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Abstract: Alloy-based catalysts with high corrosion resistance and less self-aggregation are essential
for oxygen reduction/evolution reactions (ORR/OER). Here, via an in situ growth strategy, NiCo
alloy-inserted nitrogen-doped carbon nanotubes were assembled on a three-dimensional hollow
nanosphere (NiCo@NCNTs/HN) using dicyandiamide. NiCo@NCNTs/HN exhibited better ORR
activity (half-wave potential (E1/2) of 0.87 V) and stability (E1/2 shift of only−13 mV after 5000 cycles)
than commercial Pt/C. NiCo@NCNTs/HN displayed a lower OER overpotential (330 mV) than
RuO2 (390 mV). The NiCo@NCNTs/HN-assembled zinc–air battery exhibited high specific-capacity
(847.01 mA h g−1) and cycling-stability (291 h). Synergies between NiCo alloys and NCNTs facilitated
the charge transfer to promote 4e− ORR/OER kinetics. The carbon skeleton inhibited the corrosion
of NiCo alloys from surface to subsurface, while inner cavities of CNTs confined particle growth and
the aggregation of NiCo alloys to stabilize bifunctional activity. This provides a viable strategy for
the design of alloy-based catalysts with confined grain-size and good structural/catalytic stabilities
in oxygen electrocatalysis.

Keywords: confinement effect; cycle stability; hollow structure; in-situ growth; surface corrosion

1. Introduction

Recently, the increasing environmental pollution and the depletion of fossil fuels have
prompted the research and development of highly efficient, environmentally friendly, and
sustainable energy conversion and storage systems [1–3]. As a new energy source in the
21st century [4], rechargeable zinc–air batteries (ZABs) have received great attention [5–7].
However, the intrinsically sluggish kinetics of cathodic oxygen reduction and evolution
reactions (ORR/OER) are major drawbacks that need to be addressed for ZABs. [2,8].
In alkaline electrolytes, the corresponding procedures of ORR (Equations (1)–(4)) and
OER (Equations (5)–(8)) are shown below. For ORR, available redox centers need to be
provided to facilitate the chemisorption of O2 molecules, the cleavage of O-O bonds, and
the dissociation of OH− to further increase the ORR activity, the rate of which in turn
depends on the potential-dependent activation energy barrier. The activity of the OER
depends mainly on the efficiency of OH− adsorption on the catalyst surface. Catalysts with
an abundance of OH− adsorption sites can facilitate this reaction process. Thus, a high
overpotential is required to drive ORR/OER.

The following four steps are included in the ORR process:

* + O2 + H+ + e− → *OOH (1)
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*OOH + H+ + e−→ *O + H2O (2)

*O + H− + e−→ *OH (3)

*OH + H−+ e− → * + H2O (4)

The following four steps are included in the OER process:

* + OH− → *-OH + e− (5)

*-OH + OH− → *-O + H2O + e− (6)

*-O + OH− → *-OOH + e− (7)

*-OOH + OH− → * + O2 + H2O + e− (8)

To date, noble-metal-based materials, such as platinum on carbon (Pt/C) and ruthe-
nium oxide (RuO2), are the state-of-the-art electrocatalysts for ORR and OER, respec-
tively [9]. However, it (Pt/C or RuO2) still suffers from high cost, lack of bifunctional
activity, and poor stability in alkaline electrolytes for ZABs [10]. In recent years, a few
non-noble metal catalysts were exploited to replace the noble ones [11–13]. Thus, it still
holds great promise to rationally design non-precious metal bifunctional electrocatalysts
with tunable compositions and catalytic surfaces [2,6,14,15].

In recent years, metal-organic frameworks (MOFs) appear to be promising precursors
or templates for the construction of alloy-based electrocatalysts, especially for the alloys
of transition metals (such as FeCo [16], FeNi [17], CoNi [18]), which have exhibited good
electrocatalytic activity, durability, and intermetallic synergy [19]. Metal ions, as the con-
nection points in MOFs with a three-dimensional structure, facilitate the in situ formation
of bimetallic alloy-carbon catalysts under thermal treatment [20,21]. The MOF-derived
alloy-carbon catalysts usually possess abundant active sites, a porous structure, and high
permeability and conductivity, thus facilitating the mass/electron transfer to enhance
electrochemical activity [22,23]. In particular, the alloy-carbon catalysts can inhibit the
oxidative corrosion of the carbon skeleton to reserve the active sites, thus stabilizing the
electrocatalytic activity.

Ding et al. successfully synthesized a type of MOF-derived, three-dimensional car-
bonaceous matrix that was randomly loaded with numerous FeNi3 alloy nanoparticles
(NiFe/C). The NiFe/C catalyst exhibited excellent catalytic activity for ORR in 1.0 M KOH
electrolyte [24]. Zhang et al. synthesized a novel core-shell architecture consisting of
polystyrene cores and Co-based MOF composite shells encapsulated in discrete Fe-based
MOF nanocrystallites to prepare the composites composed of CoFe alloy nanoparticles
homogeneously distributed in a porous N-doped carbon shell via a thermal treatment [25].
The as-derived CoFe alloy@N-doped carbon exhibited enhanced catalytic activity for
ORR [26]. Unfortunately, the electroconductivity of these MOF-derived materials is intrinsi-
cally poor because the structure of the derived carbon is usually disordered and amorphous.
In addition, high-temperature pyrolysis often leads to the structural collapse of MOFs,
which is uncontrollable for the further growth and dispersion of alloy particles. Briefly,
the relatively low conductivity and stability restrict the applications of MOF-derived alloy
catalysts for electrocatalysis [26,27]. Furthermore, for alloy nanoparticles, at present, it is
extremely challenging to suppress their self-aggregation/collapse, enhance the structural
stability, and improve the dispersion during construction. Therefore, given the dilemma
mentioned above, anchoring or embedding alloy nanoparticles in a highly graphitized
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carbon matrix should be a feasible strategy to obtain the strongly coupled alloy-carbon
nanohybrids with excellent charge transfer ability and substantial chemical stability.

