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Abstract: Optimization of equipment structure and process conditions is essential to obtain thin films
with the required properties, such as film thickness, trapped charge density, leakage current, and
memory characteristics, that ensure reliability of the corresponding device. In this study, we fabricated
metal–insulator–semiconductor (MIS) structure capacitors using HfO2 thin films separately deposited
by remote plasma (RP) atomic layer deposition (ALD) and direct-plasma (DP) ALD and determined
the optimal process temperature by measuring the leakage current and breakdown strength as
functions of process temperature. Additionally, we analyzed the effects of the plasma application
method on the charge trapping properties of HfO2 thin films and properties of the interface between
Si and HfO2. Subsequently, we synthesized charge-trapping memory (CTM) devices utilizing the
deposited thin films as charge-trapping layers (CTLs) and evaluated their memory properties. The
results indicated excellent memory window characteristics of the RP-HfO2 MIS capacitors compared
to those of the DP-HfO2 MIS capacitors. Moreover, the memory characteristics of the RP-HfO2

CTM devices were outstanding as compared to those of the DP-HfO2 CTM devices. In conclusion,
the methodology proposed herein can be useful for future implementations of multiple levels of
charge-storage nonvolatile memories or synaptic devices that require many states.

Keywords: HfO2; plasma-enhanced atomic layer deposition (PEALD); remote plasma; memory
window; trapped charge density; plasma damage

1. Introduction

Scaling of the silicon nitride-based charge-trapping layers (CTLs) used in NAND
flash memory devices is challenging due to the recent ultra nano-sized processing and
high integration of semiconductor devices [1–4]. With a decrease in the required film
thickness, the trapped charge density (Nt) of the CTL decreases, reducing the memory
window (∆VFB) margin that can distinguish the device on/off states at the same operat-
ing voltage and program/erase (P/E) time. Additionally, the increase in leakage current
owing to the decrease in film thickness degrades the memory retention characteristics,
thereby leading to problems in terms of device reliability. To address these issues, re-
searchers have been actively applying high-k materials, such as HfO2, Al2O3, TiOx, ZnO,
and ZrO2, to CTLs [5–10]. High-k-based oxides exhibit advantages, including small
equivalent oxide thicknesses (EOTs), large band offsets to Si, and high Nt values, over
conventional silicon nitride. Moreover, the films of these oxides are expected to achieve
the memory characteristics needed for device operation even at a thickness of a few
nanometers [11]. Charge trapping properties of high-k-based oxides have been improved
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by various methods such as noble metal doping [11–13], nanocrystallization [14–17], and
high-temperature heat treatment [18,19]; however, these methods have the disadvantage
of difficult application to actual mass productions. Furthermore, thin films with charge
trapping properties have been achieved by changing the deposition method. Recent stud-
ies have reported variations in the charge trapping properties of HfO2 thin films with
respect to the atomic layer deposition (ALD) temperature and reactant activation [8,20].

ALD is currently the dominant process for depositing thin films with thicknesses
of several nanometers. Based on the energy transfer method used for the activation of
the reactive gas, ALD is divided into thermal and plasma-enhanced (PE) ALD. Among
them, PEALD is mainly used at present due to its lower process temperature, higher film
density, faster deposition rate, and shorter one-cycle time [21]. PEALD is classified into
direct-plasma (DP) and remote plasma (RP) ALD. However, in the case of DPALD, where
the plasma is discharged in the process chamber to deliver energy to the reactive gas, ions
in the plasma can bombard the substrate or film surface, causing interfacial damage and
degrading film properties [22–24]. RPALD, in which the plasma discharge area is separated
from the process chamber and only activated radicals are injected into the process chamber,
can solve this plasma damage problem. Nevertheless, the lifetimes of plasma-activated
radicals are not long; thus, optimization of equipment structure and process conditions is
essential to obtain thin films with the required properties [25,26].

