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Abstract: A microstructure determines macro functionality. A controlled periodic structure gives
the surface specific functions such as controlled structural color, wettability, anti-icing/frosting,
friction reduction, and hardness enhancement. Currently, there are a variety of controllable periodic
structures that can be produced. Laser interference lithography (LIL) is a technique that allows for the
simple, flexible, and rapid fabrication of high-resolution periodic structures over large areas without
the use of masks. Different interference conditions can produce a wide range of light fields. When an
LIL system is used to expose the substrate, a variety of periodic textured structures, such as periodic
nanoparticles, dot arrays, hole arrays, and stripes, can be produced. The LIL technique can be used
not only on flat substrates, but also on curved or partially curved substrates, taking advantage of
the large depth of focus. This paper reviews the principles of LIL and discusses how the parameters,
such as spatial angle, angle of incidence, wavelength, and polarization state, affect the interference
light field. Applications of LIL for functional surface fabrication, such as anti-reflection, controlled
structural color, surface-enhanced Raman scattering (SERS), friction reduction, superhydrophobicity,
and biocellular modulation, are also presented. Finally, we present some of the challenges and
problems in LIL and its applications.

Keywords: laser interference lithography; laser materials processing; periodic structure; micro/
nanostructuring; surface functionalization

1. Introduction

Nature is full of strange creatures, and many people have the impression that certain
unique micro/nanosurfaces in nature are non-regular structures, but this is not the case [1].
For example, the beautiful seashells, the wings of butterflies, the feathers of birds, the
scales of pangolins, and the epidermis of sharks are all periodic-ordered structures [2–4].
Furthermore, it is these microscopic periodic-ordered structures that give them various
macroscopic properties such as wettability, wind/water resistance reduction, friction re-
duction, reflection reduction, and different structural colors.

As these regular surfaces are studied more thoroughly, it has been found that objects
work better when these structures are “imitated” in a variety of ways on the surfaces [5–8].
In recent decades, periodic regular structures have received increasing attention in many
fields, and the study of these rules has become increasingly sophisticated. For example,
researchers have studied wettability, and people prepare certain specific surface structures
that can achieve the phenomenon of water flowing to high places [9–11]. Some swimmers
wear special shark suits and their speeds improve considerably [12,13]. There are so many
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examples of these periodic regular structures benefiting human life. It is possible that a
random object that people own contains a micro/nano-periodic structure that was designed
by researchers.

Currently, as many as dozens of methods are used to produce periodic regular struc-
tures. From the broad categories, they can be divided into mechanical, optical, and chemical
methods [6,14,15]. Mechanical methods include scribing, EDM, nanoimprinting, water
flow, etc.; chemical methods include electrochemical, hydrothermal, CVD deposition, etc.;
and optical methods include femtosecond lasers, direct laser scanning, laser interference
lithography (LIL), etc. However, these techniques have limitations in terms of low yield,
small patterning area, and/or high equipment, and tooling cost. In contrast, LIL works
on large areas at a low cost [16–18]. Periodic structures are of interest for their inherent
merits in functional applications such as diffraction modulation, controllable wettability,
and reflection reduction, as well as for their different structural colors [19]. There are
many techniques capable of fabricating periodic structures, among which the LIL tech-
nique has incomparable advantages for the fabrication of periodically large-area patterned
structures [16,20–22].

LIL is an advanced micro- and/or nanoprocessing technique that can be used to
produce high-resolution micro- and/or nanostructures and devices [23]. LIL uses the
interference property of light to realize multiple coherent laser beams that meet on the
substrate surface to form a bright and dark interference region with periodic light intensity
distribution. The traditional lithography process is to expose the sample and transfer the
pattern to the substrate surface through processes, such as development, etching, or coating,
to form a patterned substrate. The periodic intensity distributions in the interference region
are ‘recorded’ on the substrate, so LIL is a maskless optical exposure technique that avoids
the use of mask plates and reduces the cost of lithography. LIL can produce large-area,
high-resolution periodic patterns at a low cost, while the exposure process is simple and
the pattern period can be flexibly changed [16]. LIL can produce patterns not only on flat
substrates, but also on curved or partially curved substrates using its large depth of focus.

This review describes the basic principles of LIL and its applications in various fields.
Section 2 describes the differences between LIL types in terms of beam number and number
of exposures, and discusses the effects of spatial angle, angle of incidence, wavelength,
and polarization state on the laser interference light field. Section 3 also reports on the
diverse periodic structures that can be prepared using LIL for applications in functional
surfaces such as anti-reflection, control of structure color, surface enhanced Raman scatter-
ing (SERS), friction reduction, superhydrophobicity, and biological cell modulation. Finally,
we present some of the challenges and problems that LIL has encountered in not achieving
full industrialization.

2. Laser Interference Lithography
2.1. Types of Laser Interference Lithography

Laser interference lithography can be classified into various forms. According to
the number of beams of interference, LIL can be divided into double-beam, triple-beam,
quadruple-beam, quintuple-beam, and other multi-beam interference lithography [16];
by the number of exposures, LIL can be divided into single-exposure lithography and
multi-exposure lithography [24]. Other lithography systems currently have to shorten
the wavelength and sacrifice the depth of focus in order to pursue high resolution. Ion
beam lithography and electron beam lithography have sufficient resolution, but their slow
fabrication process limits their application in high-volume manufacturing. LIL is a fine
graphics processing technique with a low cost, simple system, and high resolution. It has
great advantages and a key position in preparing array structures. Its system is inexpensive,
does not require complex optical components, it also has expensive imaging lenses and is
capable of preparing graphics in large areas without the depth-of-focus limitation. It has a
high resolution and does not require masks, making it a promising lithography technique
at present.
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LIL exploits the interference properties of light to realize multiple coherent laser
beams that meet on the substrate surface to form bright and dark interference regions. The
intensity distributions in interference regions are characterized by periodicity [16]. LIL can
produce controlled periodic or quasi-periodic structures on nano- and microscales, and
fine periodic array structures can be fabricated under the strict control of the process and
exposure dose [25–31].