In this study, via an in situ growth strategy, three-dimensional hollow nanospheres,
self-assembled with N-doped carbon nanotubes (with inside NiCo alloy nanoparticles at
one end of the nanotubes) on the outer surface (NiCo@NCNTs/HN), were achieved by
pyrolyzing a mixture of NiCo-MOF and dicyandiamide. The strong coupling between NiCo
and the carbon skeleton (including NCNTs and the carbon skeleton of nanospheres) can
greatly enhance electrical conductivity, i.e., charge transfer efficiency. Structurally, this three-
dimensional hollow carbon matrix modified by one-dimensional hollow nanotubes with
high surface area has the ability to expose more active sites to enhance its electrochemical
activity. Compositionally, coordinated interactions between the transition metal alloy
nanoparticles can regulate the activity. NiCo@NCNTs/HN, with a porous structure, can
eagerly enlarge the working area, the conductive networks, the unimpeded electrolyte/gas
diffusion pathways, and the interfacial region to well react with electrolytes and reactants.
NiCo, with a small amount embedded in the carbon skeleton, can notably relieve the
easy accumulation or aggregation caused by the strong interactions. In addition, the
NiCo@NCNTs/HN alloy system is able to inhibit some of the decomposition pathways
of oxygen-catalyzed intermediates during ORR/OER, and is usually highly tolerant to
electrolyte impurities, thus enhancing catalytic stability in the long-term operation. The
hollow structure also provides a relatively enclosed space to exert a confinement effect for
the overflow of reactants. As expected, the NiCo@NCNTs/HN catalyst exhibited better
catalytic activity and stability than commercial Pt/C (ORR) and RuO2 (OER) catalysts. This
study demonstrates the great potential of MOF-derived bifunctional alloy-electrocatalysts
for rechargeable ZABs.

2. Materials and Methods
2.1. Preparation of NiCo-MOF

The NiCo-MOF precursor was synthesized by using a previously reported solvother-
mal method with a slight modification [28]. Here, 39.09 mg of Ni(NO3)2·6H2O, 390.09
mg of Co(NO3)2·6H2O, 150 mg of 1,3,5-benzenetricarboxylic acid (H3BTC), and 1 g of
PVP(MW 58,000) were dissolved in 30 mL of N,N-Dimethylformamide (DMF) solution.
The above mixture was stirred vigorously until a pink transparent solution was obtained
at room temperature. The clear solution was then transferred to a Teflon-lined stainless-
steel autoclave (100 mL) and heated to 150 ◦C for 6 h. After the stainless-steel autoclave
cooled down to room temperature, the obtained red sandalwood precipitate was collected
(washed) by centrifugation with DMF (three times) and ethanol (three times) orderly. The
purplish red solid was dried in a vacuum oven at 60 ◦C for 12 h.

2.2. Synthesis of Co-MOF and Ni-MOF

Co-MOF and Ni-MOF were prepared as monometallic catalyst precursors in order
to compare their electrocatalytic performance with bimetallic alloy catalysts. The syn-
thesis process of Co-MOF was similar to that of NiCo-MOF, except for the removal of
Ni(NO3)2·6H2O during the synthesis, and the mass of Co(NO3)2·6H2O was adjusted to
430 mg. For the preparation of Ni-MOF, 1.279 g of Ni(NO3)2·6H2O and 0.504 g of H3BTC
were completely dissolved in 70 mL of methanol by stirring for 1 h at room temperature.
Then, it was transferred to a 100 mL Teflon-lined autoclave and kept at 150 ◦C for 6 h. The
obtained sample was collected (washed) by centrifugation with DMF (three times) and
ethanol (three times) orderly. Finally, the light green materials (Ni-MOF) were obtained by
drying in a vacuum oven for 12 h at 60 ◦C.

2.3. Preparation of NiCo@NCNTs/HN, NiCo/HN, Co@NCNTs/HN, and Ni@NCNTs/HN

In this procedure, 35 mg of NiCo-MOF and 0.7 g of DCDA were placed in two separate
porcelain boats in a tube furnace. In particular, DCDA was located upstream of the tube
furnace. The above two porcelain boats were firstly heated to 450 ◦C and maintained at



Nanomaterials 2023, 13, 1788 4 of 19

450 ◦C for 2 h, and then they were raised to 700 ◦C and maintained at 700 ◦C for 2 h under
a N2 atmosphere at a heating rate of 5 ◦C min−1 to gain the black NiCo@NCNTs/HN
sample (without DCDA, the obtained sample was marked as NiCo/HN-700). In addi-
tion, the porcelain boats were also heated to 450 ◦C and maintained at 450 ◦C for 2 h to
obtain the sample named NiCo@NCNTs/HN-450. Co@NCNTs/HN or Ni@NCNTs/HN
was synthesized using Co-MOF or Ni-MOF as the precursor, respectively, via a similar
procedure to that of NiCo@NCNTs/HN. The flow chart of sample preparation is shown in
Scheme 1. In this study, commercial Pt/C (10 wt.%) and RuO2 were used as the reference
catalysts for ORR and OER, respectively. Detailed methods and instruments for material
characterizations and electrochemical tests are described in the ‘Supporting Information’.
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Scheme 1. Synthesis route for NiCo/HN-450, NiCo/HN-700, and NiCo@NCNTs/HN catalysts.