In this study, we fabricated metal–insulator–semiconductor (MIS) structure capacitors
using HfO2 thin films separately deposited by RPALD and DPALD and determined the
optimal process temperature by measuring the leakage current and breakdown strength as
functions of process temperature. Furthermore, the ∆VFB characteristics of each capacitor
were investigated using capacitance–voltage (C–V) measurements. The effects of the
plasma application method on the charge trapping performances of the HfO2 thin films
and properties of the interface between Si and HfO2 were analyzed via electrical analyses.
Additionally, the formation of an interfacial layer between Si and HfO2 thin films was
verified by cross-sectional observation of the device. Finally, we synthesized charge-
trapping memory (CTM) devices using the developed interfacial layer as a tunneling oxide
(TO), RP- or DP-HfO2 thin films as CTLs, and DP-Al2O3 thin film as a blocking oxide (BO).
Then, we examined the applicability of the devices to actual memory devices via electrical
measurements of the corresponding properties such as ∆VFB, P/E speed, memory retention
time, and cycling endurance.

2. Materials and Methods
2.1. Fabrication of Devices

A four-inch p-type (100) Si wafer with a specific resistivity of 1–30 Ω·cm was washed
by SC-1 cleaning and then immersed in buffered oxide etchant for approximately 30 s to
remove the native oxide on the Si wafer. HfO2 and Al2O3 thin films were deposited on
the resulting wafer using a PEALD system (iOV-dx2, iSAC Research, Daejeon, Republic of
Korea). DP was generated by a built-in plasma generator in the PEALD equipment. RP was
produced by an RP system (En2ra-RPS, EN2CORE Technology, Daejeon, Republic of Korea)
in a separate room from the primary chamber, and the radicals were transferred to the main
chamber via a shower head based on pressure difference. Tetrakis(ethylmethylamino)-
hafnium (TEMAH, iChems, Hwaseong, Republic of Korea) and trimethylaluminum (TMA,
iChems, Hwaseong, Republic of Korea) were employed as precursors for HfO2 and Al2O3
thin-film deposition, respectively, and O2 was used as the reactive gas. Subsequently, Pt
electrodes with diameters of 200 µm and thicknesses of 50 nm were formed by the lift-off
method. Pt deposition was conducted for 3 min at room temperature using a direct current
magnetron sputter. Finally, post metallization annealing was performed for 20 min under a
N2 atmosphere at 400 ◦C using rapid thermal annealing equipment.
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2.2. Evaluation of Device Characteristics

Thicknesses of the deposited HfO2 and Al2O3 films were measured using an ellipsome-
ter (Elli-SE, Ellipso Technology, Suwon, Republic of Korea). Cross-sectional morphologies
and crystallinities of the films were investigated via field-emission transmission elec-
tron microscopy (TEM) (FE-TEM, Tecnai G2 F20, FEI, Hillsboro, OR, USA). Furthermore,
compositions and chemical bonding states of the HfO2 films were analyzed by X-ray photo-
electron spectroscopy (XPS, AXIS-NOVA, Manchester, UK). Electrical characteristics, such
as current–voltage (I–V) characteristics, ∆VFB, and P/E speed, of the device were evaluated
using a semiconductor characterization system (4200A-SCS, Keithley, Cleveland, OH, USA)
connected to a micro probe station (APX-6B, WIT Co., Suwon, Republic of Korea).

3. Results and Discussion

Under the optimized process conditions reported in our previous studies [27,28], MIS
capacitors were fabricated by depositing DP- and RP-HfO2 thin films on p-Si wafers and
developing Pt electrodes. HfO2 thin films were deposited by splitting the temperature in
the range of 200–260 ◦C, which was considered the process window, and the thickness of
the deposited film was determined to be approximately 10 nm by the ellipsometer. Figure 1
shows the results of the I–V measurements conducted to measure the leakage currents
and breakdown strength characteristics of the MIS capacitors based on DP- and RP-HfO2
thin films. The current was calculated with an increase in the negative bias. The leakage
current and breakdown strength of the DP-HfO2 MIS capacitor slightly varied with an
increase in the process temperature (Figure 1a). This suggested that the ions bombarded on
the thin film by DP further participated in the reaction of the precursor with the reactive
gas, mitigating the impact of process temperature on the leakage current and breakdown
strength. In contrast, the leakage current and breakdown voltage characteristics of the
RP-HfO2 MIS capacitor changed with an increase in the process temperature (Figure 1b).
The leakage current was lowest, and the breakdown voltage characteristics were highest
at 220 ◦C. This was expected to be owing to the strong influence of thermal energy on
the reaction of the radicals activated by RP with the sources adsorbed on the film during
film formation. Therefore, determining the optimum process temperature for RPALD of
thin films by electrical characterization, for example, I–V measurement, is necessary. The
breakdown field of the HfO2 MIS capacitor based on the DP-HfO2 film (DP-HfO2 MIS
capacitor) deposited at 220 ◦C was approximately 3 MV/cm lower than that of the capacitor
based on the RP-HfO2 film deposited at 220 ◦C (RP-HfO2 MIS capacitor). In the DP method,
deposition and plasma discharge occur in the same space, which can damage the substrate
and thin film via ion bombardment [22–24]. In the current DP process, HfO2 thin films were
deposited on the Si wafer surface, which was subjected to ion bombardment. Consequently,
the formation of unstable interfacial layers and defects within the films was anticipated,
leading to a reduction in the breakdown fields of the corresponding capacitors.

