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Abstract: Gene therapy is an innovative approach in the field of regenerative medicine. This therapy
entails the transfer of genetic material into a patient’s cells to treat diseases. In particular, gene
therapy for neurological diseases has recently achieved significant progress, with numerous studies
investigating the use of adeno-associated viruses for the targeted delivery of therapeutic genetic frag-
ments. This approach has potential applications for treating incurable diseases, including paralysis
and motor impairment caused by spinal cord injury and Parkinson’s disease, and it is characterized
by dopaminergic neuron degeneration. Recently, several studies have explored the potential of direct
lineage reprogramming (DLR) for treating incurable diseases, and highlighted the advantages of DLR
over conventional stem cell therapy. However, application of DLR technology in clinical practice is
hindered by its low efficiency compared with cell therapy using stem cell differentiation. To overcome
this limitation, researchers have explored various strategies such as the efficiency of DLR. In this
study, we focused on innovative strategies, including the use of a nanoporous particle-based gene
delivery system to improve the reprogramming efficiency of DLR-induced neurons. We believe
that discussing these approaches can facilitate the development of more effective gene therapies for
neurological disorders.

Keywords: cell fate conversion; direct lineage reprogramming; spinal cord injury; gene therapy;
nanoporous particle-based gene delivery

1. Introduction

Cell fate conversion technology originated with the generation of induced pluripotent
stem cells (iPSCs) via viral transduction of specific transcription factors, namely, octamer-
binding transcription factor 4, SRY-Box transcription factor 2, KLF transcription factor 4,
and MYC proto-oncogene, bHLH transcription factor (OSKM) [1]. This technology demon-
strated that a fully differentiated somatic cell could be reprogrammed into a completely
different cell type by introducing key transcriptional factors of starting cells. Based on this
principle, numerous studies have shown the feasibility of direct lineage reprogramming

Nanomaterials 2023, 13, 1680. https://doi.org/10.3390/nano13101680 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13101680
https://doi.org/10.3390/nano13101680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-0613-0108
https://doi.org/10.3390/nano13101680
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13101680?type=check_update&version=1


Nanomaterials 2023, 13, 1680 2 of 17

(DLR) from fibroblasts to various cell types, such as neurons, cardiomyocytes, chondrocytes,
and hepatocytes.

Specifically, for neuronal reprogramming, DLR technology can be used to repro-
gram fibroblasts into various neuronal types, including cholinergic motor, glutamatergic,
GABAergic, and dopaminergic neurons [2–6]. In 2010, it was revealed that the ectopic
expressions of achaete-scute homolog 1 (ASCL1), POU domain transcription factor (BRN2),
and myelin transcription factor 1-like (MYT1L) (ABM) could induce DLR of fibroblasts into
functional glutamatergic neurons, characterized by synaptic activity and the regulation
of Na+/K+ currents. In 2014, Wernig et al. showed that ASCL1 alone could induce DLR
of functional glutamatergic neurons, which demonstrated that ASCL1 is the key master
regulator that drives neuronal lineage development, with the assistance of two other factors.

Another example is the generation of induced dopaminergic neurons (iDNs). To
generate iDNs, it is crucial to cotransduce dopaminergic lineage transcriptional factors,
nuclear receptor 4A2 (NURR1), paired-like homeodomain 3 (PITX3), and LIM homeobox
transcription factor 1 alpha (LMX1A) with ASCL1 (ANPL) [7]. By generating iDNs using
DLR technology, researchers have provided evidence that Parkinson’s disease (PD) could be
treated. PD is a progressive neurodegenerative disease that mainly affects motor function.
It is characterized by the degeneration of dopaminergic neurons in the substantia nigra-to-
striatum circuit, which leads to neurotransmitter imbalances and Parkinsonian symptoms.
The cardinal symptoms of this disease include bradykinesia (slowness of movement), rigid-
ity (stiffness and increased resistance to passive limb movements), tremor (involuntary and
rhythmic shaking), and postural instability (impaired balance and coordination). In research
settings, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine
hydrobromide (6-OHDA)-induced PD mouse models exhibited a lack of dopaminergic
neurons and generated small amounts of dopamine, thus, displaying a Parkinsonian phe-
notype. The conversion of astrocytes into dopaminergic neurons in the striatum region led
to the production of tyrosine hydroxylase (TH)-positive cells from originally glial fibrillary
acidic protein (GFAP)-positive cells, which reduced Parkinsonian symptoms.

Spinal cord injury (SCI) is another major neurological disorder that can cause move-
ment disabilities. SCI is a devastating condition that can lead to partial or complete loss
of motor and sensory functions below the level of an injury. The pathophysiology of the
disease involves complex interplay among secondary injury mechanisms, including oxida-
tive stress, inflammation, cellular toxicity, and demyelination. Despite extensive research
efforts, there is currently no effective therapy for SCI. Gene therapy is a promising approach
as it allows targeted delivery of therapeutic genes to an injured spinal cord.