Micro/nanostructures with different feature sizes are obtained through LIL. The
interference of three laser beams is considered as the superposition of their electric field
vectors. It can be expressed as [32]:

→
E = ∑3

n=1

→
En = ∑3

n=1 An
→
p ncos

[
k
→
n n·
→
γn ± 2πνt + φn

]
(1)

where An is the amplitude of the electric field vector and
→
p n is the unit polarization vector.

k = 2π/λ is the wave number (λ = wavelength).
→
nn is the unit propagation vector in the

wave propagating direction,
→
γn is the position vector, φn is the phase constant, and ν is

the frequency. A flexible LIL system can select the parameters and obtain the designed
interference pattern.

The interference intensity is expressed as [26]:

I = |
→
E |2 = ∑3

n=1 ∑3
m=1 |

→
En||

→
Em|cos〈

→
En·
→
Em〉 (2)

2.2. Influence of the Process Parameters for Laser Interference Lithography

Laser interferometric lithography produces controllable periodic or quasi-periodic
structures from nanoscale to microscale, producing fine periodic array structures with a
tightly controlled process and exposure dose [22]. Several factors determine the interference
pattern and related parameters:

• The number of laser beams producing different micro- and nanoarray structures;
• The incident angle preparing the grating structure of different periods;
• The azimuth angle producing different morphology arrays;
• The energy of the laser determining the depth of the structure; and
• The polarization state determining the pattern profile.

The basic principle of laser interference lithography is to combine two or more laser
beams that meet the interference conditions according to the interference principle of light
and change the exposure time, phase angle, incident angle, and other parameters that
can obtain different periodic pattern arrays such as stripe array, dot array, and dimple
(hole) array.

2.2.1. The Number of Laser Beams

The different numbers of laser beams produce different structures such as streak arrays,
dot arrays, and dimple (hole) arrays. As shown in Figure 1, Ainara Rodriguez et al. [16]
used MATLAB software to perform laser interference simulations to obtain schematic
diagrams of the optical field distribution for different interference conditions. Figure 1A,B
show double-beam interference simulations, where stripe arrays can be obtained under
interference conditions; Figure 1C–E show triple-beam interference light field simulations,
where a hole array structure (Figure 1C) or dot arrays (Figure 1D,E) can be obtained under
triple-beam conditions; Figure 1F–J show quadruple-beam interference light fields. F and G
are dot/hole arrays produced by four beams with different incidence angles. (Figure 1H–J)
are arrays of dots/holes produced by four beams with different angular positions.
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Figure 1. MATLAB simulations of interfering light fields: (A,B) stripe arrays obtained from double-
beam LIL at different incidence angles. (C–E) Dot/hole arrays obtained from triple-beam LIL at dif-
ferent azimuthal angles. (F,G) Dot/hole arrays obtained from quadruple-beam LIL at different inci-
dence angles. (H–J) Dot/hole arrays produced by quadruple-beam LIL at different azimuthal angles. 
Reproduced with permission/adapted from [16]. 

The repetition distance between the maximum and minimum values of the interfer-
ing intensity, which is called the spatial period (P), basically depends on the incidence 
angle θ between the interfering beams and the laser wavelength λ. In the case of double- 
and triple-beam interferences, the spatial period is described by Equations (3) and (4), 
respectively [30,33]. 𝑃 =     (3)

𝑃 = √     (4)

2.2.2. The Azimuthal Angles 
The effect of azimuth angles on the interference of double-, triple-, and quadruple-

beam lasers has been studied by Jinjin Zhang et al. [27]. The modulation mode is not 
formed at an equal azimuthal angle for triple-beam interference. It is a regular triangle 
interference pattern distribution of holes or dots, while the azimuthal angles are symmet-
rical. The distance between two holes or dots in the pattern is 4 . However, the interfer-
ence distribution is not a regular triangle in most situations. The interference patterns are 
based on the geometric distribution of an array of holes or dots. The angle value is half 
the difference between any two azimuthal angles as the interference pattern can be con-
sidered as the superposition of the three interfering beams, as described by Equation (2). 
The energy is redistributed with the change of azimuthal angles. The holes or dots will be 
elliptical, as the azimuthal angles are not centrally symmetric, and become slender in the 
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The modulation period can be calculated by [27]: 𝑃 =   ∙ = 𝑃 ∙   (5)
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ence, the azimuth angles change with the modulation period. According to Equation (3), 
the pattern period in Equation (5) is increased by , compared to the original period 𝑃 . 

Figure 1. MATLAB simulations of interfering light fields: (A,B) stripe arrays obtained from double-
beam LIL at different incidence angles. (C–E) Dot/hole arrays obtained from triple-beam LIL at
different azimuthal angles. (F,G) Dot/hole arrays obtained from quadruple-beam LIL at different
incidence angles. (H–J) Dot/hole arrays produced by quadruple-beam LIL at different azimuthal
angles. Reproduced with permission/adapted from [16].

The repetition distance between the maximum and minimum values of the interfer-
ing intensity, which is called the spatial period (P), basically depends on the incidence
angle θ between the interfering beams and the laser wavelength λ. In the case of double-
and triple-beam interferences, the spatial period is described by Equations (3) and (4),
respectively [30,33].

P =
λ

2 sin θ
(3)

P =
λ√

3 sin θ
(4)

2.2.2. The Azimuthal Angles

The effect of azimuth angles on the interference of double-, triple-, and quadruple-
beam lasers has been studied by Jinjin Zhang et al. [27]. The modulation mode is not formed
at an equal azimuthal angle for triple-beam interference. It is a regular triangle interference
pattern distribution of holes or dots, while the azimuthal angles are symmetrical. The
distance between two holes or dots in the pattern is 4 P0

3 . However, the interference distribu-
tion is not a regular triangle in most situations. The interference patterns are based on the
geometric distribution of an array of holes or dots. The angle value is half the difference
between any two azimuthal angles as the interference pattern can be considered as the
superposition of the three interfering beams, as described by Equation (2). The energy is
redistributed with the change of azimuthal angles. The holes or dots will be elliptical, as
the azimuthal angles are not centrally symmetric, and become slender in the pattern.