Prior to the analysis of the interfacial damage and internal defects in thin films,
capacitance–voltage (C–V) measurements of DP- and RP-HfO2 MIS capacitors were per-
formed in a forward–backward dual sweeping fashion at room temperature and 1 MHz.
C–V curves of both DP- and RP-HfO2 MIS capacitors demonstrated counterclockwise
hystereses (Figure 2a,b, respectively). Counterclockwise hysteresis is a typical hysteresis
loop caused by charge trapping. When an electron is trapped at a charge trapping site in an
oxide film under a positive bias, the flat band voltage (VFB) shifts in the positive direction,
which is called the program state. However, when a hole is trapped under a negative
bias and an electron is detrapped, VFB shifts in the negative direction, which is called the
erase state. ∆VFB is defined as the difference between the VFB values in the program and
erase states and increases with an increase in the sweeping voltage. For the DP-HfO2 MIS
capacitor, ∆VFB slightly increased with an increase in the sweeping voltage. In contrast, for
the RP-HfO2 MIS capacitor, ∆VFB significantly increased with an increase in the sweeping
voltage, reaching 2.22 V at a sweeping voltage of ±5 V. This indicated excellent charge trap-
ping efficiency and high potential of the RP-HfO2 thin film for application as a CTL [7,29].
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For the application of oxide thin films as CTLs, the Nt in these films must be high. Nt values
per unit areas of DP- and RP-HfO2 thin films can be calculated at the point where the ∆VFB
is saturated with an increase in the sweeping voltage using the following equation [18,30]:

Nt =
Cox∆VFB

qA
(1)

