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Abstract: We theoretically proposed a topological multichannel add-drop filter (ADF) and studied its
unique transmission properties. The multichannel ADF was composed of two one-way gyromagnetic
photonic crystal (GPC) waveguides, a middle ordinary waveguide, and two square resonators
sandwiched between them, which can be regarded as two paralleling four-port nonreciprocal filters.
The two square resonators were applied with opposite external magnetic fields (EMFs) to support
one-way states propagating clockwise and counterclockwise, respectively. On the basis of the fact
that the resonant frequencies can be tuned by the EMFs applied to the square resonators, when
the intensities of EMFs were the same, the multichannel ADF behaved as a power splitter with a
50/50 division ratio and high transmittance; otherwise, it functioned as a demultiplexer to separate
two different frequencies efficiently. Such a multichannel ADF not only possesses excellent filtering
performance but also has strong robustness against various defects due to its topological protection
property. Moreover, each output port can be switched dynamically, and each transmission channel can
operate independently with little crosstalk. Our results have the potential for developing topological
photonic devices in wavelength division multiplexing systems.
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1. Introduction

Topological photonics has attracted extensive attention in recent years due to its
unique properties, such as one-way transmission, back-scattering suppression, robust
light propagation, and the immunity to various fabrication imperfections [1–9]. Photonic
Chern topological insulators, as a new state of quantum matter, are known for interesting
topological effects in condensed matter physics and potential applications in photonic
integrated circuits [10–15]. One striking example of topological insulators is one-way
topological edge state (TES) at microwave frequencies. By applying an external magnetic
field (EMF) to a two-dimensional (2D) gyromagnetic photonic crystal (GPC), TESs are
induced as a result of the time-reversal symmetry breaking in analogy with the integer
quantum Hall effect [16–19]. TESs exist at the boundary separating two distinct topological
invariants that are characterized by different Chern numbers, which allow photons to
propagate in one direction and are highly robust against defects, disorders, and sharp
corners. Thus, TESs provide ideal platforms for realizing one-way propagation with a
topological protection property, which is a challenge in ordinary waveguides because the
backscattering seriously reduces the transmission efficiency and hinders large-scale optical
integration.

To date, many fascinating topological phenomena of TESs are explored theoretically
and experimentally, such as the cladding-free guiding of topologically protected edge
states [20–22], the robustness of boundary propagation in amorphous GPC lattices [23,24],
and the steering of multiple edge states along domain walls with large Chern num-
bers [25,26]. Thus, in TESs, a variety of high-performance photonic devices have been
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constructed on the basis of interesting topological effects and enormous potential in light
manipulation, such as topological splitters [27,28], dispersionless slow light states [29–32],
topological circulator [33,34], and topological ADFs [35,36]. Among the aforementioned
devices, topological add-drop filters (ADFs) are an important part of the GPC application
fields and have triggered considerable attention due to their excellent characteristics, such
as low loss, low nonlinear effects, and high transmission coefficients [37–41]. Compared to
ADFs constructed by ordinary dielectric PCs, topological ADFs not only have high quality
factor and simpler structure without moving specific scatters or introducing heterostruc-
tures but they are also robust against fabrication defects [42–44]. So far, various types of
topological ADFs have been presented and designed, including point-defect microcavities,
ring resonators, and multi-cavity-coupled cascade array. Due to its effective frequency se-
lectivity, flexible modulation, and large field enhancement, photonic crystal ring resonator
(PCRR) is more popular than other mechanisms. By utilizing the resonant coupling nature
between one-way waveguides and the ring resonator, topological PCRR-based ADFs allow
optical waves at resonant frequencies in the bus waveguide to transfer to the dropping
waveguide via the ring resonator efficiently. With the increasing trend towards wave-
length division multiplexing (WDM) systems in the field of large-scale optical integration,
topological PCRR-based ADFs have been extensively studied.

Recently, using topological ADFs, a nonreciprocal multichannel power divider for
beam splitting or a demultiplexer for frequency separating have been proposed [45–47].
Contextually, a natural question appears: Can the circuits and devices based on topological
ADFs both realize the function of splitting power flows and separate multiple frequencies?
Moreover, can the whole system be flexibly manipulated by adjusting the EMF instead of
changing the parameters or dimensions of the structure? These two questions are the main
target we need to solve.

