (l − l′)um

a un
b , (79)

where um
a is the ath component of the displacement of the mth nucleus and the Kmn

ab are linear
combinations of the Bmnm′n′ , and this form is suitable for calculation purposes, and it has
been applied to the calculation of the elastic constants of the diamond structure [22]. This
model includes only two types of interaction: A nearest-neighbor term and a noncentral
second-neighbor term. The basic unit cell of the diamond structure is a rhombohedron
with two atoms (atoms 1 and 0 in Figure 4) on its major axis, which is directed along the
[111] direction. The three neighboring unit cells of interest contain atoms 2 and 5, 3 and 6, 4
and 7, respectively.
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Figure 4. Crystal model for diamond structure. The atoms on the two different sublattice are
represented by orange (atoms 1, 2, 3, 4) and blue (atoms 0, 5, 6, 7) circles.

The following expression for the strain energy with two constants is derived from
Equation (79) by including only diagonal products of the λs:

Fs =
1
2 ∑

l

4

∑
m,n=1

Bmnmn(O)λ2
mn(l)

=
1
2 ∑

l

[
α

4a2

4

∑
i=1

(x2
0i(l)− 3a2)2 +

β

2a2

4

∑
i,j>i1

(x0i(l) · x0j(l) + a2)2
]

, (80)

where the atomic labeling is as in Figure 4 and the required symmetry has been imposed
by Bmmmm(O) = α (for all m), Bmnmn(O) = β (all m, n, m 6= n), and by including the term
in λ2

34 only if the symmetry B3434 = B1212, etc., is satisfied.
Successively physical properties of semiconductor alloy A1−xBxC have been studied

using a valence force fields model [41]. Lattice-mismatched zincblende semiconductor
alloy ground state configurations have been determined [42], and also the groundstate
search of a group of lattice-mismatched III-V semiconductor alloys, such as GaInN, GaInP,
GaInAs, GaInSb, InAsSb, and InPAs has been performed. A valence force fields model for
lattice-mismatched isovalent semiconductor zincblende alloys has been derived in Ref. [41],
where the strain energy was given by:

FVFF = ∑
l

4

∑
m=1

3αlm

8d2
lm

[
r2

lm − d2
lm

]2

+ ∑
l

2

∑
s=1

6

∑
k=1

3βlsk
8dlsk1dlsk2

[rlsk1rlsk2 cos(Θlsk)− dlsk1dlsk2 cos(Θ0)]
2, (81)

where l runs through all the lattice sites in the unit cell, s = 1, 2 denotes the two sublattice
sites in in the zincblende cell, m runs through the four different bonds, and k runs through
the six angles with the vertex at site ls. The two bonds that form the angle k at the site ls
are represented by lsk1 and lsk2, while dlm (similarly for dlsk1 and dlsk2) is the ideal bond
length for bond lm, and rlm (similarly for rlsk1 and rlsk2) is the corresponding calculated
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bond length. The angle formed between lsk1 and lsk2 is given by Θlsk, while Θ0 = 109.5◦

is the ideal tetrahedral bond angle.
Martin [24] utilized bond-stretching and (α) and bending (β) parameters similar to

Keating but added point-ion Coulombic forces to the free energy. We used the model given
by Equation (81) to develop the Keating model for wurtzite quantum dot heterostructures.
The free energy of the elastic part is given by a sum over all atoms i:

FVFF = ∑
i

(
∑

j

[
3αij

8d2
ij

(
rij · rij − d2

ij

)2
+ ∑

k 6=j

3βijk

8dijdik

(
rij · rik − dijdik cos(Θijk)

)2
])

, (82)

and the sums over j and k run over the nearest neighbor atoms, d and r are the bulk and
distorted distances between neighbor atoms, Θijk is the ideal unrelaxed tetrahedral bond
length, and α, β are empirical material-dependent elastic parameters as mentioned above.
At present, the piezoelectric effect has not been included in the energy expression for the
valence force fields model, but we will demonstrate how it can be incorporated using a
semi-coupled model.

3.1. Calculation of a Strain Tensor from Atomistic Data

For each atom, there exists a displacement vector, but in the discrete atomic case, the
classical continuous strain tensor relies on derivatives of the displacement vector, which lack
well-definedness. To overcome these challenges, two approaches are available for strain
tensor calculations. One approach involves determining the displacement vectors for each
atom and employing Shepard’s interpolation [43] to compute a continuous displacement
vector that enables differentiation for strain tensor calculation. To account for lattice-
mismatch, it is manually subtracted from the diagonal components when inside the dot.
The other approach follows the methodology presented in Ref. [44], where a discrete
deformation gradient is defined through an optimization procedure. Lattice mismatch is
automatically incorporated when utilizing the unstrained bond lengths of the dot material
inside the dot.

Generally, the two methods yield similar results for the strain tensor components.
However, the interpolation method often exhibits more oscillations and irregularities compared
to the atomic calculation. The atomic method is computationally simpler and faster, and we
primarily employ this approach. The oscillations and irregularities observed in the interpolation
method are highly dependent on the chosen trivariate interpolation method.