where Cox is the capacitance in the accumulation region, q is the charge of the electron,
and A is the effective area of the Pt top electrode. Using Equation (1), we calculated the
Nt values of the DP- and RP-HfO2 thin films at the sweeping voltage of ±5 V; the Nt values
were 4.48 × 1012 and 1.25 × 1013 cm−2, respectively. The Nt of the RP-HfO2 thin film were
more than twice that of the DP-HfO2 thin film. However, these values were evaluated
before the saturation of the ∆VFB values of the capacitors by the sweeping voltage. The
maximum Nt for each film could not be calculated because the film broke down before
the saturation of ∆VFB. The center of hysteresis for the DP-HfO2 film is shifted towards
negative voltage, whereas the center of hysteresis for the RP film is shifted towards positive
voltage. This opposing shift can be attributed to their distinct distributions of oxide traps,
which will be elaborated upon in the results of constant current stress measurements
as below.
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Charges are trapped in high-k oxide thin films by the intrinsic defects, such as O
vacancies and interstitial O atoms, in the films [31]. Therefore, we indirectly compared
the Nt values of the DP- and RP-HfO2 thin films by measuring the ratio of the number of
lattice bonds to the number of non-lattice bonds in the film via XPS. XPS depth profiling
demonstrated that the C 1s atomic percentages in both DP- and RP-HfO2 thin films were
negligible, except for those on the surfaces (Figure 3a,b, respectively). The presence of C in
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the thin films is attributed to the incomplete reaction of the reactive gas with the precursor
containing C. Thus, both films were deposited under optimal process conditions. Hf 4f and
O 1s narrow scans were conducted on the bulk portion of each thin film. Each peak was
analyzed using CasaXPS (Version 2.3.25PR1.0). At first, the Shirley-type background was
removed from all spectra, and the peaks were fitted using a Gaussian–Lorentzian function.
For the deconvolution of the Hf 4f peaks in Figure 3c,d, the ratio of Hf 4f5/2 peaks to
Hf 4f7/2 peaks was fixed at 3:4 [32]. In this case, the spin-orbit splitting was 1.66 eV. We
also discovered that the sub-oxide Hfx+ peak was represented by the sum of two doublets,
and the metallic Hf0 peak was in agreement with the data reported in the literature, that is,
it appeared at a distance of approximately 3.4–4.1 eV from the Hf4+ doublet [33,34]. After
peak deconvolution, the percentages of non-stoichiometric HfO2−x in DP- and RP-HfO2
thin films were 25.00 and 17.85%, respectively. The O 1s peak can be deconvolved into a
lattice peak owing to O bonding in the full crystal and a non-lattice peak due to bonding
of O vacancies, O-H, and C-O (Figure 3e,f). In this case, the non-lattice peak emerges at
a distance of approximately 1.4–1.6 eV from the lattice oxide peak [35]. The percentages
of the non-lattice peaks for DP- and RP-HfO2 thin films were evaluated to be 10.85 and
7.33%, respectively. Higher amounts of non-stoichiometric hafnia and non-lattice oxygen
can indicate more intrinsic defects. According to the results of Hf 4f and O 1s XPS, we can
infer that the number of intrinsic defects in the DP-HfO2 thin film is higher than that in the
RP-HfO2 thin film. This is also consistent with the tendencies of lower breakdown voltages
for DP-HfO2 thin films (Figure 1). Nevertheless, this result does not explain why the
RP-HfO2 thin film, which has fewer defects that can act as charge-trapping sites, exhibits
better ∆VFB characteristics than those of the DP-HfO2 thin film.
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To determine the reason for the outstanding charge trapping properties of RP-HfO2
thin films, constant current stress (CCS) measurements were performed. CCS analysis
is a widely applied method to estimate the charge trap centroid (Xcent) of bilayer gate
stacks [29,36,37]. These measurements allowed us to identify the majority trap sites in the
HfO2 thin film. The capacitor was exposed to a constant current density of ±10 µA/cm2,
and the shift in voltage was measured in the I-V characteristic as the stress time increased.



Nanomaterials 2023, 13, 1785 6 of 13

The voltage shift was caused by the trapping of charges in the oxide layer. Xcent of the
capacitor was evaluated via the CCS measurement using the following equation:

Xcent =
tstack[

1 −
(
∆V−

g /∆V+
g
)] (2)

where Xcent is the distance from the gate electrode, tstack is the thickness of the oxide layer,
and ∆Vg

+ and ∆Vg
− are the positive and negative voltage shifts after the application of a