In this work, we propose a topological four-port ADF based on the GPC heterostruc-
ture, consisting of two one-way waveguides and a square PCRR, and study the influence
of the EMF intensity applied to the PCRR on the transmission performance of the ADF.
Furthermore, by paralleling two such square PCRRs, we further designed a topological
multichannel ADF, which can both realize the functions of power division and frequency
separation by adjusting the intensities of EMFs applied to the two PCRRs. Not only can
this device possess excellent filtering performance, but also it has good tolerance to various
defects, such as metal obstacles and the perturbation of the structural parameters. Our
work may provide a deeper understand of WDM systems and will bring about a new way
for designing topological photonic devices.

2. Materials and Methods

Figure 1a shows a schematic diagram of the proposed four-port ADF. It is composed
of two GPC waveguides and a nested square PCRR sandwiched between them. The device
consisted of four ports: port 1 (the input terminal), port 2 (the through terminal), port 3
(the backward dropping terminal), and port 4 (the forward dropping terminal). The upper
and lower waveguides named as bus waveguide and dropping waveguide were placed
symmetrically with respect to the PCRR, and they were constructed by two GPCs (orange
rectangle) and a dielectric PC (gray rectangle).

For the topological four-port ADF studied here, we utilized coupled mode theory
to investigate the interaction between GPC waveguide and the PCRR. The main idea of
coupled mode theory is to analyze the coupling characteristics between the ring resonator
and waveguide by solving the time domain differential equation of the input and output
amplitude field components [48]. A 2D point source (yellow star) was placed near the input
port 1; when ignoring the dispersion loss of waveguides and internal loss of the PCRR, the
coupled mode equation in the time domain can be expressed as [49]
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da
dt

=

(
j2π f0 −

2
τ

)
a +

√
2
τ

ejθS1 (1)

where a is the normalized amplitude of the resonant cavity, f 0 is the resonant frequency, 1/τ
is the decay rate coupled into each waveguide, Si (i = 1, 2, 3, 4) is the normalized amplitude
of input (output) wave, and θ represents the phase of the coupling coefficient from input
wave to the cavity mode.
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Figure 1. The topological four-port ADF: (a) schematic diagram; (b) illustration in a 2D PC structure.
The orange and gray rectangles represent the GPC and the dielectric PC respectively, and the yellow
arrow indicates the transport direction of TES. The blue and red circles denote Al2O3 rods and YIG
rods, respectively.

When the EMFs applied to the upper and lower GPC arrays are in the −z direction,
both the bus and the dropping waveguide are nonreciprocal. According to the conservation
of energy and one-way transmission principle, the amplitude of output waves should
satisfy the following relationships:

S2 = S1 −
√

2
τ

e−jθa S3 = −
√

2
τ

e−jθa S4 = 0 (2)

The transmittance of the three output ports is

T2 =

∣∣∣∣S2

S1

∣∣∣∣2 =

∣∣∣∣∣1− 2
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2
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∣∣∣∣∣
2

(3)
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(4)

T4 =

∣∣∣∣S4

S1

∣∣∣∣2 = 0 (5)

As can be seen from the above formulas, T4 = 0 due to one-way TES, T2 = 0 and
T3 = 1 at the resonant frequency f 0, meaning that the maximum transmission efficiency is
achieved, and the phase difference meets θ = 2nπ (n is an integer) at resonance. Thus, when
we select the appropriate position and size of the PCRR to make the phase difference equal
to θ = 2nπ, constructive interference of light waves occurs to realize 100% coupling output.
It should be noted that if the propagation direction in the dropping waveguide is reversed,
the above equations are still valid, but the subscripts ‘3’ and ‘4’ need to be exchanged. In
this case, port 4 achieves a 100% throughout, while there is no output at port 3.