The modulation period can be calculated by [27]:

P =
λ

2 sin θ·sin ϕ
2
= P0·

1
sin ϕ

2
(5)

where P0 is the original period and ϕ is the azimuth angle. In quadruple-beam interference,
the azimuth angles change with the modulation period. According to Equation (3), the
pattern period in Equation (5) is increased by 1

sin ϕ
2

, compared to the original period P0. It

can be seen that the variation of the azimuthal angles can cause a change in the modulation
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period. In the TE-TM-TE-TM polarization state, the modulation period increases with the
decrease in the azimuth angles. In quadruple-beam interference, the azimuth angle changes
with the modulation period.

2.2.3. The Energy of the Laser

The laser energy determines the depth of the structure. Dapeng Wang et al. [25] used
the AFM to measure the fluctuation change of the interference texture under different
energy conditions. Figure 2 shows the stripe structures of double-beam interference,
which are from single-pulse exposures on the silicon surface at total energies of 590 and
630/700 mJ·cm−2, respectively. The effect of energy on the structural contrast can be clearly
seen from the AFM map, and the higher the energy, the higher the contrast. Through
the rational selection of process parameters, nanosecond laser interference lithography is
ideal for the flexible fabrication of micro/nanostructures for various applications such as
anti-reflection and self-cleaning surfaces.
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2.2.4. The Polarization State

Apart from the above parameters, the effect of the polarization state on the pattern
formation was investigated. Jianfang He et al. [29] discussed the relevant research by
placing a half-wave plate at the input coupling or in front of the binding end of three fibers
in triple-beam interference. It is a rectangular triangle interference distribution pattern and
the azimuthal angles are 0◦, 90◦, 270◦, as shown in Figure 3a. The polarization direction of
the initial vertically polarized 325 nm laser beam was varied from α = 0 to 90 degrees in
steps of 10 degrees. Where α is the angle of the in-plane polarization direction relative to
the vertical axis perpendicular to the axis of the fiber beam. Figure 3b shows the simulation
results of the interference pattern within the 22 µm2 region, and Figure 3c shows the
experimental results of the corresponding photoresist grating, with an area of 55 µm2. It
can be seen that by increasing the value of α, the dot units become slender and finally form
grating in the pattern. Therefore, it was found that the polarization not only affects the
structure contrasts, but also changes the interference patterns in this case.

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 28 
 

 

Figure 2. AFM images of a single-pulse double-beam LIL: (a–c) for exposure energies of 560 mj·cm−2, 
630 mj·cm−2, and 700 mj·cm−2; (d), (e), and (f) are views of the cross-sectional wheelhouse for (a), (b), 
and (c), respectively. Reproduced with permission/adapted from [25]. 

2.2.4. The Polarization State 
Apart from the above parameters, the effect of the polarization state on the pattern 

formation was investigated. Jianfang He et al. [29] discussed the relevant research by plac-
ing a half-wave plate at the input coupling or in front of the binding end of three fibers in 
triple-beam interference. It is a rectangular triangle interference distribution pattern and 
the azimuthal angles are 0°, 90°, 270°, as shown in Figure 3a. The polarization direction of 
the initial vertically polarized 325 nm laser beam was varied from α = 0 to 90 degrees in 
steps of 10 degrees. Where α is the angle of the in-plane polarization direction relative to 
the vertical axis perpendicular to the axis of the fiber beam. Figure 3b shows the simula-
tion results of the interference pattern within the 22 µm2 region, and Figure 3c shows the 
experimental results of the corresponding photoresist grating, with an area of 55 µm2. It 
can be seen that by increasing the value of α, the dot units become slender and finally 
form grating in the pattern. Therefore, it was found that the polarization not only affects 
the structure contrasts, but also changes the interference patterns in this case. 

 
Figure 3. (a) Schematic illustration of the interference geometry. (b) Simulation results of the inter-
ference patterns using the geometry in (a) with the polarization direction of the input laser beam 
changed from α = 0 to 90 degrees with respect to the vertical direction. (c) Experimental results of 
the produced photoresist grating structures. Cross-section demonstration of the fabricated struc-
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ferent polarization modes through theoretical analysis, simulation, and experiment for 
studying the effect of polarization on quadruple-beam laser interference. (Figure 4) It was 
found that the secondary periodicity or modulation was due to the misaligned or unequal 

Figure 3. (a) Schematic illustration of the interference geometry. (b) Simulation results of the
interference patterns using the geometry in (a) with the polarization direction of the input laser
beam changed from α = 0 to 90 degrees with respect to the vertical direction. (c) Experimental
results of the produced photoresist grating structures. Cross-section demonstration of the fabricated
structures with α = 40◦, where the sample was cut along the dashed pink line in (b). Reproduced
with permission/adapted from [29].

Polarization affects the formation of interference pattern, pattern contrast, and period
in quadruple-beam interference lithography. Dapeng Wang et al. [26] proposed three
different polarization modes through theoretical analysis, simulation, and experiment for
studying the effect of polarization on quadruple-beam laser interference. (Figure 4) It was
found that the secondary periodicity or modulation was due to the misaligned or unequal
incident angles in the TE-TE-TM-TM mode.
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Figure 4. MATLAB simulations of LIL for three different polarization modes: The TE-TE-TE-TE
mode includes figure (a) with the same angle of incidence and figure (c) with a misaligned angle
of incidence. The TE-TE-TE-TM mode includes figure (e) with the same angle of incidence and
figure (g) with a mis-aligned angle of incidence. The TE-TE-TM-TM pattern includes figure (i) with
the same angle of incidence and figure (k) with a misaligned angle of incidence. (b,d,f,h,j,l) are
the intensity profiles along the double-arrow lines in (a,c,e,g,i,k), respectively. Reproduced with
permission/adapted from [26].

In short, this section distinguishes the types of LIL with the number of laser beams
and the number of exposures of the laser. Furthermore, it focuses on how factors, such as
spatial angle, incidence angle, wavelength, and polarization, affect the laser interference
light field, and as well as their laws.