3. Results
3.1. Structural and Compositional Analyses

In Figure 1a, the crystalline structures and phases of the samples are verified using the
typical powder X-ray diffraction (XRD) pattern. The peaks located at around 44.2◦, 51.6◦,
and 75.9◦ were ascribed to the (1 1 1), (2 0 0), and (2 2 0) crystal planes of the NiCo alloy
(JCPDS, No. 15-0806) (JCPDS, No. 04-0850), respectively [20,29]. Furthermore, compared
with pure NiCo/HN-700, the relatively broad peak at around 26.7◦ of NiCo@NCNTs/HN
was attributed to the (002) crystal plane of graphite carbon. Thus, it clearly demonstrated
that with DCDA, the high graphitization degree of carbon skeletons can be obtained due to
the formation of N-doped CNTs. Generally, a high degree of graphitization can improve the
conductivity of the catalyst, which is beneficial to the charge transfer during the electrolysis
process [30]. The XRD patterns of Ni@NCNTs/HN and Co@NCNTs/HN are shown in
Figure S1. The diffraction peaks correspond to pure metallic Co0 (JCPDS, No. 15-0806) or
Ni0 (JCPDS, No. 04-0850), which further shows that Co0 or Ni0 is successfully formed in
the structure of NCNTs/HN. The (002) crystal plane of graphite carbon was also observed
for Ni@NCNTs/HN or Co@NCNTs/HN.
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Figure 1. XRD patterns of NiCo/HN-700 and NiCo@NCNTs/HN (a); XPS survey spectrum (b); high-
resolution XPS spectra for N 1s (c), C 1s (d), Co 2p (e), and Ni 2p (f) for NiCo@NCNTs/HN.

The chemical status and elemental compositions of NiCo@NCNTs/HN were analyzed
using x-ray photoelectron spectroscopy (XPS). Figure 1b shows that C, N, O, Ni, and Co
existed on the surface of NiCo@NCNTs/HN. Table S1 shows the proportions of various el-
ements in the catalysts. In Figure 1c, the high-resolution N1s spectrum can be deconvolved
into four components at around 398.8, 400.7, 401.7, and 405.2 eV, which were assigned to
pyridinic N (50.77%), pyrrolic N (21.77%), graphitic N (17.32%), and oxidized N (10.14%),
respectively. N doping can cause the arrangement of the C matrix, promote the accumu-
lation of positive charges, and change the electronic structure of the catalyst, improving
the catalytic activity of the catalyst [31]. Graphitic N can improve the conductivity of
carbon networks to promote the limiting current density [32]. Due to the electron-donating
property of pyridinic-N, it is considered an effective active site for ORR [33]. Pyrrolic N
can improve ORR activity by promoting oxygen capture and O-O bond cleavage [34]. The
mild oxidation of pyridine-N leads to the formation of oxidized-N [35]. In Figure 1d, the
C1s spectrum is decomposed into four peaks at around 284.7, 285.7, 286.6, and 290.1 eV,
which corresponded to C-C, C-N, C-O, and π-π*, respectively, confirming the successful
N-doping into the CNTs framework [36].

In the Co 2p spectra (Figure 1e), there were four pairs of peaks, including Co0

(779.0/794.3 eV), Co3+ (780.4/795.6 eV), Co2+ (782.0/796.9 eV), and shakeup satellite peaks
(785.1/800.1 eV) [36,37]. Likewise, four peaks also appeared in the Ni 2p XPS spectra in
Figure 1f, which were assigned to Ni0 (851.2 and 869.9 eV), Ni2+ (854.3 and 872.1 eV), and
Ni3+ (856.5 and 875.5 eV) [36,38]. The peak positions of NiCo@NCNTs/HN negatively
shifted by comparing with pure NiCo/HN-700, which may be attributed to the electron
transfer between NiCo alloy and NCNTs [15]. The formation of the NiCo alloy was con-
firmed by the presence of metallic Co0 and Ni0 species, which is well in agreement with the
XRD results. The formation of Co2+ and Ni2+ is due to the oxidation of the outer surface
of the NiCo alloy. It is worth noting that the existing Co3+ and Ni3+ components are the
main sources of active species for OER [39]. Meanwhile, the intensity of Co3+ (780.4 eV)
accounts for a higher part than that of Co2+ (782.0 eV), which is in favor of water oxidation
to enhance OER activity [40]. In addition, Figure S2 shows the presence of O species on the
surface of NiCo@NCNTs/HN and NiCo/HN-700.