The concrete PC structure implementing the aforementioned topological four-port
ADF is drawn in Figure 1b. Here, the dielectric PC (in blue) and the GPC (in red) used in
the simulation were constructed by alumina (Al2O3) rods and yttrium–iron–garnet (YIG)
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rods, respectively. In order to satisfy constructive interference of EM waves for efficient
coupling, the coupling distances between the PCRR and two waveguides were set to be
three rows of Al2O3 rods, and the square PCRR was formed by a 3 × 3 YIG rods. Both the
Al2O3 PC and the GPC were immersed in air and arranged in a square lattice with the same
lattice constant, i.e., a = 3.87 cm. Their radii were r1 = 0.13a and r2 = 0.15a, respectively,
and their relative permittivities were ε1 = 10 and ε2 = 15, respectively. The widths of two
topological waveguides were the same, being wd1 = a. The permeability of YIG rods was 1
in the absence of EMF. When a dc magnetic field H0 was applied along the out-of-plane (+z)
direction, a strong gyromagnetic anisotropy was induced in YIG rods with the permeability
becoming a tensor as follows:

µ̂ =

 µr jµk 0
−jµk µr 0

0 0 1

 (6)

where µr = 1 + ωm(ω0 + jαω)/[(ω0 + jαω)2 − ω2] and µk = ωωm[(ω0 + jαω)2 − ω2],
with ω0 = 2πγH0 being the resonance frequency, γ = 2.8 MHz/Oe being the gyromagnetic
ratio, and ωm = 2πγM0 being the characteristic circular frequency, where M0 = 1780 G is
the saturation magnetization. The applied magnetic field was set to H0 = 1600 G, and the
damping coefficient was ignored (α = 0). Additionally, all numerical simulations were
conducted by using the Finite Element Method, and only the E polarization (where the
electric field E is parallel to the z-axis direction) was considered.

It is known that the Chern number is defined as the integral of the Berry flux over the
entire Brillouin zone, and calculation of the Chern number requires discretization of the
first Brillouin zone in the wave-vector K space [50,51]. The Chern number of the nth band
is defined as

Cn =
1

2πi

∫
BZ

(
∂Ann

y

∂kx
− ∂Ann

x
∂ky

)
d2k (7)

Here, the wave-vector space is varying over the first Brillouin zone, and the Berry con-
nection is given by Ann(k) = i〈Enk|∇k|Enk〉, where Enk denotes the normalized eigenstate
for the nth band at k point and is the periodic part of the electric-field Bloch function. The
Chern number can be utilized to predict the existence of TESs and determine their number
in a 2D GPC structure. A general way to calculate the gap Chern number (Cgap = ∑Cn) is to
sum the Chern numbers of all bands below the bandgap; trivial and topologically nontrivial
have zero (Cgap = 0) and nonzero (Cgap 6= 0) Chern numbers’ bandgaps, respectively [52,53].

To numerically solve the gap Chern number of GPC and Al2O3 PC, we calculated
the band structures by employing the Finite Element Method. The results showed that
the gap Chern number of Al2O3 PC was 0, and thus the bandgap was trivial. Conversely,
the gap Chern number in the second bandgap (between the second and third bands) of
YIG PC was +1(or −1) when the EMF was −H0(or +H0), which revealed that this bandgap
was topologically nontrivial [54,55]. On the other hand, because the bandgap of Al2O3
PC overlapped the second bandgap of YIG PC, the number of topological one-way edge
states in the waveguide composed of these two PCs was equal to the difference of gap
Chern numbers, and the propagation direction of topological one-way edge states was
determined by the sign of gap Chern numbers. It can be easily calculated that the Chern
difference ∆Cgap of the domain wall between Al2O3 PC (Cgap = 0) and YIG PC (Cgap = ±1)
was +1 or −1, indicating that this waveguide supported only a one-way TES that was
topologically protected.