3. Applications of LIL

In the previous section, we introduced the LIL technique and its main principles.
This section is focused on LIL applications in the fields of solar panels with anti-reflective
properties, controlled structural colors and photonic crystals, nanoparticle preparation
with catalytic properties, SERS, biomedicine, and functional surfaces (superhydrophobicity,
anti-icing/frost properties, friction reduction, and hardness enhancement).
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3.1. Solar Panels with Anti-Reflection Properties

The impending depletion of fossil fuels poses a major energy challenge to humankind,
while using fossil fuels causes serious environmental pollution and contributes to the
greenhouse effect. According to the UN Millennium Plan, climate change is a major
challenge for the world. Scientists predict that the continued global warming will have
serious environmental and economic consequences for rainfall, drought, crop growth,
river flows, melting ice sheets, and rising sea levels. To deal with these challenges, the
development of new renewable energy sources is currently the focus of research by scientists
in many countries. Among the wide range of renewable energy sources available, solar
photovoltaic technology is considered to be one of the cleanest and safest large-scale power
generation technologies [34–36].

In 1839, the French physicist Becquerel first discovered the “photovoltaic effect”, and
scientists focused their research on the mechanism of the photovoltaic phenomenon and the
exploration of photovoltaic materials [36]. Since then, photovoltaic power generation has
become an important way of using solar energy. In recent decades, the rapid development of
photovoltaic industrialization has made photovoltaic power generation a major competitor
in energy production, supply, and consumption, and currently there are a variety of solar
cells that can be classified in terms of the materials used [35,37]: silicon-based thin-film,
dye-sensitized, organic, and quantum dot solar cells.

In solar power systems, photovoltaic modules, often called solar panels, are the core
part of the systems. Their function is to convert the sun’s radiant power into electrical
energy, either to be sent to batteries for storage or to drive loads. The wavelength excited
by sunlight depends on the type of semiconductor. The factors that influence the efficiency
of solar panel power generation are: solar irradiation intensity, module temperature,
installation angle, and ambient temperature [37,38]. It has been a challenge to improve the
solar cell efficiency of these solar cells without the influence of external factors. Solar cells
are excited by sunlight, which causes electron transfer to generate electricity. However,
the issue is how to increase the transfer efficiency of a solar panel. Scientists have devised
a number of methods, one of which has a high level of acceptance. By using the “light
trap effect” of the microstructure to reduce the reflection of sunlight, more light energy is
retained on the surface of the panel, thus increasing the transfer efficiency of the panel.

Destructive interference, light trapping, and gradient refractive index principles are
all generally accepted mechanisms for structural reflection reduction [39]. For conventional
transparency, enhancing films widely used in optical and optoelectronic systems, monolayer
dielectric films (n, and n < ns) with low refractive index are prepared on a substrate with
high refractive index (ns) based on the thin film interference law (Figure 5a). Many natural
photonic structures are not of the thin film type and have a distinct periodic variation [40,41].
Such functional structures behave differently due to their different scales. If the structural
unit scale is much larger than the incidence wavelength of the light, then when the incident
light enters between the macroscopic structures, part of the light is absorbed and the
remaining part is usually reflected and scattered. If the structure scale is larger than the
incidence wavelength of light, the incident light will be trapped in the structure gap and
continuously reflected, creating a trapped light effect (as shown in Figure 5b). Conversely, if
the structure size is smaller than the incidence wavelength of the light, the gap between the
structure and the surrounding air medium forms a gradient refractive index layer, similar
to a multilayer gradient medium film, and the incident light gradually ‘bends’ into the
substrate as the refractive index changes (Figure 5c,d). This is the basic principle of the
gradient refractive index, also known as a subwavelength structure. Even if the angle of
incidence of light is changed, the subwavelength structure coating has a gradient effective
refractive index in that direction of incident light.
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of incident light in a microstructure array. (c) Interaction of incident light with the subwavelength-size
nanoarray. (d) Schematic illustration of the refractive index change corresponding to (c). Reproduced
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LIL has the characteristics of high resolution, high speed, low cost, large area, and
is suitable for mass production. For the structure shown in Figure 5b, LIL can easily and
quickly produce such a high-contrast periodic structure. C. E. NEBEL et al. [42]. proposed
the idea of “submicron silicon structures for thin-film solar cells” in 1995. Subsequently,
laser interference has been continuously investigated for the fabrication of “trapped light
effect” structures with high absorption and reflection reduction effects. In the past two
decades, a variety of interferometric periodic structures have been fabricated on silicon-
based solar panels. Litong Dong et al. [43–45] have designed and fabricated a moth-eye
mimetic structure to achieve ultra-wide spectral reflectance reduction from visible light
(400 nm) to mid-infrared (11 µm) with an average reflectance better than 2%, and on this
basis, they have realized a multifunctional composite structure with superhydrophobic and
anti-corrosion properties (Figure 6).
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Figure 6. (a–f) Cross-sectional and top-view SEM images of the samples. (g–i) SEM images of samples
(S1, S2, and S3) placed at 45◦, 30◦, and 45◦, respectively. Scale bar: 1 µm. (j) Photograph of the DI
water, HCl, and NaOH droplets on sample S3 (scale bar: 1 cm). (k) SEM image corresponding to
sample S3 (scale bar: 10 µm). (l) The simulated (red curve) and experimental (black curve) reflectance
spectra of the hierarchical moth-eye structure. The inset is the reflectance spectrum in the mid-infrared
range. Reproduced with permission/adapted from [45].