Raman tests were used to investigate the structural defects and degree of graphi-
tization of the catalysts (Figure 2a). The D-band (around 1350 cm−1) is related to the
topological defects and disorder degree of carbonaceous materials, while the G-band
(around 1580 cm−1) represents the in-plane stretching vibration of the hybridization of
C atoms. The smaller the ID/IG ratio, the higher the degree of graphitization of car-
bon [41,42]. In Figure 2a, the ID/IG values of NiCo@NCNTs/HN and NiCo/HN-700 are
0.99 and 1.18, respectively, implying that a higher degree of graphitization was obtained by
NiCo@NCNTs/HN. It revealed that the NiCo alloys encapsulated by CNTs may lead to the
formation of disordered edge structure and defects in the carbon skeleton [43]. These defects
in the carbon structure can generate the electrocatalytically efficient active sites. Figure 2b
and Figure S3a,b show the N2 adsorption and desorption isotherm, as well as the pore
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size distribution curves of NiCo@NCNTs/HN, Ni@NCNTs/HN, and Co@NCNTs/HN,
respectively. There was a typical IV-type hysteresis under high relative pressures, impli-
cating that they mainly consist of a mesoporous structure. The specific surface areas of
Ni@NCNTs/HN, Co@NCNTs/HN, and NiCo NCNTs/HN are 226, 235, and 240 m2 g−1

(Tables S2–S4), respectively, while the pore size distribution curve further confirms the
mesoporous character. The pores can provide sufficient active centers for absorbing, trans-
forming, and desorbing the reactants/intermediates during oxygen electrocatalysis [44].
They also reveal that NiCo@NCNTs/HN possesses typical mesopores to allow the efficient
permeation of the electrolyte, so as to facilitate mass transfer [44,45]. Figure 2c,d shows that
NiCo@NCNTs/HN exhibited a smaller contact angle (10.65◦) than NiCo/HN-700 (16.27◦).
This means that NiCo@NCNTs/HN had a more hydrophilic surface [46]. Because ORR
is a three-phase interfacial reaction, the catalyst with strong hydrophilicity can promote
the interaction between the electrolyte and catalyst [47]. Oxygen molecules first need to
be physically adsorbed on the catalyst (in contact with the catalyst) and then activated on
the active site. The deep wetting helps electrolytes to enter the pores and increases the
contact probability between active sites and reactants, thereby promoting electrocatalytic
efficiency [48].
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Figure 2. Raman spectra (a); N2 adsorption/desorption isotherm and pore size distribution (inset)
for NiCo@NCNTs/HN (b); contact angles of NiCo@NCNTs/HN (c) and NiCo/HN-700 (d).

In Figure 3a, the SEM image of NiCo-MOF shows that H3BTC and metal ion underwent
a coordination reaction at 150 ◦C to form a spherical structure by the simple hydrothermal
method. Obviously, the spheres had an average size of 500 nm and were monodispersed,
with a uniform morphology and smooth surface. Figure S4 shows that the SEM images of
Co-MOF and Ni-MOF are the same as that of NiCo-MOF. Figure 3b shows that the surface
of NiCo-MOF spheres annealed at 450 ◦C exhibited a rather rough surface consisting
of small nanoparticles. The average size of a NiCo/HN-450 particle (without DCDA)
is approximately 200 nm, indicating that the skeleton shrinkage of the sphere clearly
occurred. After carbonization at 700 ◦C, NCNTs derived from the pyrolysis of DCDA were
successfully planted on the surface of the nanosphere, and the NiCo-MOF-derived NiCo
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alloy nanoparticles were fully encapsulated in the nanotubes (Figure 3c,d). Normally, this
unique wool-ball-like structure should not only supply a large contact area between active
sites and electrolytes, but it should also effectively reduce the self-aggregation of NiCo
alloys inside the wool (NCNTs).
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Figure 3. SEM images of NiCo-MOF (a), NiCo/HN-450 (b), and NiCo@NCNTs/HN (c,d); TEM
images of NiCo-MOF (e), NiCo@C-450 (f), and NiCo@NCNTs/HN (g,h); HRTEM images of
NiCo@NCNTs/HN (i–l); HAADF-STEM image of NiCo@NCNTs/HN (m); element mapping of Co
(n), Ni (o), C (p), and N (q).

In Figure 3e, it shows that the NiCo-MOF precursor was a solid sphere (TEM image).
NiCo/HN-450 showed a spherical non-solid structure with many pores (Figure 3f). In
Figure 3g, a hollow spherical structure, coated with NCNTs with an average diameter of
approximately 20 nm derived from the pyrolysis of DCDA, is observed. In Figure 3h, it
shows that the NCNTs had a bamboo-like structure, with NiCo nanoparticles encapsulated
in one end of the nanotubes. This structure with a bimetallic alloy core inside and a
graphite shell outside facilitated the contact between the active sites and the electrolyte,
and it prevents the erosion and aggregation of CoNi alloy NPs in the electrolyte [49]. In
Figure 3i,j, the HRTEM image of NiCo@NCNTs/HN reveal that the NiCo alloys were
tightly embedded into the graphitized carbon with an interlayer spacing of ≈0.34 nm,
which corresponds to the (002) plane of NCNTs. The lattice fringe spacing of 0.20 nm
(Figure 3k,l) can be assigned to the (111) crystal plane of the CoNi alloy. These structural
features of the catalyst can maintain high electrocatalytic activity and long-term stability. In
Figure 3m–q, the high-angle annular dark field (HAADF)-STEM element mapping images
demonstrate that C, N, Ni, and Co were homogeneously dispersed in NiCo@NCNTs/HN.
The visible bright spots in different colors indicated the presence and distribution of each
element. It eagerly revealed the successful formation of the NiCo alloy, the introduction of
N doping, and the perfect realization of the hollow structure.