Next, we calculated the projected band structure of the transverse magnetic (TM)
mode with +H0 applied to YIG PC by adopting a supercell consisting of Al2O3 and YIG
rods in one column, as depicted in Figure 2a. It can be clearly seen that a red dispersion
curve appeared in the bandgap ranging from 3.35 to 3.65 GHz and connected the upper
and lower bands. Moreover, the slope of the red curve was always positive, meaning the
waveguide supported a topological one-way edge state propagating rightwards, which
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was in good agreement with the theoretical prediction by the Chern number. It was noted
that propagation direction of EM waves in the one-way waveguide was dependent on the
EMF applied to the GPC. Once the sign of the EMF was reversed, the propagation was
switched to the opposite direction accordingly. In addition, we also analyzed the projected
band diagram of the ordinary square Al2O3 PC waveguide. In order to match the bandgap
of one-way waveguide shown in Figure 2a, the width of the Al2O3 PC waveguide was
set to wd2 = 1.5a. One can see from Figure 2b that a blue dispersion curve appeared in the
bandgap ranging from 3.2 to 3.9 GHz that was symmetrical at about kx = 0, indicating that
the ordinary PC waveguide supported bidirectional transmission and was not topologically
protected because of the trivial bandgap.
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3. Results
3.1. Topological Four-Port ADF

Firstly, we studied the transmission characteristics of the topological four-port ADF.
We numerically simulated the transmission behaviors of the topological one-way filter. The
scattering boundary conditions were placed around the structure to avoid the reflection,
a 2D point source (blue star) was placed near the input port 1, and boundary probes
were placed at three other output ports to measure their power outputs. The normalized
transmission spectra of three output ports were calculated and are shown in Figure 3a. One
can see that there were two transmission peaks for port 3 at frequencies 3.441 GHz and
3.562 GHz, with transmittances as high as 98.6% and 99.5%, respectively, and insertion
losses about 0.223 dB and 0.206 dB, respectively. Meanwhile, the transmittance of port 2
decreased to zero at these two frequencies. Moreover, the transmittance of port 4 in the
whole frequency range remained at zero, meaning that there was no energy output. The
appearance of these two resonant modes also verified the multimode characteristics of the
square PCRR.

In order to better observe the filtering effect of the ADF, we further simulated the
electric field distributions for incident EM waves at three different frequencies, as shown
in Figure 3b–d. It was clearly seen that EM waves oscillating at the resonant frequencies
of 3.441 GHz and 3.562 GHz satisfied the resonant coupling condition, and they were
able to enter the ring resonator and be coupled to the dropping waveguide efficiently;
conversely, EM waves at other frequencies (such as 3.585 GHz) did not meet the resonant
coupling condition, and thus they were only able to travel to port 2 instead of entering
the PCRR. Therefore, the resonant coupling phenomenon enabled EM waves at resonant
frequencies to transmit from the bus waveguide to the dropping waveguide with almost no
energy loss, achieving efficient filtering function. It is worth noting that when we reversed
the direction of EMF applied to the GPC next to the dropping waveguide, EM waves at
resonant frequencies would exit from port 4 instead of port 3, and thus the output port
could be switched dynamically.
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Our simulation results showed that the lattice constant a and the radius of YIG rods r2
had effects on the resonant frequencies and the bandgap range, respectively. Specifically,
when the lattice constant decreased (or increased), the resonant frequencies were blue-
shifted (or red-shifted), and when the radius of YIG rods decreased (or increases), the
bandgap range of the one-way waveguide was blue-shifted (or red-shifted). To ensure
good performance of the topological ADF, the permissible error in the lattice constant and
the size of the YIG rods should be less than ±0.01 cm and ±0.01a, respectively. Otherwise,
the resonant frequencies will deviate, and the common bandgaps of two PCs will become
smaller or even disappear, which not only reduces the operating frequency range of the
topological ADF but also significantly affects the transmission efficiency.

We further discuss the influence of the EMF intensity H0 applied to the square PCRR
on the transmission performance of the ADF. When the EMF intensity decreased to
H0 = 1500 G (keeping other structural parameters the same as those in Figure 1), the
corresponding transmission spectra of three output ports were as shown in Figure 4a.
There were two transmission peaks at 3.394 GHz and 3.513 GHz, with transmittances of
97.2% and 98.6%, respectively. When the EMF intensity increased to H0 = 1700 G, the
corresponding transmission spectra were as shown in Figure 4b. There were also two
transmission peaks at 3.480 GHz and 3.617 GHz, with transmittances of 97.4% and 99.8%,
respectively.