3.2. Inclusion of Piezoelectric Effect in Valence Force Field Calculation

The VFF model usually does not incorporate the piezoelectric effect, as it solely ac-
counts for nearest neighbor interactions. However, it is possible to include the piezoelectric
effect in a semi-coupled manner by calculating the electric potential using Gauss’s law:

∇ · D = 0, (83)

where

Di = −εin
∂V
∂xi

+ eilmεlm, (84)

Here, εlm represents interpolated strain fields based on VFF calculations. This semi-
coupled approach signifies that the electric field is coupled to the strain fields, while the
strain fields remain independent of the electric field. Previous research has demonstrated
the effectiveness of the semi-coupled approach for most zincblende compounds, including
the very relevant InAs/GaAs system [45].

4. How to Connect Continuum Model and VFF

For bulk materials, where dij, αij, and βij are independent of atomic index, the param-
eters α and β can be expressed in terms of C11 and C12 as follows [46]:
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α =
1√
3
(C11 + 3C12)d and (85)

β =
1√
3
(C11 − C12)d. (86)

In the VFF model, the parameter C44 can be calculated from α and β as shown in [47]:

CVFF
44 =

√
3αβ

(α + β)d
. (87)

At the interface between a matrix and a dot material, an average β-value is required for
the alloy combination. Traditional elasticity does not exhibit inherent size dependence in
the elastic solutions of embedded inhomogeneities. In systems with dimensions larger than
50 nm, the surface-to-volume ratio is usually insignificant, and the deformation behavior
is primarily governed by classical bulk strain energy. Presently, there is no available
framework that combines interface and surface elasticity with bulk elasticity to analyze
embedded inclusions. The approach utilized in quantum dot literature relies solely on
classical bulk elasticity. For more information on corrections related to hydrostatic strain
arising from interfacial and surface elasticity, please refer to Refs. [48,49].

5. Boundary Conditions

Quantum dots are typically surrounded by a matrix material that is much larger
in size, allowing us to consider it as having infinite extent. However, when solving the
numerical equations, it is necessary to define a finite computational domain. Consequently,
boundary conditions must be imposed on this computational domain to ensure that the
electromechanical field near the dot is not influenced by these artificial boundaries.

5.1. Boundary Conditions in Continuum Model

In the case of the continuum model, we can mention four main types of boundary
conditions:

1. Fixed boundary conditions, which enforce a zero displacement vector at the boundary:

~u|∂Ω = 0, (88)

where ∂Ω is the boundary of the computational domain Ω.
2. Free boundary conditions, which imply the absence of forces at the boundary and

therefore the surface traction vector is required to be zero. The surface traction vector
is given by

[Tn]i =
3

∑
j=1

σijnj, (89)

where~n is the outward pointing unit normal vector to the surface. The free boundary
condition is then give by

~Tn|∂Ω =~0. (90)

3. Periodic boundary conditions that simulate a periodic arrangement of quantum
dots with a wetting layer. There is limited existing literature on the determination
of boundary conditions for strain aimed at modeling a periodic arrangement of a
particular structure. This task is non-trivial since the displacement vector is not
necessarily periodic, as the structure should be allowed to expand in all directions
even within an array of quantum dots. A possible option is to establish a set of
periodic boundary conditions on a single cell of the periodic structure (referred to as
the domain) based on the following two principles.
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The first principle is based on Newton’s second law, which states that in a static
scenario, the sum of all forces should be zero. For a periodic array, this implies that the
traction force from one side of the domain must be equal in magnitude and opposite
in direction to the traction force from the other side of the domain, expressed as:

~Tn|∂Ω1 = −~Tn|∂Ω2, (91)

where ∂Ω1 and ∂Ω2 represent the periodic boundaries.
The second principle ensures that no cracks are allowed to appear on the surface of
the domain. This requirement is satisfied when:

∂~n · ~u
∂ξi
|∂Ω1 = −∂~n · ~u

∂ξi
|∂Ω2, (92)

where (ξ1, ξ2) parameterize the surface, ξ3 parameterizes the direction normal to the
surface, and i = 1, 2, 3. The minus sign accounts for both normal vectors pointing
outward from the domain. The condition for i = 1, 2 ensures that the slopes of the
two surfaces are equal, and the final condition ensures that the normal derivative of
the displacement vector, in the direction normal to the boundaries, is equal at periodic
boundaries. These boundary conditions have been verified in the two-dimensional
case in the study by Lassen et al. [50].

4. Fixed free boundary conditions for quantum dots with wetting layers. It is generally
acknowledged that in the case of a quantum well, the nearly infinite extent of the
matrix material imposes constraints on the expansion of the system perpendicular
to the well. However, in the direction of the quantum well, the material is allowed
to expand. This expectation also applies to a truncated pyramid with a wetting
layer. Therefore, a more suitable set of boundary conditions would involve setting
the displacement to zero in the perpendicular direction to the wetting layer at the
boundaries, while maintaining the remaining boundary conditions as free.