3.2. Electrocatalytic Activities of NiCo@NCNTs/HN Catalyst for ORR

To initially evaluate the ORR activities of Pt/C, Ni@NCNTs/HN, Co@NCNTs/HN,
NiCo/HN-700, and NiCo@NCNTs/HN catalysts, cyclic voltammetry (CV) tests were
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performed in a 0.1 M O2-saturated KOH solution [50]. In Figure 4a, the reduction peak of
the NiCo@NCNTs/HN was located at around 0.87 V, which was superior to those of Pt/C
(0.83 V), Ni@NCNTs/HN (0.78 V), Co@NCNTs/HN (0.72 V), and NiCo/HN-700 (0.63 V).
As reported previously, the inevitable oxidation of CoNi alloys in the hybrids can form the
active Co(II) species, which is directly responsible for the high ORR activity [51–55]. Co(II)
can change the chemisorption mode of oxo intermediates due to the strong interaction
between the orbital of the oxygen molecule and the d orbital of central atomic vacancy,
thus effectively weakening the O-O bond to facilitate the dissociation of oxygen molecules
to produce H2O [51,52]. It is noteworthy that, compared to NiCo/HN-700, the excellent
ORR activity of the NiCo@NCNTs/HN catalyst was chiefly attributed to the introduction
of N-doped CNTs, with high electrical conductivity, and the N-species served as highly
active sites for ORR [20,56]. Moreover, the self-grown NCNTs on the surface of the hollow
spherical structure can promote the charge transfer between CoNi alloys and NCNTs to
gain the excellent ORR activity.
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Figure 4. CV curves for NiCo@NCNTs/HN, Co@NCNTs/HN, Ni@NCNTs/HN, NiCo/HN-700,
and Pt/C in an O2-saturated 0.1 M KOH solution at a scan rate of 10 mV s−1 (a); LSV curves for
NiCo@NCNTs/HN, Co@NCNTs/HN, Ni@NCNTs/HN, NiCo/HN-700, and Pt/C (5 mV s−1 and
1600 rpm) in an O2-saturated 0.1 M KOH solution (b); Tafel plots of NiCo@NCNTs/HN and Pt/C
(c); Nyquist curves of NiCo@NCNTs/HN and Pt/C in an O2-saturated 0.1 M KOH solution (an
amplitude of 5 mV and 1600 rpm) (d); LSV curves and calculated K-L plots (insets) at different
potentials (5 mV s−1) for NiCo@NCNTs/HN (e) and Pt/C (f).

The ORR activities of various catalysts were further investigated by linear sweep
voltammetry (LSV) tests [5]. In Figure 4b, the half-wave potential (E1/2, 0.877 V) and onset
potential (Eonset, 0.92 V) of NiCo@NCNTs/HN were higher than those of commercial Pt/C
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(E1/2 = 0.835 V and Eonset = 0.91 V), NiCo/HN-700 (E1/2 = 0.64 V and Eonset = 0.72 V),
Ni@NCNTs/HN (E1/2 = 0.73 V and Eonset = 0.79 V), and Co@NCNTs/HN (E1/2 = 0.72 V
and Eonset = 0.78 V). In Table S5, the electrocatalytic performance of NiCo@NCNTs/HN
is also comparable to many of the most advanced non-precious metal catalysts that have
been recently reported. Importantly, the large specific surface area of the hollow structure
makes multiple active sites meaningful, and O2 bubbles and electrolytes can easily access
the active sites and facilitate the gas diffusion and mass transfer, which may be the main
reason for the high diffusion current density of NiCo@NCNTs/HN [57]. In addition, the
synergistic effects between NiCo alloys and NCNTs can greatly increase the electrical
conductivity (charge transfer) and further accelerate the ORR process [58,59]. To evaluate
the ORR kinetics of the NiCo@NCNTs/HN catalyst, we constructed Tafel plots based on the
LSV curves of several catalysts at 1600 rpm (Figure 4c). NiCo@NCNTs/HN (94 mV dec−1)
showed a smaller Tafel slope than Pt/C (96 mV dec−1), Co@NCNTs/HN (103 mV dec−1),
Ni@NCNTs/HN (110 mV dec−1), and NiCo/HN-700 (120 mV dec−1). In general, the
smaller the Tafel slope, the higher the catalytic activity [60,61]. In Figure 4d and Figure S5a,
the charge transfer resistance (Rct) values for NiCo@NCNTs/HN, NiCo/HN-700, and Pt/C
are 15.88, 82.44, and 23.60 Ω, respectively. The lower the Rct, the higher the charge transfer
rate [2]. This indicates that NiCo@NCNTs/HN has an efficient charge transfer capability
and favors the effective ORR process, which is consistent with the Tafel results. The lower
resistance should be ascribed to the increased conductivity due to the formation/coating
of the N-doped CNTs [57]. In Figure 4e,f, RDE tests were performed at different rotation
speeds (400 to 2025 rpm) to evaluate the ORR diffusion kinetics of NiCo@NCNTs/HN and
Pt/C. The electron transfer number (n) can be obtained by calculating the slope of the linear
plot obtained using Koutecky–Levich (K–L) curves at different potentials [62]. At different
potentials from 0.30 to 0.60 V, it was clearly seen that the K–L plots of NiCo@NCNTs/HN
and Pt/C showed a linear relationship and almost overlapped each other, indicating that
the ORR process on the NiCo@NCNTs/HN catalyst is close to the 4e− reaction pathway.