CCS, respectively. TEM images of the cross-sections of DP- and RP-HfO2 MIS capacitors
indicated that the thickness of the deposited HfO2 film was approximately 9 nm and an
interfacial layer with a thickness of approximately 2 nm formed by an interfacial reaction
existed between HfO2 and Si. Previous studies have demonstrated that the interfacial layers
generated during the deposition of HfO2 thin films on Si wafers by DP and RPALD were
Hf- and Si-rich Hf-silicates, respectively. This difference between the compositions of DP-
and RP-HfO2 thin films is because of the interaction between Hf and SiO2−x induced by
energetic reactants in the plasma states [38,39]. Assuming that the dielectric constant of the
deposited HfO2 film is comparable to the bulk value, the relative permittivity of the 2 nm
thick Hf-silicate interfacial layer is estimated to be approximately 4.5. Figure 4a depicts the
CCS measurement results for DP- and RP-HfO2 MIS capacitors. The Xcent values calculated
using Equation (2) for DP- and RP-HfO2 MIS capacitors were 6.97 and 5.21 nm, respectively.
Figure 4b shows the structure and calculated Xcent values of the HfO2 MIS capacitor along
with the electronic band diagram. When a positive bias is applied to the gate electrode,
the charge-trapping state in the HfO2 thin film is filled by the tunneling of the electrons
accumulated on the Si surface. Considering the capacitance of HfO2 and HfSiOx films,
approximately 55% of the gate voltage can be allocated for electron tunneling. The presence
of the majority of trap sites close to the interface in the DP-HfO2 film as compared to the
case of the RP-HfO2 film implies that interface charge traps are prevalent as compared
to bulk charge traps in DP-HfO2 films [29]. This result is believed to be caused by the
formation of unstable interface defects and charge-trapping sites in the interfacial layer by
plasma damage. This reduces the charge trapping efficiencies and ∆VFB values of DP-HfO2
MIS capacitors, and a larger voltage needs to be applied to the gate to compensate for these
reductions [40,41].
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After fabricating the CTM devices utilizing the DP- and RP-HfO2 thin films as CTLs
(DP- and RP-HfO2 CTM devices, respectively), we evaluated the memory characteristics of
these devices via electrical measurements. The Hf-silicate interfacial layer produced via the
interfacial reaction between HfO2 and Si wafer was used as the TO to examine the effects
of the plasma damage caused by DPALD on the formation of interface defects and the
resulting changes in memory characteristics in the same way as for previous MIS capacitors.
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As the BO, 9 nm thick Al2O3 thin films were separately deposited by PEALD on the DP-
and RP-HfO2 CTLs. After depositing a single Al2O3 thin film on a Si wafer, the deposited
Al2O3 film was subjected to C–V measurements before its application to the CTM device to
confirm the absence of charge trapping at the applied voltage. The deposited Al2O3 thin
film exhibited an amorphous state, with its relative permittivity calculated from the C–V
measurement approximately at 8.5. Figure 5a,b shows the cross-sectional TEM images of
the DP- and RP-HfO2 CTM devices, respectively. In both devices, a Hf-silicate interfacial
layer of approximately 2 nm was formed by a chemical reaction and atom mixing between
HfO2 and Si. This interfacial layer is undesirable to achieve a small EOT for metal-oxide-
silicon transistor applications in high-k dielectrics. However, it is suitable for application
as a TO in CTM devices to suppress the detrapping of the trapped electrons or holes [5,42].
Both the DP- and RP- HfO2 thin films were mainly in an amorphous state.
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Figure 6 depicts the C–V measurement results at high (1 MHz) and low frequencies
(1 kHz) for the DP- and RP-HfO2 CTM devices. Initially, the interface defects between HfO2
and Si extend the voltage direction of the curve. This indicates that an additional charge
or voltage must be applied to fill the traps at the interface to achieve the same surface
potential or band bending as that without the interface defects. The defects can be present
at both interfaces of the HfSiOx layer. Among them, the defects at the HfSiOx/Si interface
have a more pronounced impact on the Si channel. Moreover, interface defects create a gap
between the low- and high-frequency curves at the point Vmin just before the occurrence
of strong inversion [43,44]. This difference is proportional to the interface defect density
Dit; Dit can be quantified by the high- and low-frequency capacitance method suggested by
Castagné and Vapaille [45]:

Dit =
Cox

q2

(
Cl f /Cox

1 − Cl f /Cox
−

Ch f /Cox

1 − Ch f /Cox

)
(3)

where Clf and Chf are the measured capacitances at low and high frequencies, respectively.
The midgap Dit values of the DP- and RP-HfO2 CTM devices evaluated using Equation (3)
are 5.53 × 1012 and 1.18 × 1012 cm−2·eV−1, respectively. The Dit value of the DP-HfO2
CTM device is approximately five times that of the RP-HfO2 CTM device, which is in
appropriate agreement with the abovementioned I–V characteristics and CCS measurement
results of the DP- and RP-HfO2 thin films.
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Figure 6. C–V measurement results of (a) DP- and (b) RP-HfO2 CTM devices at high (1 MHz) and
low frequencies (1 kHz).