Combined with the analysis in Figure 3a, when the EMF intensity H0 increased from
1500 to 1700 G, the ADF always had two resonant modes and maintained high transmit-
tance. Additionally, the overall transmission spectra moved towards higher frequency, and
the corresponding resonant frequencies were blue-shifted. Therefore, without changing
structure parameters, we were able to adjust the resonant frequencies by only changing the
EMF intensity to achieve a tunable ADF.
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3.2. Topological Multichannel ADF

On the basis of the nonreciprocity, topological protection, and flexible configurations
of the four-port ADF, we further designed a topological multichannel ADF by paralleling
two square PCRRs to realize more unique functions. These two PCRRs share a middle
ordinary PC waveguide and have the same dimensions and parameters. Such multichannel
ADF can work as a power splitter or a demultiplexer under different conditions.

Figure 5a,b depicts the schematic diagrams of power splitting mode and frequency
separating mode for the topological multichannel ADF, respectively. As shown in Figure 5a,
when the intensities of EMFs for the two square PCRRs were the same (i.e., −H0 and +H0),
the corresponding resonant modes of both PCRRs were also the same. In this case, when
EM wave oscillating at the resonant frequency with power of P is incident from the middle
ordinary PC waveguide, it will reach the upper and lower output waveguides with the
same transmission efficiency via the coupling effect of these two PCRRs. The energy will
be split into two equal parts (i.e., P/2) to the corresponding output ports, thus realizing
the function of power division. Differently, as shown in Figure 5b, when the intensities
of EMFs for the two square PCRRs were different (i.e., −H1 and +H2), the corresponding
resonant modes of these two PCRRs were different from each. In this case, when two EM
waves oscillating at two different resonant frequencies (i.e., f 1 and f 2) are incident from the
middle ordinary waveguide simultaneously, they will reach different output waveguides
through the coupling effect of these two PCRRs, thus realizing the function of frequency
separation. Therefore, without changing structural parameters of the multichannel ADF,
the functions of power division and frequency separation can be achieved by flexibly
adjusting the intensities of EMFs applied to the two square PCRRs.

The concrete PC structure implementing the topological multichannel ADF is illus-
trated in Figure 5c. The multichannel filter had six ports. The middle main channel was
an Al2O3 PC waveguide with a width of wd2 = 1.5a, and the upper and lower output
channels were one-way waveguides with the same width of wd1 = 1a. Two square PCRRs
with the same structural parameters were symmetrically distributed on both sides of the
main channel. Moreover, we also introduced a point-defect microcavity between the main
channel and each PCRR to further improve transmission efficiency. These two microcavities
were introduced by replacing two symmetrical Al2O3 rods with two YIG rods that had
the same structural parameters and EMFs as those of the adjacent PCRRs. The resonator
system composed of the point-defect microcavity and the PCRR not only had a strong
electric field localization ability but also can further filter out redundant frequencies.

As for the practical experiment, it required YIG and Al2O3 cylinders, magnets, a
microwave network analyzer, metal plates, and a computer. The key issue was the way in
which to apply the EMFs to different parts of the YIG cylinders of the structure. Two metal
plates were set in the upper and lower parts of the designed structure, and they were also
carved out with hole arrays (corresponding to the YIG cylinders) to place magnet arrays,
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but they were not completely hollowed out and left a certain thickness in order to forbid
the EM waves to transport in the z direction. A pair of magnet arrays were pressed into
the holes in metal plates above and below the YIG structure, respectively, and the positive
and negative magnetic fields were produced by the different combinations of the magnetic
poles, respectively. This new magnetization scheme not only can accurately magnetize each
YIG cylinder but also can freely adjust the direction and intensity of the EMFs.
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3.2.1. Power Splitting Mode

When the two resonator systems were applied with the same intensity of EMF (i.e.,
H0 = 1600 G), due to the strong coupling and filtering effect between point-defect micro-
cavity and the PCRR, they had the same resonant modes. A 2D point source was placed
near the input port 1, and boundary probes were added to the other five output ports to
calculate their power outputs. The transmission spectra of ports 2–6 from 3.38 to 3.48 GHz
are shown in Figure 6a. Obviously, ports 3 and 5 had two same transmission peaks, and
they had a transmittance of 50% only at 3.4235 GHz; conversely, the transmittance of port 2
decreased to zero, and the transmittances of ports 4 and 6 were always zero. Thus, due to
the resonant coupling effect of two identical resonator systems, EM wave at the resonant
frequency in the main channel was equally divided into two parts, then coupled into two
one-way waveguides and finally output from the corresponding ports.