In Figure 5a,b, RRDE tests were performed to determine H2O2 yields and n values at
different potentials in alkaline media. The H2O2 yields of NiCo@NCNTs/HN, NiCo/HN-
700, and Pt/C were in the range of 5.21 to 9.89%, while the n values were in the range of
3.89 to 3.97 (Figure S6). It was revealed that the NiCo@NCNTs/HN catalyst exhibited high
selectivity and activity for the conversion of O2 to OH− via a 4e− ORR pathway, which is
consistent with the RDE results. Superior electrocatalysts not only require high catalytic
activity, but they also need promising stability to assess their application feasibility. In
Figure 5c, the NiCo@NCNTs/HN catalyst maintained 87.60% of the initial current density
after 36,000 s (10 h), while the Pt/C electrode maintained 80.12% of initial current density,
indicating that the ORR stability of NiCo@NCNTs/HN is quite ideal. The catalytic stability
of the catalysts was further evaluated by the methanol tolerance test. In Figure 5d, after
the addition of 3 mL of methanol, the current density of Pt/C jumped sharply at 300 s,
because the methanol oxidation reaction or the CO toxicity to the active sites caused a
significant loss of ORR activity [19]. In contrast, no significant current change was observed
for NiCo@NCNTs/HN, indicating that it has a good methanol tolerance for ORR. The
accelerated durability test (ADT) revealed that, after 5000 cycles, E1/2 had a negative shift
of only 13 mV (Figure S7a) for NiCo@NCNTs/HN, which was much smaller than that of
Pt/C (20 mV) (Figure S7b). The high stability is ascribed to the NiCo alloys being tightly
surrounded by a carbon wall to effectively protect the bimetallic alloys from dissolution
and oxidation, and the size of the wrapped alloy particles can be effectively controlled to
eagerly prevent particle aggregation [55,63].

3.3. OER Performance on NiCo@NCNTs/HN Catalyst

As shown in Figure 6a, at 10 mA cm−2, NiCo@NCNTs/HN obtained the lowest overpo-
tential in driving the catalytic reaction (330 mV) compared to RuO2 (390 mV), NiCo/HN-700
(410 mV), Co@NCNTs/HN (420 mV), and Ni@NCNTs/HN (510 mV). Notably, the synergis-
tic interactions between CoNi alloys and NCNTs contributed to the generation of a sufficient
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number of viable catalytically active species (CoOOH/NiOOH). As reported previously,
the special interfacial structure of the NiCo alloy can enhance the OER catalytic activity
by regulating the in situ formation of oxyhydroxides (NiOOH/CoOOH) on the surface of
the alloy [64,65]. As shown in Table S6, NiCo@NCNTs/HN also exhibited excellent OER
activity compared to the recently reported OER performance of non-precious metal electro-
catalysts [63]. In Figure 6b, the Tafel slope of NiCo@NCNTs/HN was 66 mV dec−1, which
was significantly better than those of NiCo/HN-700 (113 mV dec−1), Co@NCNTs/HN
(113 mV dec−1), Ni@NCNTs/HN (187 mV dec−1), and RuO2 (93 mV dec−1). The low slope
revealed that the NiCo@NCNTs/HN catalyst is more favorable for OER, which can be
recognized as having a high potential for commercial application [66,67].
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Figure 5. RRDE voltammograms of Pt/C, NiCo/HN-700, and NiCo@NCNTs/HN in an O2-satu-

rated 0.1 M KOH solution (a); H2O2 yields and the corresponding electron transfer number (n) 

(b); chronoamperometric (i-t) responses of NiCo@NCNTs/HN and Pt/C before (c) and after (d) 

the addition of 3 mL of methanol (1.0 M) in an O2-saturated 0.1 M KOH at 1600 rpm. 

3.3. OER Performance on NiCo@NCNTs/HN Catalyst 

Figure 5. RRDE voltammograms of Pt/C, NiCo/HN-700, and NiCo@NCNTs/HN in an O2-saturated
0.1 M KOH solution (a); H2O2 yields and the corresponding electron transfer number (n) (b);
chronoamperometric (i-t) responses of NiCo@NCNTs/HN and Pt/C before (c) and after (d) the
addition of 3 mL of methanol (1.0 M) in an O2-saturated 0.1 M KOH at 1600 rpm.

In Figure 6c (EIS curve), NiCo@NCNTs/HN had the lowest Rct (6.5 Ω) among the
catalysts of RuO2 (9.8 Ω), NiCo/HN-700 (19 Ω), and other catalysts (Figure S5b). This
suggests that the charge transfer between NiCo alloys and NCNTs can be conducted
rapidly to obtain super OER kinetics [57]. Double-layer capacitance (Cdl) was employed
to evaluate the electrochemical surface area (ECSA) of catalysts. CV tests at different scan
rates were used to obtain the Cdl and ECSA (Figure S8). In Figure 6d, the Cdl values
for NiCo@NCNTs/HN, NiCo/HN-700, Co@NCNTs/HN, Ni@NCNTs/HN, and RuO2
were 9.62, 2.49, 2.10, 1.67, and 3.97 mF cm−2, respectively, indicating that more active
species (CoOOH/NiOOH) should be generated on the surface of NiCo@NCNTs/HN [68].
Accordingly, the ECSA values of NiCo@NCNTs/HN, NiCo/HN-700, Co@NCNTs/HN,
Ni@NCNTs/HN, and RuO2 were 240.5, 62.25, 52.5, 41.75, and 99.25 cm2, respectively.
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Figure 6. LSV curves (2 mV s−1 and 1600 rpm) (a) and Tafel plots (b) of RuO2, NiCo@NCNTs/HN,
Co@NCNTs/HN, Ni@NCNTs/HN, and NiCo/HN-700; Nyquist curves of NiCo@NCNTs/HN,
NiCo/HN-700, and RuO2 at an amplitude of 5 mV ((c), 1600 rpm); linear plots of scan rates vs.
current density for NiCo@NCNTs/HN, NiCo/HN-700, Co@NCNTs/HN, Ni@NCNTs/HN, and
RuO2 in 0.1 M KOH electrolyte (d).