Figure 7 shows a comparison of the variations of C–V characteristics and ∆VFB values
of the DP- and RP-HfO2 CTM devices with respect to the sweeping voltage. The RP-
HfO2 CTM device demonstrated wide ∆VFB values of 3.25 and 12.66 V at the operating
voltages of ±6 and ±12 V, respectively. In contrast, the DP-HfO2 CTM device exhibited the
∆VFB values of 0.49 and 7.48 V at ±6 and ±12 V, respectively. ∆VFB of the RP-HfO2 CTM
device demonstrated a high linearity in proportion to increasing sweeping voltage. This
suggests that multiple levels of charge-storage nonvolatile memory can be implemented in
this device [18].
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Table 1 presents a comparison of the memory characteristics of previously reported
high-k oxide-based CTM devices with those of the RP-HfO2 CTM devices fabricated herein.
The CTM device synthesized in this study exhibits the highest ∆VFB characteristics even
at lower annealing temperatures and lower drive voltages as compared to those of the
previously reported devices.

Table 1. Comparison among the memory characteristics of high-k-based CTM devices with different
structures and compositions.

TO/CTL/BO Thickness (nm) Annealing
Temp. (◦C)

Operating
Voltage (V)

Memory
Window (V) Charge Loss (%) References

HfSiOX/RP-HfO2/Al2O3 2/9/9 400 ±12 12.66 34.32 This work
SiO2/HfO2/Al2O3 3/10/10 1000 ±15 7.4 31 [18]

SiO2/HfO2 3/55/0 800 ±10 5.1 - [5]
Al2O3/HfAlO/Al2O3 2/9/12 600 ±12 6.29 79 [46]
Al2O3/HfAlO/Al2O3 2/10/15 450 ±14 7.45 23.64 [47]

SiO2/ZrO2/Al2O3 5/10/15 700 ±11 7.1 16 [9]
SiO2/HfAlO/Al2O3 3/9/8 800 ±16 11.5 14.9 [48]

SiO2/Al-rich Al2O3/Al2O3 3.4/5/6 400 ±12 8.2 - [6]
(Al2O3/SiO2)/Ge/Al2O3 (4/3)/15/10 700 −1~14 5.41 11 (ON), 9.8 (OFF) [16]
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Applicabilities of the CTM devices to practical nonvolatile memory devices were
determined via electrical measurements. The CTM capacitor structure demonstrates the
ability to evaluate the electrical characteristics of the gate structure via a simple process
and has a short fabrication time. Nevertheless, contrary to the transistor structure, which
has a source and drain to facilitate the supply of minority carriers to the gate channel,
the capacitor structure provides minority carriers to the channel via thermal generation.
Therefore, the formation of the inversion layer is very slow. Consequently, the production
and charging of minority carriers during programmable gate voltage application in an n-
channel capacitor does not match the speed of the gate bias pulse. This can lead to inaccurate
measurements of the P/E speed associated with the minority carriers [49]. To address this
issue, we irradiated the device with light during the P/E speed measurement. The light
irradiation source was a blue spectrum light-emitting diode lamp. During light irradiation,
electron–hole pairs were generated around the capacitor, and the photogenerated electrons
diffused into the channel region at the base of the gate structure, rapidly forming an
inversion layer in response to the gate voltage pulse. Herein, the time required for the
formation of the inversion layer follows the relaxation time τ of the dielectric constant
model proposed by Debye. Using this model, an expression for the capacitance Cinv in the
inversion region as a function of frequency can be obtained as follows [50]:

Cinv(ω) = Ch f +
Cqe − Ch f

1 + (ωτ)2 (4)

where ω is the angular frequency and Cqe and Chf are the capacitances at quasi-static and
high frequencies, respectively. Figure 8a shows the relaxation time as a function of light
irradiance (Pa) for the DP- and RP-HfO2 CTM devices. For both devices, τ decreased with
an increase in Pa and saturated at approximately 0.5 µs. For accurate P/E measurements,
Pa should be sufficiently large such that τ would reach the saturation value. Accordingly,
the P/E speeds of the DP- and RP-HfO2 CTM devices were measured at Pa = 30 mW/cm2.
The magnitude of the applied gate voltage was 10 V. Figure 8b depicts the variations
of the program speeds of the DP- and RP-HfO2 CTM devices with and without light
irradiation. The program speeds of the CTM devices evaluated under light irradiation
were considerably higher than those measured in the dark room. Figure 8c shows the P/E
speeds of the DP- and RP-HfO2 CTM devices under light irradiation. The RP-HfO2 CTM
device demonstrated ∆VFB values of 2.01 and 5.07 V at the voltage application times of
10−4 and 10−2 s, respectively, due to its excellent charge trapping properties.
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(b) program speed with and without light irradiation, and (c) program/erase (P/E) rates for DP-HfO2

and RP-HfO2 CTM devices.