3.2. Tunable Structural Color and Photonic Crystal

The beautiful wings of butterflies, the wings of birds, and the discolored interior
of seashells are all structural colors resulting from different microstructures. Structural
color has nothing to do with pigment coloring, but is an optical effect caused by the sub-
microstructure of living organisms. In other words, the different absorption and reflection
scattering of different wavelengths of light by different micro/nanostructures produce
different visual effects [46,47]. Inspired by different biological epidermal microstructures in
nature, scientists can produce different controllable structural colors by changing different
periodic structural parameters, groove parameters (peak width, peak height, and groove
width), and a fixed structural surface can be viewed from different angles to adjust to
different structural colors. These controllable structural colors can be prepared using
various methods such as scribing, embossing, laser processing, and chemical etching. They
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have applications and research in the fields of anti-counterfeiting, camouflage, information
encryption, filters, sensors, and smart windows. Much attention has been paid to the use of
various micro/nanofabrication methods to fabricate well-designed micro/nanostructures
for the preparation of structured color surfaces [48–50]. Laser interference has a unique
advantage in the field of controlled periodic structures as a processing method that allows
for fast, large-area, and one-shot fabrication.

Bogdan Voisiat et al. [47] developed a method to fabricate periodic structures with
variable periods using direct LIL to improve the homogeneity of structure’s color (Figure 7).
This method can be used to create groove structures directly on metal surfaces. The surface
shows multi-colors with the diffraction grating effect of the periodic groove structure.
This is because of its good flexibility and wide material applicability. This versatile metal
surface has a wide range of applications in identification codes, decorative beautification,
anti-counterfeiting, information storage, and design for bionic applications.
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Figure 7. (a) Photograph of the stainless steel surface treated with different numbers of pulses (from
1 to 5) and laser fluences (from 0.7 to 11.4 J/cm2); (b) confocal image of LIL holographic pixels on
the steel surface with a diameter of approximately 50 µm; (c) typical hole-like pattern with a spatial
period of 1.8 µm and a structure depth of 0.3 µm (the used laser fluence was 1.9 J/cm2 and three
pulses were applied). Reproduced with permission/adapted from [47].

Photonic crystals are an important branch of structural color, and the concept of pho-
tonic crystals arose in 1987 when E. Yablonovitch and S. John independently recommended
a structure in which the refractive index varies periodically in one or more directions,
respectively [51,52]. Photonic crystals are defined as the structures with the dielectric
constant (refractive index) varying periodically and having the ability to direct and confine
electromagnetic waves [53,54]. Photonic crystals have important applications in many
high-tech products, such as sensors, antennas, filters, beam splitters, and amplifiers. The
main manufacturing methods for photonic crystals are silicon-on-insulator (SOI) [55–57],
evaporation [58], sputtering [59–61], coatings [62–65], deposition [66], wet etching (solution
etching, anodic oxidation, etc.), dry etching (reactive ion etching, plasma etching, induc-
tively coupled plasma, etc.) [67,68], and electron-beam lithography [69,70]. However, the
above methods are either costly or the components or products involved in manufactur-
ing are extremely corrosive and hazardous. In contrast, laser interference lithography is
expected to be an emerging technique for the preparation of photonic crystals due to its
simplicity, low cost, and environmental friendliness. Laser interference lithography was
first applied in the late 20th century for the preparation of two- and three-dimensional pho-
tonic crystals [71–78]. Subsequently, people began to study this technique intensively, and
through a large number of experimental analyses and numerical simulation optimizations,
the preparation of photonic crystals by interferometric lithography gradually matured.

In contrast to other techniques for preparing photonic crystals, laser interferometric
lithography allows for the controlled preparation of complex three-dimensional structures
to meet the stringent requirements for photoconductive or light-trapping functions. How-
ever, three-dimensional photonic crystals with complex functionality place high technical
demands on interferometric systems. Perhaps the low-cost mass production of simple
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one- and two-dimensional photonic crystals is a favorable direction for photonic crystal
applications. Saraswati Behera et al. [41] reported an interferometric lithography (IL)
method based on a phase-space light modulator (SLM) to achieve hexagonally packed
helical photonic structures with submicron periods over large areas (Figure 8).
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Figure 8. (a) An experimental setup to realize the helical photonic crystals with a submicron scale
spatial and axial periodicity; 50:50 ultraviolet beam splitter for 405 nm; the microscopic objective
of 10×; SEM images of the fabricated submicron periodic helical photonic crystal structure on
positive photoresist (AZ 1518). (b) Cross-sectional 45◦ tilt view presenting the realization of 3D
periodic structures over a large area; the inset shows another sample with different exposures in the
isometric view obtained through tilt and rotation of the sample stage. (c) Cross-sectional view of a
purposely broken sample with less exposure time. (The inset shows a magnified view with chirality
properly marked). (d) A 45◦ tilt view of a single-layer helical structure over a single pitch in negative
photoresist (marked by dotted circle). Reproduced with permission/adapted from [41].

3.3. Patterned Nanoparticles

The synthesis and characterization of nanoparticles and their special optical, elec-
tronic, magnetic, and catalytic properties are important branches in the current wave
of nanoscience [79]. Metallic nanomaterials have extremely important applications in
many fields such as catalysis [80], novel sensors [81–83], magnetic storage [84], surface en-
hanced Raman spectroscopy (SERS) [85], and biomedicine [86–89]. Patterned nanoparticles
have received great attention for their wide ranges of applications and easy integration
that can lead to enhanced optical, chemical, thermal, and magnetic properties of the de-
vices [90]. Various methods have been developed to assemble nanoparticles into patterned
nanostructures, exploiting different routes and factors that influence the self-assembly
of nanoparticles.



Nanomaterials 2023, 13, 1818 13 of 28

With the development of micro- and nanofabrication technologies, methods for fab-
ricating patterned nanoparticles on planar and structured substrates fall into five broad
categories including: (1) lithography-assisted colloidal self-assembly methods [91,92],
(2) chemical synthesis methods at solid–liquid interfaces [93], (3) photoinduced dielec-
trophoresis methods [94], (4) templated de-wetting methods [95,96], and (5) biological
template self-assembly methods [97]. These methods demonstrate the diversity of ordered
nanostructured surface preparation.

Although several methods have been developed for fabricating ordered nanoparticles,
they usually require a relatively complex multi-step lithography process to obtain a pat-
terned template, followed by chemical synthesis or particle self-assembly to achieve the
assembly of nanoparticles [91,92]. Traditional methods either cannot achieve nanoparticle
preparation in one step; or cannot finely control the particle size or spacing of nanopar-
ticles; or have high fabrication costs and low efficiency and cannot achieve large-area,
high-throughput, and highly controllable patterned nanoparticle preparation.