In Figure 7a and inset (RRDE tests), an average n value of 3.90 was obtained, indicating
that the OER process on the NiCo@NCNTs/HN proceeded through the 4e− pathway
(4OH−→ 2H2O + O2 + 4e−). The Faraday efficiency of NiCo@NCNTs/HN was measured
by using RRDE. In Figure 7b, when a current of 0.238 mA was applied to the disc electrode
to produce O2, a ring current of 0.082 mA was detected, and the Faraday efficiency was
93.2%. In Figure 7c, after 1000 LSV cycles, the Ej=10 of NiCo@NCNTs/HN increased by
only 9 mV in the potential range of 1.0–1.8 V (vs. RHE). As shown in the inset of Figure 7c
(chronoamperometry), the excellent OER stability of NiCo@NCNTs/HN was chiefly related
to the protective effect of the carbon skeleton for wrapping the NiCo alloys. Moreover,
the high mechanical stability of the carbon skeleton can prevent the corrosion of NiCo
oxyhydroxides, thus enhancing the catalytic durability to OER in alkaline electrolytes. To
verify the origin of the excellent catalytic performance of the NiCo@NCNTs/HN catalyst
in terms of OER, in situ XRD tests were performed (Figure S9). During OER, several new
diffraction peaks appeared at around 36.27◦ and 63.96◦, corresponding to the (1 0 1) and
(0 0 2) planes of β-NiOOH (JCPDS 27-0956) [46], respectively. Moreover, new diffraction
peaks at around 41.40◦ and 45.79◦ should correspond to the (0 0 6) and (1 0 4) planes of γ-
CoOOH (JCPDS No. 07-0169) [15], respectively. Thus, this confirms that NiOOH/CoOOH
derived from Ni0/Co0 (NiCo alloy) was the actual active component for OER. XRD and
SEM techniques were used to investigate the structural stability of NiCo@NCNTs/HN after
the stability tests. As shown in Figure S10a, the XRD pattern did not change significantly,
and the crystalline structure of the pure alloy was also maintained after the test, which
confirms the good stability of the NiCo@NCNTs/HN catalyst. As can be seen in Figure 3c
and Figure S10b, the surface of NiCo@NCNTs/HN became slightly rougher after up to 10 h
of tests, but the overall structure remained unchanged. Moreover, it was also revealed that
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the attached particles were homogeneously distributed and only slightly aggregated on
the surface [69]. The potential difference between OER and ORR (∆E = Ej10

OER − E1/2
ORR)

was a useful indicator for evaluating the bifunctional activity of the catalyst. A smaller
value of ∆E implies higher overall bifunctional activity [20]. As shown in Figure 7d, with a
∆E value of 0.69 V, the bifunctional activity of the NiCo@NCNTs/HN catalyst was higher
than that of Pt/C + RuO2 (0.74 V). Compared with the recently reported bifunctional
catalysts (Figure S11 and Table S7), NiCo@NCNTs/HN still had a promising ∆E. Therefore,
NiCo@NCNTs/HN can be considered a potential bifunctional catalyst for application in
ZAB. In Figure 7e, the alloy nanoparticles located inside of the nanotube were closely
protected by the external NCNTs to inhibit their rapid degradation and thus improve
ORR/OER stabilities. In addition, the hollow space of HN can enhance the mass transfer
rate during the electrocatalytic process, thus accelerating the formation/reaction of oxo
intermediates (OOH*, O*, and *OH). The NiOOH/CoOOH species on the surface of the
NiCo alloy can greatly lower the energy barrier for OER, and these active species can also
promote the charge transfer, thus effectively promoting the OER activity.
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Figure 7. Voltammogram for NiCo@NCNTs/HN in 0.1 M KOH on an RRDE (1600 rpm) device, and
the inset shows the corresponding electron transfer number (n) as a function of applied potentials (a);
the faradaic efficiency measurement of NiCo@NCNTs/HN on an RRDE (1600 rpm) device (b); OER
polarization curves of NiCo@NCNTs/HN before and after the continuous operations (c) (inset shows
the i-t responses in 0.1 M KOH at 1600 rpm); polarization curves of NiCo@NCNTs/HN and Pt/C (or
RuO2) catalysts using the three-electrode system in the full OER/ORR region (d); possible ORR/OER
mechanisms of the NiCo@NCNTs/HN catalyst (e).