5.2. Boundary Conditions in Valence Force Field

The Keating energy (81) accounts for all atoms as well as their nearest neighbors.
Interior atoms in InAs are connected to four neighboring atoms, while the number of
bonds for atoms at the computational domain’s boundary depends on the chosen boundary
conditions. One option is to consider dangling bonds, where atoms on the boundary can
have zero to four bonds depending on their position (atoms with zero bonds can be entirely
removed from the system). Another approach involves introducing artificial boundary
atoms to ensure that atoms on the boundary always have four bonds, although some
of these bonds are formed with artificial atoms. The question then arises regarding the
selection of parameters for these artificial atoms. One possibility is to divide all α and
β parameters by two, as a sort of one-step interpolation towards a vacuum. The third
option is to employ periodic boundary conditions by defining a computational box and
requiring that all atoms have four bonds. Bonds extending beyond the computational box
will wrap around and re-enter from the opposite side of the box. The energy minimum
becomes dependent on the size of the box, and in most cases, it is desirable to also minimize
the energy with respect to the box size and, possibly, its shape. This can be achieved by
introducing a spatially constant metric tensor, expressing the atom coordinates in terms of
the metric, and optimizing the metric tensor components as well [51].

6. GaN/AlN Wurtzite Quantum Dots
6.1. A Fully-Coupled Continuum Model for GaN/AlN Wurtzite Cylindrical Quantum Dot

The governing equations for the electromechanical fields of wurtzite structures are ax-
isymmetric, hence all electric- and mechanical-field solutions are axisymmetric as well and
the original three-dimensional problem can be solved as a two-dimensional mathematical-
model problem [38,52,53]. In order to check the validity of the cylindrical model of
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Section 2.8, the complete three-dimensional fully coupled model given by Equation (48)
for an ideal cylindrical wurtzite GaN/AlN quantum dot with radius r = 6 nm and height
h = 3 nm has been solved.

The strain tensor εzz calculated by the two-dimensional model (top) and the three-
dimensional model (bottom) is plotted in Figure 5. The plot for the three-dimensional
model shows a slide of the quantum dot in the xy plane, correspondent to the double of
the surfaces in the r, z plane given by the rotational-invariant model in two dimensions.
Not only is an almost perfect qualitative agreement of the strain field in the two plots
observable, but there is also an excellent agreement of the maximum and minimum values
of εzz inside of the dot and in the matrix.

Figure 5. The strain tensor εzz given by the two-dimensional model in the r, z plane (left) and by the
three-dimensional model in the y, z plane (right).

With the three-dimensional model we can also verify the cylindrical symmetry of the
electric field E for a wurtzite cylindrical quantum dot in the xy plane, showing in Figure 6
the absolute value of E on this plane.

Figure 6. The absolute value of the electric field E in the x, y plane for a cylindrical GaN/AlN wurtzite
quantum dot.

6.2. A GaN/AlN Wurtzite Hexagonal Pyramid Quantum Dot

In this section three different hexagonal quantum dots with wetting layer (refer to
Figure 7 for parameter meanings and geometry) are studied. The dimensions of the dots are
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given in Table 1. The first two dots (Dot 1 and 2) are narrow dots with a bottom diameter
of 4.936 nm and the last (Dot 3) is wide having a bottom diameter of 8.638 nm.

Figure 7. The geometry and the parameters of the hexagonal pyramid quantum dots.

Table 1. The dimensions of the quantum dots.

Db [nm] Dt [nm] H [nm] W [nm]

Dot 1 4.936 4.319 1.011 0.505

Dot 2 4.936 2.468 2.526 0.505

Dot 3 8.638 8.021 1.011 0.505

In the first three rows of Figure 8 the strain components εxx and εzz and the electric
potential V for the three dots along the center of the structures are shown. There is a clear
qualitative agreement for the εxx and εzz strain components between the three models: VFF,
fully coupled, and semi-coupled continuum. However, quantitative differences exist, locally
up to approximately 25%, between VFF and continuum models. The difference between
a fully and semi-coupled model is that in the semi-coupled model, instead of solving the
complete system of four differential coupled equations, we disregard the piezoelectric field
and spontaneous polarization, and we solve three equations only for the strain fields, and
successively we calculate the piezoelectric potential from the given strain fields. Further,
these results demonstrate good quantitative agreement between semi-coupled and fully
coupled continuum data (locally up to maximum 5%). Similarly, for the electric potential a
notable difference between the VFF and the continuum results is observed. The differences
in the electric field are a direct consequence of the differences in the strain fields. Since VFF
parameters are computed using non-piezoelectric corrected stiffness coefficients, better
agreement between semi-coupled continuum and VFF vs. fully-coupled continuum and
VFF is expected. This is indeed confirmed by the results in Figure 8. Deviations between
VFF and continuum results for the electric potential are mainly due to discrepancies in the
off-diagonal strain components εij(i 6= j) (see Figure 9).

In Table 2 the electronic groundstate energies for the three dots found using the effective
mass approximation for the conduction band are shown [54,55]. The effect of strain and electric
field has been included via the effective potential [25]: Ve f f = a(εxx + εyy)+ b(εzz)+ eV + Eedge.
Here a and b are deformation potentials, e is the electronic charge, and Eedge is the bulk
band edge. The effective potential for the three dots is shown in row four of Figure 8. Firstly,
a difference between the VFF and the continuum results of up to 100 meV is observed.
Secondly, a smaller difference between the fully coupled and the semi-coupled models for
dots 1− 3 of up to 15 meV is found. The differences in the effective potential are responsible
for the variations in the groundstate energies observed in Table 2.
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Figure 8. Solid black, dashed light blue, and dashed orange line codings correspond to fully-coupled
continuum, semi-coupled continuum, and VFF data, respectively. The first, second, and third columns
show results for Dot 1, 2, and 3, respectively.