To precisely place the desired nanoparticles on a given area of surface is a challenge for
nanofabrication technology. Neither bottom-up self-assembly nor top-down lithography
can adequately address this challenge. Therefore, lithography-defined features are now
commonly used to assemble nanostructures into ordered patterns [79]. LIL can be used
to investigate the methods of patterned nanoparticle preparation and achieve effective
control of properties, such as nanoparticle distribution, morphology, particle size, particle
spacing, and structural components, to achieve the desired results (Figure 9) [33]. Typically,
variation of nanoparticle morphology, particle size, and distribution have a very significant
effect on various properties of nanomaterials such as optical (SERS) [98] and catalytic
properties [99].
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within an area of T× T along the period, where T is the period. Reproduced with permission/adapted
from [33].
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3.3.1. Catalytic Performance

The catalytic role of gold nanoparticles in various fields has been widely recognized
and applied [80]. However, metal nanoparticles can easily aggregate in applications,
leading to a significant decrease in catalytic activities. The most effective way to prevent
aggregation is to solidify metal nanoparticles on the supports of carbon materials, metal-
organic frameworks, and various polymeric substrates. This criticism is well addressed by
laser interference, such as metal-assisted chemical etching (MACE), which is a cost-effective
method for fabricating silicon nanostructures including silicon nanowires (SiNWs) and
silicon nanopores (SiNHs). However, the preparation of MACE metal templates requires
complex experimental conditions including a stringent cleaning process and multiple steps.

As shown in Figure 10, Xudong Guo et al. [100,101] used superluminescence-enhanced
laser interference lithography (SELIL) to directly fabricate complex metal patterns, and
then used MACE to obtain hybrid SiNW and SiNH arrays. Ag films were first deposited
on the Si substrate, and then a double-beam interferometric electric field was generated
using a 1064 nm high-power laser source. As Ag particles are very sensitive to the change
in input energy, they tend to decompose or aggregate and form different Ag patterns with
a specific energy threshold to reduce their free energy. By controlling the distribution of the
input optical field, complex metallic patterns and their corresponding Si nanostructures
can be obtained with feature sizes ranging from tens of nanometers to a few microns.
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since the Middle Ages. Gold nanoparticles selectively absorb visible light at specific wave-
lengths and exhibit colorful colors, a property that was widely used in the 17th century to 
make stained glass for churches. Surface-enhanced Raman scattering, since its discovery 
by the British scientist Fleischmann [102] in 1974, has been developed into an efficient 
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Figure 10. (a) Ordered Ag patterns obtained by SELIL. (b) Ag nanocavities at high magnification.
(c) Corresponding hybrid SiNW and SiNH arrays after MACE for 30 min, and (d) SiNWs at high mag-
nification. (e–g) SEM cross-sectional images of hybrid SiNW and SiNH arrays etched for (e) 5, (f) 10,
and (g) 30 min; and (h) the relationship between the etching depth and etching time. Reproduced
with permission/adapted from [100].

3.3.2. SERS

The optical properties of metal nanoparticles have attracted the attention of scientists
since the Middle Ages. Gold nanoparticles selectively absorb visible light at specific
wavelengths and exhibit colorful colors, a property that was widely used in the 17th
century to make stained glass for churches. Surface-enhanced Raman scattering, since its
discovery by the British scientist Fleischmann [102] in 1974, has been developed into an
efficient single-molecule detection and material analysis technique after nearly 50 years
of research [103]. The SERS technique has the advantages of high sensitivity, low water
interference, and no damage to the sample, which makes it ideal for studying surface
effects and analyzing the structure of substances. Following more than four decades of
development, SERS technology has matured for use in many frontier areas such as chemical
detection, nanoprobing, and life sciences [104].
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As mentioned above, laser interference can prepare a layer of nanoparticles on the
surface layer of the carrier, and the properties of nanoparticle distribution, morphology,
particle size, particle spacing, and structural components can be effectively controlled.
Huijuan Shen et al. [98,105,106] also proposed a laser interference-induced forward transfer
technique (LIIFT) to transfer metal Ag particles on transparent media (Figure 11). In
addition, in the period range of 10 to 17 µm, the larger the period of stripes, the smaller
the average diameter, and the higher the density of Ag-NPs, which is the result of the
transfer of micro-stripe distribution based on the double-beam LIL in the TM-TM mode.
Finally, the SERS properties were discussed based on the RhB analytes and the transferred
micro-stripes. The results show that the SERS intensity on Ag-NPs micro-stripes is larger
than that on bare Si substrates, and the Raman spectral intensity increases with the increase
of the micro-stripe period, which is mainly due to the local surface plasmon enhancement of
Ag-NPs. Aggregation of silver nanoparticles improves with the increase of the micro-stripe
period and the intensity of the excitation electric field is enhanced. Testing this result
provides a new technique for the effective preparation of nanoparticles with controlled
aggregation, and demonstrates the potential LIIFT application in the sensitivity detection
of SERS chips.
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Figure 11. Experimental setup and formation schematic of the laser interference-induced forward
transfer PI micro-stripes. (a) Schematic diagram of the double-beam LIIFT configuration. (b) The
fabrication schematic of micro-stripes in LIIFT, and the micro-stripes eject from the PI-donor film to
the receiving substrate. (c) The transferred micro-stripes from the donor-film 1.2 µm with the laser
fluence 39 mJ·cm−2 and pulse number 50. Reproduced with permission/adapted from [105].