To evaluate the reliability characteristics of the fabricated DP and RP-HfO2 CTM
devices, we measured the VFB shift as a function of memory retention time and P/E cycle.
∆VFB values of the synthesized CTM devices decreased with an increase in the memory
retention time (Figure 9a). The voltage application conditions were set as follows: program
pulse: 10 V for 1 s and erase pulse: −10 V for 1 s. The logarithmic of memory retention
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time is depicted in Figure 9a. The logarithmic behavior of the memory retention time was
estimated, and the VFB shift for up to 10 years was extrapolated. At room temperature, the
∆VFB of the DP-HfO2 CTM device decreased by 46.89% over 10 years of memory retention
as compared to that for the RP-HfO2 CTM device (34.32%). A larger charge loss occurred in
the case of the DP-HfO2 CTM device due to interface defects between the Hf-silicate used
as the TO and Si substrate and charge-trapping sites inside the TO, which easily detrapped
the charges trapped inside the CTL [40,51]. However, even the RP-HfO2 CTM device
demonstrated lower memory retention characteristics than those of previously reported
high-k oxide-based CTM devices (Table 1). This is possibly caused by the relatively thin TO
and BO as compared to those used in other devices. Further optimization of the structure is
expected to enable the fabrication of devices with appropriate ∆VFB and memory retention
characteristics. Figure 9b shows the VFB shift as a function of the number of P/E cycles
for the DP- and RP-HfO2 CTM devices. P/E cycling was performed using a pulse train of
±10 V and 10 ms. For both DP- and RP-HfO2 CTM devices, the size of the ∆VFB slightly
decreased during 104 cycles. Nevertheless, for the DP-HfO2 CTM device, an overall shift of
VFB in the negative direction was observed. Based on previous studies, this is believed to
be owing to the generation of a fixed oxide charge inside the unstable Hf-silicate interfacial
layer of the DP-HfO2 CTM device by the P/E cycling, overall decreasing the VFB [52]. This
shift in VFB can cause a cycling-dependent decrease in the reliability of the device during
real-world memory operation and should be maximally suppressed [53].
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4. Conclusions

Herein, we determined the optimal process temperature for the DPALD and RPALD of
HfO2 thin films and analyzed the influences of the plasma application method on the charge
trapping properties of HfO2 thin films and properties of the interface between Si and HfO2
via various techniques. Subsequently, we fabricated CTM devices utilizing the deposited
thin films as CTLs and evaluated their memory properties. The DP-HfO2 thin films
exhibited relatively constant leakage current and breakdown voltage over the temperature
range within the process window. However, the RP-HfO2 thin films demonstrated the
lowest leakage current and highest breakdown voltage at an optimal process temperature
within the process window. Thereafter, MIS capacitors were synthesized using the HfO2
thin films deposited at an optimal temperature of 220 ◦C, and C–V measurements were
conducted. The results indicated higher ∆VFB characteristics of the RP-HfO2 MIS capacitors
than those of the DP-HfO2 MIS capacitors. XPS depth profiling and CCS measurements
were used to investigate the difference between the charge trapping properties of DP- and
RP-HfO2 thin films; we discovered that the DP-HfO2 films contained many defects in the
bulk and at the interface due to in-film damage caused by DP and an unstable interfacial
reaction of HfO2 with Si. The memory characteristics of the RP-HfO2 CTM devices were
excellent. Particularly, the ∆VFB of these devices was considerably large (±12.66 V) at
an operating voltage of 12 V, suggesting that the RP-HfO2 CTM device may be suitable
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for future implementations of multiple levels of charge-storage nonvolatile memories.
Moreover, the RP-HfO2 thin film shows promise for synaptic devices that demonstrate
linear potentiation characteristics, provided an appropriate input pulse signal is utilized,
owing to its high charge trapping density and low interface trap charge.
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