The electric field distribution in a multichannel filter at 3.4235 GHz is shown in
Figure 6b. The EM wave incident from port 1 was split into two equal parts because of
the coupling effect of the two resonant systems, and finally they exited from ports 3 and
5, respectively. In order to obtain the power division ratio, we calculated the normalized
electric field amplitude distributions along the vertical white dotted line. As seen in
Figure 6c, the power values for ports 3 and 5 were about 50% of that in the main channel,
which was in good agreement with the transmission spectra. As a result, the function
of power division was realized. Furthermore, when the directions of the EMFs applied
to the upper and lower GPCs were reversed simultaneously, the direction of the TESs
supported in two one-way waveguides was reversed accordingly, as plotted in Figure 6d.
In this case, ports 4 and 6 became output ports with the same energy distribution and high
transmittance, which allowed us to dynamically switch the output ports of the multichannel
filter. Therefore, when two resonator systems were applied with the same EMF intensity,
the multichannel ADF was equivalent to a power splitter.



Nanomaterials 2023, 13, 1711 9 of 13
Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 6. (a) The transmission spectrum when the EMF intensity of two resonator systems was 1600 
G. (b) The electric field distribution at the resonant frequency. (c) The normalized electric field am-
plitude distributions along the vertical white dotted line. (d) The electric field distribution at the 
resonant frequency when the upper and lower EMFs were reversed. The blue stars represent the 
point sources. 

The electric field distribution in a multichannel filter at 3.4235 GHz is shown in Figure 
6b. The EM wave incident from port 1 was split into two equal parts because of the cou-
pling effect of the two resonant systems, and finally they exited from ports 3 and 5, re-
spectively. In order to obtain the power division ratio, we calculated the normalized elec-
tric field amplitude distributions along the vertical white dotted line. As seen in Figure 6c, 
the power values for ports 3 and 5 were about 50% of that in the main channel, which was 
in good agreement with the transmission spectra. As a result, the function of power divi-
sion was realized. Furthermore, when the directions of the EMFs applied to the upper and 
lower GPCs were reversed simultaneously, the direction of the TESs supported in two 
one-way waveguides was reversed accordingly, as plotted in Figure 6d. In this case, ports 
4 and 6 became output ports with the same energy distribution and high transmittance, 
which allowed us to dynamically switch the output ports of the multichannel filter. There-
fore, when two resonator systems were applied with the same EMF intensity, the multi-
channel ADF was equivalent to a power splitter. 

3.2.2. Frequency Separating Mode 
When the two resonator systems are applied with different magnetic field intensities 

(i.e., H1 = 1500 G and H2 = 1520 G respectively), they will have different resonant modes. 
EM waves with frequencies ranging from 3.36 to 3.44 GHz are incident from port 1, and 
the transmission spectra of the five output ports 2–5 are shown in Figure 7a. One can find 
that the transmission peaks of ports 3 and 5 were obtained at 3.3965 GHz and 3.4085 GHz 
with transmittances of 99.6% and 99.5%, respectively. Conversely, the transmittance of 
port 2 decreased to zero at both resonant frequencies, and the transmittances of ports 4 
and 6 were always zero. Therefore, by changing the intensities of EMFs for the two reso-
nator systems, these two resonator systems will have their own resonant modes to effec-
tively separate two different resonant frequencies. 

Figure 6. (a) The transmission spectrum when the EMF intensity of two resonator systems was
1600 G. (b) The electric field distribution at the resonant frequency. (c) The normalized electric field
amplitude distributions along the vertical white dotted line. (d) The electric field distribution at the
resonant frequency when the upper and lower EMFs were reversed. The blue stars represent the
point sources.