Figure 9. The εxz strain component for Dot 1.

Table 2. The groundstate energies of the quantum dots.

Dot 1 Dot 2 Dot 3

Fully-coupled model (meV) 489 251 390

Semi-coupled model (meV) 474 237 371

Valence force field model (meV) 401 121 308
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7. InGaN Wurtize Quantum Dots

It is widely recognized that InGaN alloys have now become the fundamental materials
for the active regions of visible light-emitting diodes (LEDs), which are playing an increas-
ingly significant part in the global advancement of solid-state illumination [56–59].Hence,
it is highly significant to investigate the influence of electromechanical coupling on the
optical characteristics of light-emitting diodes (LEDs) featuring InGaN/GaN quantum-dot
(QD) active regions using computational modeling. In this approach, the configuration,
including the morphology and the mean In composition of the QDs, has been directly
deduced from experimental data on the distribution of strain perpendicular to the growth
plane, acquired through geometric-phase analysis of a high-resolution transmission electron
microscopy (HRTEM) image of an LED structure fabricated via metalorganic vapor-phase
epitaxy (MOVPE).

A series of LED architectures were fabricated on (0001) sapphire substrates using met-
alorganic vapor-phase epitaxy (MOVPE) in an AIX2000HT system. These structures were
comprised of an unintentionally-doped (UID) GaN buffer layer, a thick n-GaN contact layer
with a dopant concentration of 5× 1018cm−3, a 12-period short-period superlattice (SPSL)
of In0.1Ga0.9N (1 nm)/GaN (1 nm) synthesized via conversion [60], a low-temperature
UID GaN layer (20 nm), a UID active region (AR) containing two stacked layers of InGaN
quantum dots (QDs) separated by a GaN spacer (7 nm), an UID GaN barrier layer (4 nm), a
p−Al0.1Ga0.9N electron blocking-layer (EBL) (12 nm) doped with [Mg] = 5× 1019cm−3,
and a p-GaN contact layer (180 nm) doped with [Mg] = 5× 1019 cm−3.

The formation of QDs within the structures was achieved in-situ during growth
by employing a method that involved interrupting the growth process in a mixed nitro-
gen/hydrogen atmosphere at moderate pressure after depositing a thin layer of InGaN.
The introduction of hydrogen during the growth resulted in local etching of the InGaN
quantum well (QW) and the formation of distinct islands [60]. Dark field TEM imaging was
employed to assess the structural quality and provide an overall visualization of the LED
structures at a moderate level of magnification. The experiments were conducted using a
Jeol 2010 microscope operating at 200 kV. Geometric Phase Analysis (GPA) [61] was applied
to high-resolution transmission electron microscopy (HRTEM) images for mapping the
strain relative to the reference GaN lattice within the active regions (ARs). This technique
enabled the extraction of alloy composition and thickness variations within the InGaN
quantum wells (QWs) with a subnanometer spatial resolution.

The experiments were carried out on a SACTEM-Toulouse microscope (Tecnai-FEI)
operating at 200 kV and equipped with an image aberration corrector. HRTEM images
were acquired along the [5-4-10] zone axis, capturing the (0002) planes exclusively. Anal-
ysis of the HRTEM images was performed using a GPA Phase 3.5 (HREM Research Inc.,
Tokyo, Japan) and plugins within the Digital Micrograph image processing package (Gatan
Inc., Pleasanton, CA, USA). The estimated spatial resolution of the HRTEM images was
approximately ∼0.5–1.0 nm. Figure 10 depicts a strain map relative to GaN, denoted as
εGaN

zz , obtained with a spatial resolution of 0.7 nm in the examined LED structure. The
map reveals a portion of the InGaN/GaN short-period superlattice (SL), including two
InGaN quantum dot (QD) layers separated by a GaN spacer, the final GaN barrier, the
AlGaN electron-blocking layer (EBL), and a segment of the p-GaN contact layer. The image
contrast represents variations in the out-of-plane εGaN

zz strain component. In this image, the
InGaN layers are depicted in shades of red and yellow, while the EBL appears in green.
The QDs exhibit heights of approximately 3 nm and lateral dimensions ranging from about
50 to 100 nm. Notably, all the QDs exhibited non-uniform Indium content distribution,
ranging from approximately 16% to 23%, with typical lateral variations occurring on the
scale of a few nanometers.
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Figure 10. A 2D representation of the out-of-plane strain εGaN
zz , derived through geometric phase

analysis of the HRTEM image of the sample, is shown. The image corresponds to the yz plane.

The emission spectra of single QDs can be significantly altered by inter-dot strain
fields, not only in the case of vertical coupling where multiple dots are vertically aligned,
but also in the case of lateral coupling where closely spaced QDs are grown on the same
plane [62]. In this study, the distribution of the strain field in the active region was examined
using a simulation with a continuum model. Figure 11 illustrates the magnitude of the
hydrostatic strain field on the yz plane [63–65].

Figure 11. Plot of the hydrostatic strain magnitude in the active region, depicted in the yz plane, with
the legend displayed in a logarithmic scale.

It is worth noting that the strain exhibits significant intensity not only within the quan-
tum dots, as expected, but also between the two layers of dots, while rapidly diminishing
beyond the dots.