3.4. Biological Field—Biological Cell Regulation

As an important tool for in vitro cell research, micro/nanostructures play an important
role in cell adhesion [107], migration [108], growth [109], and differentiation [110–112], and
are of great significance for wound healing, tissue repair, and disease prevention. The rapid
development of micro- and nanomanufacturing technology has led to the intelligent and
diversified preparation of biomaterials, which provides good technical support for the con-
struction of the extracellular microenvironment. With the further understanding of the inter-
action between cells and their growth microenvironment, the study of the regulation of cell
behavior by micro- and nanostructures has become a key direction of in vitro cell research.
Investigating the cell responses to micro- and nanostructures provides a basis for the study
of cellular response mechanisms in vivo. Biomaterials influence the cell-biomaterial inter-
face interactions through their surface chemical energy, surface micro/nanomorphology,
and other factors [113], which in turn affect various physiological activities of cells. LIL
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technology is the most commonly used technique for fabricating micro- and nanostructures
due to its large area of action in the laser coherence range, short experimental cycle time,
and relative simplicity of operation. Many researchers have used LIL-prepared structures
to study the relationship between cells and environmental conditions.

As seen in Figure 12, Xiaomin Wu et al. [113–115] investigated the preparation of
various micro- and nanostructures by LIL and the effect of these structures on the regula-
tion of cell behavior. Based on LIL technology, they combined it with nanotransfer and
metal-assisted chemical etching methods to obtain micro/nanostructures with rich me-
chanical cues in different stiffness and dimensions for regulating cell adhesion, spreading,
and proliferation behaviors. The effects of their explored micro/nanostructures on cell
behavior contribute to the study of cancer cell capture and local growth of single cells, and
provide valuable references for the study of in vitro tissue construction and biomedical
material implantation.
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Qi Liu et al. [115] used LIL in Ti-6Al-4V to prepare stripe, hole array, and dot array
structures, and investigated the response of human osteoblast-like osteosarcoma cells
(MG63) to the surface modification of Ti-6Al-4V implanted alloy. The results showed that
the laser-treated surface had a positive effect on the proliferation of osteoblasts after 24 h.
Surfaces with this microstructure can influence cell activity and improve biocompatibility.
As mentioned above, the surface prepared using LIL has a friction-reducing effect, so the
LIL method of preparing implant surfaces is a practical study that produces implants with
a good biocompatibility while having low friction and low losses. Research related to this
method can contribute to the manufacturing of lifelong implants that can reduce the risks
associated with implant replacement surgery as well as the economic losses.

3.5. Processing of Functional Surface Structural Components

As society has evolved, the need for functional surfaces has increased. Functions, such
as superhydrophobicity [116–121], anti-icing [118,122–124], corrosion resistance [125–128],
friction reduction [129–131], and high hardness [130,132–134], have been of great interest. In
order to produce better engineered materials, researchers have developed new methods to
build materials that resemble natural structures and functions [135–139]. It is an unchanging
fact that structure determines performance! So the design and preparation of functional
surfaces are also the design and preparation of various periodic composite structures.

3.5.1. Hydrophobic and Anti-Ice/Frost Properties

Surface icing hazards pose a serious danger to industries such as electronic trans-
portation, aviation, and shipping. In the aviation industry, for example, surface icing
can make the aircraft heavier, less fuel efficient, and aerodynamically disturbed, which
can compromise flight safety [61,140,141]. Therefore, anti-icing has become an impor-
tant research direction, and numerous studies have found that nano- and microstructures
with excellent water-repellent properties can reduce ice adhesion [142–144]. It is worth
noting that the surfaces with optimal anti-icing effect are micro/nanostructure layered
structures [143,145–147].

LIL has been relatively well researched in the preparation of micro- and nanostructures.
The Fraunhofer Institute is one of the early research organizations in the industrialization
of laser interferometric lithography, and they have developed various types of laser heads
for the processing of micro- and nanostructures (Figure 13b) [148]. They have assembled
complex light paths in a rectangular box and focused their focal point on a displacement
stage so that a wide variety of items can be processed quickly and over large areas [149–151].
Furthermore, a wide variety of structures have been instrumented with this device. For
example, a controlled anti-icing micro/nanosurface was prepared on the surface of the
wing. In ice wind tunnel tests, the anti-icing/de-icing performance was quantitatively
greater compared to the unmachined surface [152].
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Figure 13. (a) Illustration of the direct laser interference patterning process for double-beam LIL
and (b) the experimental setup of the LIL system with a ps laser source. Reproduced with permis-
sion/adapted from [18]. (c,d) SEM images of samples patterned with hierarchical microstructures,
via LIL and direct laser writing techniques. Reproduced with permission/adapted from [151].

In addition, others have combined laser interference and hydrothermal methods to
prepare graded micro/nanostructures for anti-icing surfaces [147,153,154]. Among them,
Liu et al. [155] used a natural taro leaf model as an example and prepared biomimetic taro
leaf structures on Ti6Al4V surfaces using this method. Laser interference produced a mi-
cropillar array structure (MPA) that reduced the contact area while creating a large number
of cavities that could hinder the heat transfer effect. The hydrothermal treatment produced
a large number of nanograss structures (NG) on the MPA that further reduced the contact
area between the substrate and the liquid droplets, resulting in a higher resistance to ice. In
addition, the hydrothermal treatment produced TiO2 with lower thermal conductivity than
metals and had a low thermal conductivity (thermal conductivity: metals > oxides). As
shown in Figure 14c, the different surface structures show different DTs. The layered com-
posite structure induces more cavitation, resulting in a higher icing resistance; it is greatly
enhanced by the icing delay time (DT), which is about 3732 s for the layered composite
(HC) surface. In addition, the ice adhesion strength is reduced due to the presence of many
cavities. In the experiments, the ice adhesion strength of the untreated surface was 458 kPa,
while the ice adhesion strength of the surface with the hierarchical composite structure was
106 kPa.
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The presence of microweave arrays can increase the effective load carrying capacity 
compared to smooth surfaces, and the temporary storage of lubricating fluid on the weave 
surface can provide continuous lubrication in the absence of lubrication when the speed 
of the friction pair is high. The presence of the microloom can reduce the real contact area 
between materials to achieve the effect of friction reduction [156–158], and capture the 
abrasive particles generated during the friction process to reduce wear at the same time, 
significantly improving the wear problem caused by friction particles and optimizing the 