3.2.2. Frequency Separating Mode

When the two resonator systems are applied with different magnetic field intensities
(i.e., H1 = 1500 G and H2 = 1520 G respectively), they will have different resonant modes.
EM waves with frequencies ranging from 3.36 to 3.44 GHz are incident from port 1, and
the transmission spectra of the five output ports 2–5 are shown in Figure 7a. One can find
that the transmission peaks of ports 3 and 5 were obtained at 3.3965 GHz and 3.4085 GHz
with transmittances of 99.6% and 99.5%, respectively. Conversely, the transmittance of port
2 decreased to zero at both resonant frequencies, and the transmittances of ports 4 and 6
were always zero. Therefore, by changing the intensities of EMFs for the two resonator
systems, these two resonator systems will have their own resonant modes to effectively
separate two different resonant frequencies.

The electric field distributions at 3.3965 and 3.4085 GHz are illustrated in Figure 7b,d,
respectively. It is clearly seen that EM waves at different resonant frequencies were ef-
ficiently coupled to the corresponding PCRR, and then transferred to different output
channels with little energy loss. Specifically, EM wave at 3.3965 GHz can only couple with
the upper resonator and then travel to port 3, while that at 3.4085 GHz can only couple
with the lower resonator and then travel to port 5, which is in good agreement with the
results of the transmission spectra. To observe the energy distributions in the three chan-
nels for these two resonant modes, we calculated the normalized electric field amplitude
distributions along the vertical white dotted lines, as shown in Figure 7c. For these two
resonant modes, almost all incident EM wave energy in the main channel was delivered to
the corresponding output channel, indicating that each channel worked independently and
did not interfere with each other during the transmission process, ensuring high channel
isolation for the multichannel ADF. Therefore, when two resonator systems are applied
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with different intensities of EMFs, the topological multichannel filter is equivalent to a
demultiplexer.
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3.2.3. Robustness Analysis

Finally, we investigated the influence of two different kinds of defects on the multi-
channel ADF to verify its robustness. One is to insert two perfect electrical conductors
(PECs) with a size of 0.1a × 2a (represented by white rectangles) into the output waveg-
uides, while the other is to shift up a YIG rod in the PCRR by 0.15a (circled in cyan squares).
All other structural parameters are the same as those in Figure 5.

For the power splitting mode, we studied the transmission behaviors of the multichan-
nel ADF when different defects were introduced. We found that the transmission spectra
were the same as those without any defects shown in Figure 6a. The corresponding electric
field distributions at the resonant frequency 3.4235 GHz are illustrated in Figure 8a,b,
which were almost unchanged before and after these defects. For the frequency separating
mode, we studied the transmission behaviors of the multichannel ADF when both PECs
and disorder defects were introduced simultaneously for the two resonant frequencies of
3.3965 GHz and 3.4085 GHz. It was found that the transmission spectra were also the same
as those shown in Figure 7a, and there still were two transmittance peaks for ports 3 and 5
at 3.3965 GHz and 3.4085 GHz, respectively. The corresponding electric field distributions
are illustrated in Figure 8c,d, which were almost the same as those shown in Figure 7b,d.
In both working modes, due to the existence of TESs, EM waves can circumvent these
defects instead of being blocked and continue to propagate unidirectionally. Although
these defects cause a phase retardation, the transmission efficiency remains unaffected.
These results imply that the multichannel ADF has strong robustness, which provides good
fabrication tolerance and high performance for the ADF.
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4. Conclusions

In conclusion, we theoretically proposed and numerically investigated a new con-
figuration of multichannel ADF by coupling the topological PCRR with one-way GPC
waveguides. We first proposed a topological four-port ADF composed of two one-way
waveguides and a square PCRR, finding that the resonant frequencies can be controlled by
adjusting the EMF intensity without changing structure parameters. Next, we further de-
signed a topological multichannel ADF by paralleling two square PCRRs, able to realize the
functions of power division and frequency separation by adjusting the intensities of EMFs
in the resonator systems. Not only can this device possess excellent filtering performance,
it also can tolerate various defects such as the PECs and disorders due to the topological
protection property. Moreover, each output port can be switched dynamically, and each
transmission channel can operate independently with little crosstalk. These results have
the potential for developing topological photonic devices with higher performance in
WDM systems.
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