8. InAs/GaAs Zincblende Quantum Dots
8.1. A InAs/GaAs Zincblende Cylindical Quantum Dot

In this case the three-dimensional Equation (47) for an ideal cylindrical quantum dot
with radius r = 6 nm and height h = 3 nm, have also been solved. Looking at the plot
of the strain fields εzz and (εxx + εyy) given by the anisotropic three-dimensional model
as shown in Figure 12, it is still apparent that they show a sort of cylindrical symmetry,
despite the cubic structure of a zincblende crystal [66].
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Figure 12. εzz in the (x, y) (top left) and (y, z) (top right) plane, respectively, and (εxx + εyy) in the
(x, y) plane (bottom).

It is important to mention in this context that solving a three-dimensional fully coupled
or semi-coupled model gives almost the same results, i.e., a solution to Equation (47)
including or excluding the piezoelectric effect affects the strain fields very slightly. This is
mainly due to the fact that in a zincblende quantum dot the polarization is given by the
off-diagonal components of the strain fields, as can be seen from Equation (40). This leads
to a weak electric field almost all outside of the dot, as we can see from Figure 13, where it
is shown as the absolute value of the electric field for this cylindrical quantum dot, given
by the fully-coupled three-dimensional model.

Figure 13. The absolute value of the electric field in the (x, y) plane.



Nanomaterials 2023, 13, 1820 25 of 37

It is interesting to compare this last result with the one given in the previous section in
Figure for a GaN/AlN wurtzite quantum dot with the same shape and dimensions. Not
only do the electric fields present a completely different symmetry, because of the different
components which generate the piezoelectrical fields [see Equations (40) and (43)], but the
maximum value in the zincblende case is almost 30 time smaller as well. A similar result
has already been observed in [25].

8.2. An Inhomogeneous InAs/GaAs Quantum Dot

It is widely recognized that InAs/GaAs quantum dot structures, grown using the
Stranski-Krastanow growth mode [67], exhibit a non-uniform indium concentration within
the quantum dots [68]. Specifically, it has been observed that the indium concentration
is highest at the apex of pyramidal quantum dots and decreases towards the base. The
profile of indium concentration is crucial for accurately predicting electronic properties
for two main reasons. Firstly, within the~k · ~p approximation [69,70], the concentration
directly impacts the effective masses and confinement potentials, resulting in energy shifts
and changes in dipole transition strengths. Secondly, the concentration profile influences
the strain distribution and, consequently, the piezoelectric potential, leading to additional
energy shifts and alterations in transition strengths.

Various methods exist for determining concentration profiles in quantum dot struc-
tures, such as cross-sectional transmission electron microscopy (X-TEM) [71], cross-sectional
scanning tunneling microscopy (X-STM) [72], scanning transmission electron microscopy
(STEM) [73], X-ray photoelectron microscopy [74], anomalous X-ray scattering (AXS) [75],
Scanning-Probe- Microscopy nanotomography [76], and composition evaluation by lattice
fringe analysis (CELFA) technique [77]. Although the ultimate goal is to obtain information
about the full three-dimensional concentration profile, current methods either provide av-
erage information within a given cross-section or give surface-level concentration profiles.
Here we focus on extrapolating an average concentration profile obtained using the CELFA
technique and investigate the implications of a specific extrapolation choice for a truncated
pyramid quantum dot, as shown in Figure 14. We consider the following three different
indium concentration profiles, which have been chosen with an identical total indium content.

Figure 14. The geometry of the quantum dot under consideration. The x, y, and z directions are the
[100], [010], and [001] directions, respectively.

Profile 1: we assume the indium concentration to be constant in the [010] direction.

C(x, y, z) =
{

Ĉ(x, z)/L(z) inside the pyramid
0 outside

(93)

where L(z) = (Ld − 2z) for 0 < z < Ld/2 and zero otherwise, Ĉ is the average indium
concentration, and Ld is the side length of the pyramid at z = 0. We divide by L(z) in order
to take into account the shape of the quantum dot, see reference [77] for further details.
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Profile 2: we assume a symmetric indium concentration profile in the [100] and [010]
directions. Given an average concentration profile the three dimensional concentration
profile takes the form

Ĉ(x, z) =
Ĉ(x, z)Ĉ(y, z)∫

Ĉ(x, z)dx
(94)

where again Ĉ is the average indium concentration. We divide with
∫

Ĉ(x, z)dx to have∫
Ĉ(x, y, z)dx = Ĉ(y, z).

Profile 3: We assume a constant indium concentration profile throughout the quantum dot.

C(x, y, z) =
{

Ctot/V inside the pyramid
0 outside

(95)

where Ctot = Ĉ(x, z)dxdz and V is the volume of the pyramid.
In Figure 15, we present the hydrostatic strain component H = εxx + εyy + εzz for the

three indium concentration profiles [63]. The influence of the chosen indium concentration
profile was clearly manifested in the hydrostatic strain. The most noticeable disparities were
observed in regions where a constant indium concentration was assumed. For instance,
when comparing profile 1 with profile 2, the primary distinctions emerged in the [010]
direction. Furthermore, we observed that in profile 1, the strain reaches its peak at the apex
of the pyramid, whereas in profile 2, elevated strains were also observed deeper within the
structure due to a higher indium concentration in those regions.