Figure 14. (a) Images of the contact angle and the shape of water droplets on a natural taro leaf
surface; SEM images of the taro leaf surface structures. (b) Images of the contact angle and the shape
of water droplets on the processed HC surface; SEM images of the processed HC surfaces. The
microstructures consisted of the micropillar array with the period of 10 µm; The nanostructure array
covered the entire microstructure surface, and the nanostructure was composed of TiO2 nanoscale
grasses with the diameter of −40 nm and height of −1.5 µm. (c) The photos of the untreated surfaces
(US)-, MPA-, NG-, and HC- surfaces (from the top to bottom). The reference droplets (4 µL tap water)
were placed on the four surfaces at −10 ◦C. All of the droplets were initially transparent. Following
the DT of 18 s, the droplet became opaque on the US surface; after 87 s, another droplet was opaque
on the MPA surface. Following 1053 s of DT, the droplets also became opaque on the NG surface.
Prior to the time of 3709 s, the droplets on the HC surface were still transparent. For the next 23 s, the
droplets gradually froze and the transmittance decreased. At 3732 s, the droplets became opaque.
Reproduced with permission/adapted from [155].

3.5.2. Friction Reduction, and Hardness Enhancement

For some items, prolonged friction can cause wear and even scrap. The topics of
friction and hardness are always the same, the reduction of friction in some cases reduces
the damage of wear, the higher hardness increases its durability, and both extend the life of
the workpiece.

The presence of microweave arrays can increase the effective load carrying capacity
compared to smooth surfaces, and the temporary storage of lubricating fluid on the weave
surface can provide continuous lubrication in the absence of lubrication when the speed of
the friction pair is high. The presence of the microloom can reduce the real contact area
between materials to achieve the effect of friction reduction [156–158], and capture the
abrasive particles generated during the friction process to reduce wear at the same time,
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significantly improving the wear problem caused by friction particles and optimizing the
tribological performance between the friction interface. The specific model is shown in
Figure 15. This technique uses the patterns (spatial multi-periodic energy distribution)
generated by multi-beam laser interference to directly process or modify the material
surface (curved or flat) to form high-precision nanoscale, microscale, and micro/nano-dual
scale hybrid periodic structures corresponding to the patterns, obtaining modified materials
with special chemical and physical properties [131].
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Figure 15. (a) SEM image of the microstructure fabricated by triple-beam LIL; (b) close-up image
of the structured surface; (c) SEM image of Vickers’ indentation with the applied load of 200 g for
10 s; (d) SEM image of the original material with Vickers’ indentation. (e) Schematic of the lubrica-
tion model reducing friction by the formation of dimples. Reproduced with permission/adapted
from [130].

For example, Wei et al. [130] combined laser interference manufacturing technology
with patterning technology to provide a method of surface patterning for the preparation of
low-friction, high-hardness artificial hip joints in terms of surface modification of artificial
hip ball heads. Experimental results indicate that the sample surface modified with LIL
presents better tribological performances and hardness properties than those untreated
materials, including a 64% friction coefficient reduction and 40% hardness enhancement.
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This study provides a low-cost, high efficiency method for the design and fabrication of
artificial hip joints with the improved tribological performances and hardness properties,
which is very promising to significantly reduce the mean revision rate of post primary total
hip replacements in the future. This method is an improvement of the existing artificial hip
joint material, which greatly extends its service life.

4. Current Challenges and Prospects

With rapid development of science and technology, high speed, cheap, and efficient
production methods are eagerly desired. LIL is one of the most promising technologies for
processing micro- and nano-periodic structures with its high flexibility, large processing
area, high controllability, and low cost. This work reviews the basic principles of LIL and
describes the factors affecting the laser light field: spatial angle, angle of incidence, wave-
length, polarization state, and the number of laser beams, and describes their relationship
to the laser interference light field.

LIL has been developed for decades for the fabrication of micro-, sub-micro-, and
nano-periodic structures, and has several applications in the fields of available structural
color preparation, SERS, antireflective surfaces, bio-cells, and other industrial surface
preparations, and this paper presents a review of typical applications over the years.
Although these applications have many advantages, most of the research results are still
in the experimental stage and have not yet been fully applied to industrial production.
To industrialize and civilize laser interference lithography is a problem for which many
researchers and scholars around the world are committed to solve, and it is also the direction
of future development of laser interference lithography. At present, the problems of the
industrialization of laser interference lithography are:

1. High operating environment requirements: Due to the high number of optical com-
ponents of the equipment, various optical components are sensitive to impurities in
the surrounding environment and require a high-standard clean room; optical mirror
frames are sensitive to vibration and require an optical platform for vibration filtering
that otherwise affects stability;

2. High equipment cost: The cost of laser interference lithography equipment is greater
than the traditional lithography equipment (e.g., laser marking machine, etc.) because
of the need to use lasers, optical anti-vibration platforms, displacement tables, the
need for more optical lenses, and their fixing equipment; and

3. Restricted material types: Due to the selectivity of materials to the laser wavelength,
the laser with a certain wavelength is only applicable to certain materials, such as the
wavelength of 1064 nm can process metals, silicon-based semiconductors, etc. Other
materials, such as glasses, plastics, and other organic materials, have a poor etching
effect, and the interferometric system needs to replace the UV laser and corresponding
optical components.

These are only some of the stumbling blocks already known in the industrialization
of laser interference lithography. In recent years, many researchers have been trying
to overcome the problems. To solve the problem of high environmental requirements,
researchers from the Fraunhofer IWS have combined interferometric lithography systems
in a rectangular box with high integration, avoiding the overwhelming influence of dust
and vibrations on lenses, and improving stability performance [18,159]. As for the issue of
high equipment cost, the price of lasers and some optoelectronic components is decreasing
every year as the technology develops, so the cost of the system should be significantly
lower in the future. Concerning the problem of restricted material types, a solution has been
proposed to integrate several lasers of various wavelengths in a single laser interference
system [18].

In the future, with the continuous efforts of researchers, LIL technology, as a non-
contact processing technology with great potential, will overcome all obstacles and be
applied in more industrial fields.
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