3.4. Application of NiCo@NCNTs/HN Catalyst in ZAB

The desirable bifunctional activity and stability of the NiCo@NCNTs/HN catalyst
prompted us to evaluate their suitability for ZAB. A rechargeable ZAB was constructed
using carbon cloth (~2.5 mg cm−2) loaded with NiCo@NCNTs/HN (or Pt/C + RuO2) as
the air cathode, Zn as the anode, and a mixed solution of 6 M KOH + 0.2 M Zn acetate
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as the electrolyte (Figure 8a). As shown in Figure 8a, the open circuit voltage (OCP) of
NiCo@NCNTs/HN-assembled ZAB was approximately 1.53 V, while the reference ZAB
with Pt/C + RuO2 was 1.47 V, implying that the as-prepared catalyst had good practical-
ity [70]. Figure 8b shows the charge/discharge polarization curves of the ZABs, and the
NiCo@NCNTs/HN cathode presented a relatively lower charge voltage, a higher discharge
voltage, and a smaller charge/discharge overpotential gap compared to the reference, Pt/C
+ RuO2. In addition, the maximum power density of the NiCo@NCNTs/HN cathode
was 232.68 mW cm−2 (Figure 8c), which exceeds that of the commercial Pt/C + RuO2
(185.82 mW cm−2). This excellent discharge capacity is extremely consistent with the out-
standing OER/ORR activities [71,72]. In Figure 8d, the specific discharge capacity of ZAB
with NiCo@NCNTs/HN was 847.01 mA h g−1, which was superior to that of ZAB with
Pt/C + RuO2 (813.49 mA h g−1). At 10 mA cm−2 (Figure 8e), the NiCo@NCNTs/HN cath-
ode possessed a much better cycling stability (291 h) compared to the Pt/C + RuO2 cathode
(45 h). The tight connection between NiCo alloys and NCNTs created many highly active in-
terfaces to stabilize the long-term OER/ORR activities. The inner cavities of CNTs provide
a perfect space to confine NiCo alloys to prevent the aggregation and leaching of the NiCo
alloys, thus greatly improving long-term electrocatalytic stability [73,74]. This highlights
the long-term stability and high efficiency of NiCo@NCNTs/HN-assembled ZAB.
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Figure 8. Open-circuit plots of primary ZABs assembled with NiCo@NCNTs/HN and Pt/C +
RuO2 (a); discharging polarization curves and corresponding power density plots (b); discharge
polarization curves and corresponding power densities of NiCo@NCNTs/HN- and Pt/C + RuO2-
based ZABs (c); discharge curves of ZABs at 10 mA cm−2 (d); galvanostatic charge–discharge curve
of NiCo@NCNTs/HN-based rechargeable ZAB (e).
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4. Conclusions

In summary, a novel 3D electrocatalyst with surface-grown NCNTs, a large surface area,
and a hollow structure was successfully prepared using a hydrothermal-annealing strategy.
The skeleton of the sphere provided ideal platforms for the uniform and dense growth of
bamboo-like CNTs to encapsulate the NiCo alloy nanoparticles. The NiCo@NCNTs/HN
catalyst exhibited excellent ORR (E1/2 = 0.87 V) and OER (Ej=10 = 1.56 V) activities in alkaline
media. After 36,000 s, the decline of the ORR current density of NiCo@NCNTs/HN was
only 12.40%, while after 1000 OER cycles, the Ej=10 of NiCo@NCNTs/HN increased by
only 9 mV. As the air-cathode, the ZAB with the NiCo@NCNTs/HN catalyst provided a
high open-circuit voltage (1.53 V) and power density (847.01 mA h g−1). The NiCo alloy in
situ encapsulated by NCNTs with uniform dispersion and ultrafine size can stabilize the
exposure of active sites to the electrolyte, which contributes to the high bifunctional activity
(∆E = 0.69 V) and stability of NiCo@NCNTs/HN. The excellent activity/stability are also
ascribed to the efficient charge transfer between NiCo alloys and NCNTs. The controllable
construction of this bifunctional electrocatalyst promotes the further development of MOF-
derived materials for energy storage and conversion.
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(a) and NiCo/HN-700 (b); Figure S3: N2 adsorption/desorption isotherm and pore size distribution
(inset) for Ni@NCNTs/HN (a) and Co@NCNTs/HN (b); Figure S4: SEM images of Co-MOF (a) and
Ni-MOF (b); Figure S5: (a) Nyquist curves of Co@NCNTs/HN and Ni@NCNTs/HN in an O2-
saturated 0.1 M KOH solution at an amplitude of 5 mV with a rotation rate of 1600 rpm for ORR;
(b) Nyquist curves of Co@NCNTs/HN and Ni@NCNTs/HN in an O2-saturated 1.0 M KOH solution
at an amplitude of 5 mV with a rotation rate of 1600 rpm for OER; Figure S6: Electron-transfer
number n derived from K-L plots at different potentials. Figure S7: ORR polarization curves of
NiCo@NCNTs/HN (a) and Pt/C (b) before and after the continuous CV tests in the O2-saturated 0.1
M KOH at 1600 rpm; Figure S8: CV curves of RuO2 (a), NiCo@NCNTs/HN (b), Ni@NCNTs/HN
(c), NiCo/HN-700 (d), and Co@NCNTs/HN (e) in 0.1 M KOH electrolyte at different scan rates;
Figure S9: In situ XRD patterns of NiCo@NCNTs/HN collected during OER; Figure S10: XRD (a) and
SEM (b) of the NiCo@NCNTs/HN sample after the chronopotentiometric test for 10 h; Figure S11:
Comparison of OER and ORR activities in this work with representative electrocatalysts in the
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