Figure 15. Hydrostatic strain component corresponding to indium concentration profile. Column 1,
2, and 3 represent the hydrostatic strain component for profiles 1, 2, and 3, respectively. The left plot
illustrates the (010) plane, the middle plot depicts the (100) plane, both located at the dot’s center, and
the right plot shows the (001) plane at a height of 6 nm.

8.3. A Truncated-Pyramid InAs/GaAs Quantum Dot

For InAs/GaAs quantum dots the truncated-pyramid with a wetting layer closely
resembles experimental shapes of self-assembled Stranski-Krastanov InAs QDs [78,79]. In
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this context, the integration of continuum and atomistic methods for a multiscale depiction
of a structure may be pertinent. Another intriguing approach involves incorporating
components of the actual experimental structure into a multiscale model. Although it has
been argued that an unspecified geometric irregularity of the quantum dots is necessary
to reproduce the correct symmetry and energy level splitting within the~k · ~p model [80],
recent studies have indicated that a realistic replication of the strain distribution [81] and
quantum confinement [62,82] in heterostructures can achieve comparable symmetries to an
atomistic approach.

Nevertheless, when dealing with nanoscale systems, continuum models may fail in
capturing the correct symmetries due to their lack of an atomistic structure description [83].
Additionally, the continuum model fails to accurately depict interface and surface features
on an atomistic scale, leading to a lack of information regarding internal strain [4]. The
consideration of internal strain is crucial for obtaining atomistic solutions for band struc-
tures, as observed in tight binding methods. Therefore, the continuum elastic model can
serve as an initial estimate for a Keating Valence Force Field relaxation [22], as detailed in
Ref. [84]. The parameters (α and β) employed for the VFF calculations are selected to ensure
consistency with the results obtained from the continuum model, where elastic constant
relations for zincblende crystals are utilized.

The piezoelectric field, which is incorporated directly into the fully-coupled contin-
uum model, is computed using a semi-coupled model in the atomistic scenario, as Keating’s
VFF model does not consider long-range Coulomb effects. Previous research has demon-
strated that the disparities between the two approaches are insignificant for zincblende
InGaAs structures (for further insights, please refer to Ref. [63] for a thorough examination).
Therefore, we consider a truncated pyramid quantum dot with a base side length of 9 nm
and a height of 2 nm. The need to incorporate the VFF method in atomistic band structure
computations, despite the similarity in strain tensors between the continuum and atomistic
methods, appears to suggest a significant impact of internal strain on the underlying crystal
structure. To emphasize this, the internal strain on As atoms is represented as follows:
The strain tensors are computed using a continuum model and then the outcomes are
interpolated to determine the atomic positions within the strained crystal structure.

Given an As atom in position r0 the bond lengths of the strained crystal structure
calculated by a continuum model are defined as:

di = ri − r0 with i = 1, ..., 4, (96)

where ri is the position of one of the four nearest neighbors of the As atom. If dj is
defined as the corresponding bond lengths obtained from the preconditioned VFF algorithm
calculations on the continuum model results, the standard deviation of the bond lengths
can be expressed after the application of the VFF algorithm for each individual As atom as:

σ =

√√√√ ∑
(i 6=j)

(di − dj)2

6
with i, j = 1, ..., 4, (97)

where six are all the possible couples of four bonds. In Figure 16, σ is plotted on each
individual As atom on the xz plane, both when considering only a continuum model and
when incorporating VFF as well. It can be observed that VFF has a tendency to equalize the
bonds, resulting in a decrease in differences. However, a gap still exists near the interfaces.
This can be understood due to the expected deviation of the tetrahedron, as an As atom is
connected to two Ga atoms on one side and two In atoms on the other.
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Figure 16. Top panel: standard deviation of the bond lengths after continuum model calculation on
As atoms in xz plane. Bottom panel: the same after VFF. Color scale range between 0 (white) and
0.05 Å(red).

9. InP Lateral Quantum-Dot Molecules

A very interesting aspect is the study of the impact of strain on quantum dot molecules
is that the interaction between the dots gives rise to new energy levels similar to those found
in molecules, including bonding and antibonding states. The most common arrangement
is the vertical configuration, where multiple dots are stacked on top of each other with
a thin layer of wider band-gap material separating them. Another configuration is the
lateral coupling, where the dots are grown closely spaced on the same plane, allowing
for the formation of molecular-like confined states. These systems hold great promise for
the development of novel devices such as light emitting diodes (LEDs) and lasers, taking
advantage of the emergence of molecular states in the radiative recombination within the
infrared (IR) and terahertz (THz) ranges.

We consider as an example InP self-assembled quantum dots (SQDs) fabricated us-
ing epitaxial growth on an In0.48Ga0.52P buffer layer that was lattice-matched to a GaAs
substrate doped with silicon. The synthesized SQDs were then characterized using atomic
force microscopy (AFM) and continuous-wave photoluminescence techniques [82]. Two
different quantum dot molecules (QDMs) were isolated from a homogeneous sample, and
their three-dimensional structures were determined using the GwyddionTM software [85].
Through sampling and extrapolation, the structures required for calculations were obtained.
The first QDM comprises two dots that were nearly identical in size, with approximate di-
mensions of Req = 12.5 nm and H = 6.5 nm. In contrast, the second QDM consisted of two
dots with significantly different sizes: A smaller dot with Req = 10.0 nm and H = 5.0 nm,
and a larger dot with Req = 18.0 nm and H = 7.5 nm.

In accordance with the common analogy that defines a quantum dot (QD) as an
artificial atom and, consequently, a quantum dot molecule (QDM) as an artificial molecule,
the first QDM was designated as a homonuclear molecule (HO), while the second QDM was
classified as a heteronuclear molecule (HE). These definitions will be employed throughout
our paper. Figure 17 displays a plot of the extrapolated 3D structure of the homonuclear
QD molecule.

Figure 17. A 3D extrapolated structure of the homonuclear QD molecule.
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To further analyze the QDMs, we constructed a finite element model (FEM) based on
the extrapolated structures. This FEM serves as the foundation for the electro-mechanical
models implemented and solved using the TiberCAD [86,87] simulator. In Figure 18, a top
view of a three-dimensional plot illustrating the magnitude of the hydrostatic strain field
for both QDMs is presented [63].

Figure 18. A top view of a three-dimensional plot depicting the magnitude of the hydrostatic strain
field is shown for the homonuclear QD molecule (a) and the heteronuclear QD molecule (b).

The comparison between the two figures revealed several notable similarities as well
as interesting differences. In both cases, the strain field exhibited significant intensity along
the outer periphery of the dots. However, in the homonuclear (HO) QD molecule, the
strain field was particularly intense along the connection zone that lies between the two
dots. In this region, the presence of InP was visibly reduced, resulting in a lower overall
height of the molecule, as depicted in Figure 17.

On the other hand, in the heteronuclear (HE) QD molecule, the strain field along
the connection zone was comparatively less pronounced. Upon closer examination of the
three-dimensional strain map, it becomes evident that the two dots in the HE QD molecule
do not appear as separate and distinct structures, but rather as a single larger structure.
This observation carries significant implications for the electronic coupling between the
dots and signifies a qualitative difference between the HO and HE configurations.

10. Polytype GaAs/AlGaAs Quantum Dots

Polytypism represents a unique form of flexibility that enables precise manipulation
of the electronic structure within a given material [88–92]. With advancements in nanowire
growth techniques, such as atomically precise control of crystal-phase switching [93,94], it
has become feasible to fabricate polytypic structures along the growth axis that are free from
strain [95,96]. Remarkably, these structures can be scaled down to a size where quantum
dots can be formed [97–99]. Although the wurtzite (Wz) phase is not naturally found
in bulk AI I IBV materials, except for nitrides, it can be achieved in nanowires, which has
sparked significant interest in the scientific community due to its unique properties and
technological implications [100–102]. Among these materials, AlxGa1− xAs nanowires
offer an intriguing platform for developing novel devices. By introducing the Al component
to GaAs [103,104], the emission wavelength can be finely tuned over a wide range, enabling
the fabrication of quantum devices [91,105].

As an illustrative case, let us consider an AlGaAs nanowire (NW) containing a GaAs
quantum dot (QD). The AlGaAs nanowires were grown on a semi-insulating GaAs (111)B
substrate using an EP1203 molecular beam epitaxy (MBE) system. The growth process
involved the use of solid sources for Ga and Al atoms, as well as an As effusion cell to
generate tetramers. To ensure the uniformity of the Al content, Raman spectroscopy was
employed to monitor the Al concentration along the nanowire and within its cross-sections,
thereby eliminating any potential inhomogeneities. The measured Al concentration ranged
from c = 0.24 to 0.26. TEM images of one of these AlGaAs NW clearly shows the evidence
of phase transitions from Zincblende to Wurtzite crystal structures. Therefore, it was



Nanomaterials 2023, 13, 1820 30 of 37

necessary to develop a model for electromechanical fields that takes into account this phase
transition in the crystal.

Therefore, the continuum model utilized for the calculations of electromechanical
fields in this study is based on the theory described in this paper. For clarity, in this section,
we present again the equations required for the polytopic model. The change in total
mechanical and electrical free energy density, denoted as dU, for a piezoelectric medium
can be expressed as [29]:

dU = dUmech + dUelec = TdS + σikdεik + EidDi, (98)

where T, S, σik, εik, Ei, and Di are the temperature, entropy, stress tensor, strain tensor,
electric field, and electric displacement, respectively. Under isentropic conditions (dS = 0),
and taking into account the crystal symmetry considerations, the elastic energy of a crystal
with Zincblende (Zb) symmetry can be derived, as described in [25] as:

Umech
Zb =

1
2

[
C11,Zb(ε

2
xx + ε2

yy + ε2
zz)

+ 2C12,Zb(εxxεyy + εxxεzz + εyyεzz)

+ 4C44,Zb(ε
2
xy + ε2

xz + ε2
yz)

]
, (99)

where Cij,Zb are the linearly independent stiffness constant parameters for a Zb structure.
Similarly, for a crystal with Wurtzite (Wz) symmetry we have for the elastic energy [25]:

Umech
Wz =

1
2

[
C11,Wz(ε

2
xx + ε2

yy) + C33,Wzε2
zz

+ 2C12,Wzεxxεyy + 2C13,Wzεzz(εxx + εyy)

+ 4C44,Wz(ε
2
xz + ε2

yz) + 2(C11,Wz − C12,Wz)ε
2
xy

]
, (100)

where Cij,Wz are the linearly independent stiffness constant parameters for a Wz structure.
Although the stiffness parameters for Zb GaAs, AlAs, and AlGaAs alloys can be found
in the literature [106], the corresponding parameters for a Wz phase are not available.
Therefore, we have estimated them using Martin’s transformations [107,108] based on the
Zb parameters[109,110]:

C11,Wz =
1
6
(3C11,Zb + 3C12,Zb + 6C44,Zb)

− 3∆2/(C11,Zb − C12,Zb + C44,Zb)

C12,Wz =
1
6
(C11,Zb + 5C12,Zb − 2C44,Zb)

+ 3∆2/(C11,Zb − C12,Zb + C44,Zb)

C13,Wz =
1
6
(2C11,Zb + 4C12,Zb − 4C44,Zb)

C33,Wz =
1
6
(2C11,Zb + 4C12,Zb + 8C44,Zb)

C44,Wz =
1
6
(2C11,Zb − 2C12,Zb + 2C44,Zb)

− 6∆2/(C11,Zb − C12,Zb + 4C44,Zb), (101)

where

∆ ≡
√

2
6

(C11,Zb − C12,Zb − 2C44,Zb). (102)
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The fully coupled continuum model we used incorporates the piezoelectric field
directly [63]. As the Wz piezoelectric parameters are not available, we have approximated
them using parameters from well-known Wz materials such as GaN, AlN, and AlGaN alloy.
The governing equations for the electromechanical fields of the crystal were derived using
expressions from (98) to (102) [63]. In the simulations, an AlcGa1−cAs nanowire (c = 0.25)
with a diameter of 40 nm and a height of 50 nm was considered. Within the nanowire, there
was an embedded GaAs quantum dot with a diameter of 20 nm and a height of 5 nm. Two
different cases were studied and compared: A pure Zincblende (Zb) case, where the entire
structure was assumed to be grown in the pure Zb crystal phase, and a mixed structure. In
the mixed structure, the GaAs quantum dot was sandwiched between two adjacent 8 nm
high Wurtzite (Wz) layers and surrounded by a Zb AlGaAs shell. The mixed structure (Mx)
was completed with Zb layers at the top and bottom. In Figure 19 the magnitude of the
absolute value of the strain field for the pure Zb and the Mx structures is plotted.

Figure 19. The magnitude of the absolute value of strain field for a pure Zb structure (left) and for
the Mx structure (right).

In the mixed (Mx) case, in addition to the strain field typically observed inside and
near the quantum dot due to the lattice mismatch between the materials, we also observed
a weaker strain field at the interfaces between the two crystal phases of AlGaAs. Although
this strain field was relatively weak, as expected due to the small lattice mismatch between
GaAs and AlcGa1−cAs, as well as the even smaller crystal mismatch between Zincblende
(Zb) and Wurtzite (Wz) AlGaAs, it was present throughout the nanowire. This strain field
also has implications for the electrical properties of the structure.

Moreover, in the Mx case, the electric field resulting from the piezoelectric effect was
relatively strong and exhibited a distinctive shape, which differed from the typical results
obtained for Zincblende (Zb) quantum dots (QDs). This is evident in Figure 20, which
displays the z component of the electric field for both Zb and Mx structures.

In contrast to the conventional quadrupole shape observed in Zincblende (Zb) quan-
tum dots (QDs), the mixed (Mx) structure exhibited a Wurtzite (Wz)-like shape of the
electric field in close proximity to and inside the dot. The electric field displayed typical
dipole characteristics, with opposite signs inside and just outside the top and bottom of
the dot. This unique behavior arose from the stronger piezoelectric effect induced by the
Wz layers, despite the central volume of the column being in a pure Zb crystal phase. The
enhanced magnitude of the piezoelectric effect in Wz heterostructures compared to Zb
heterostructures has been previously reported in the literature [25].
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Figure 20. The z component of the electric field in the xy plane at the center of the quantum dot
(top) and in the xz planes (bottom) is depicted. The left column corresponds to the Zincblende
(Zb) structure, while the right column represents the mixed (Mx) structure. All values are given in
GVolt/m.

11. Conclusions

In conclusion, this paper aimed to provide a comprehensive understanding of the
mathematical models used to describe the electromechanical properties of heterostructure
quantum dots. The focus was on both wurtzite and zincblende quantum dots, which have
demonstrated significant relevance in optoelectronic applications.

The study presented a thorough overview of continuous and atomistic models for
the electromechanical fields, covering a wide range of theoretical approaches. Notably,
the paper introduced several unpublished approximations, including models based on
cylindrical and cubic approximations. These last approaches allowed for the transformation
of zincblende parametrization to wurtzite and vice versa, which is particularly useful in
the case of polytypic quantum dots

Analytical results were supported by extensive numerical simulations, which en-
compassed a diverse set of scenarios. The numerical findings were also compared with
experimental measurements, further validating the accuracy and applicability of the math-
ematical models.

Overall, this study contributes to the existing body of knowledge by offering a compre-
hensive and detailed understanding of the electromechanical properties of heterostructure
quantum dots. The presented analytical models, along with the accompanying numerical
results, provide valuable insights for the design and optimization of quantum dot-based
optoelectronic devices.
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