Motor neurons are specialized neurons that control the contraction of skeletal muscles,
which permits movement and locomotion. In SCI, the motor neurons that innervate the
muscles below the level of injury are often damaged or destroyed, which leads to paralysis
and motor malfunction. Recently, the cotransduction of transcriptional factors, ASCL1,
BRN2, MYT1L, and LIM homeobox 3 (Lhx3) has been reported to induce DLR of motor
neurons from fibroblasts [8].

DLR exhibits several advantages over iPSC redifferentiation techniques because it does
not pass through a pluripotent stage, which enables the production of stem cell-free cell
sources (e.g., astrocytes and fibroblasts) [5]. Furthermore, DLR can address safety issues,
such as teratoma formation, and it is more cost-effective for clinical applications. The
OSKM-induced iPSCs possess a risk of differentiating into other types of pluripotent stem
cells because the early phase of intermediate iPSCs is unstable. Moreover, the regeneration
of iPSCs is less cost effective than DLR because multiple steps are involved in creating iPSCs;
thus, dealing with iPSC reprogramming, differentiation, and transplantation to the target
organs is difficult. However, in vivo DLR could be more successful for direct differentiation
at precise locations in several organs. In vivo DLR is accomplished by manipulating the
expression of certain genes in the targeted cells, leading to their conversion into a different
cell type without the need for cell transplantation or external manipulation (Figure 1a).
In vivo DLR could be used to treat a wide range of diseases by converting the affected cells
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into healthy cells [9,10]. Guo et al. showed that targeted expression of NeuroD1 to astrocyte
induced glutamatergic and GABAergic neurons after brain injury or in Alzheimer’s disease
mouse brain [11]. Similarly, NeuroD1-induced reprogramming of astrocytes has been
applied for the treatment of a stroke model [12]. In the adult mouse striatum, Cervo
et al. showed that combinatorial expression of NeuroD1, Ascl1, Lmx1a, and miR-218
induced dopamine neurons in PD mouse model [13]. These studies provide evidence that
in vivo DLR may hold potential for treating neurodegenerative disease by replacing lost or
damaged cells with newly converted cells (Figure 1b).
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Figure 1. Direct conversion of astrocytes into induced neurons: (a) Depiction of in vivo astrocyte
reprogramming into various neuron types, i.e., GABAergic, dopaminergic, or glutamatergic, achieved
through the targeted expression of specific transcription factors; (b) Illustration showcasing the
potential applications of in vivo direct neuronal reprogramming.

Consequently, more than 100 studies since 2010 have investigated the feasibility of DLR
technology for gene therapy. Nonetheless, the low efficiency and quality of reprogrammed
cells remain to be significant obstacles to DLR-based gene therapy [14–17]. Therefore,
various studies have attempted to enhance DLR efficiency by treating additional genetic
factors, miRNAs, small molecules, or biocompatible materials [5,18–23].

The use of nanoparticles as a delivery system in the biomedical field is another promis-
ing subject in drug delivery. Improving the stability, bioavailability, and pharmacokinetics
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of therapeutic agents is possible by encapsulating them within nanoparticles. Moreover,
side effects, such as cytotoxicity, inflammation, and reactive oxygen species (ROS) gen-
eration, can be reduced. Various types of nanoparticles, including liposomes, polymeric
organic nanoparticles, and inorganic nanoparticles, have been employed for targeted drug
delivery in cancer therapy. This method enables selective delivery of anticancer drugs to
tumor cells while minimizing damage to other tissues [24]. Furthermore, nanoparticles can
also be used for the delivery of cDNA, siRNA, and proteins. The use of nanoparticles in a
delivery system instead of a viral transduction system or combination of small molecules
offers several advantages, including enhanced safety, reduced immunogenicity, tunable
physicochemical properties, and the ability to encapsulate and protect genetic material,
such as DNA, RNA, and oligonucleotides. Additionally, nanoparticles facilitate targeted
delivery and controlled release of therapeutic genes, ultimately improving the therapeutic
efficacy and reducing off-target effects [25–27].

Nanoparticles can be employed in tissue engineering to construct biomimetic matrices.
They are called nanotopographical structure and it can mimic the native extracellular
matrix, thereby, providing a conducive environment for cell adhesion, proliferation, and
reprogramming [5,28]. For example, a recent study by Yoo et al. demonstrated that an
artificially engineered nanotopographical matrix could promote the direct conversion of
dopaminergic neurons by modulating the focal adhesion kinase (FAK) molecule in the
cell reprogramming process. This modulation increased H3K4me3 levels in the transcrip-
tion start site of dopaminergic neuronal marker genes, such as tyrosine hydroxylase (Th),
dopamine transporter (Dat), and microtubule-associated protein 2 (Map2) [23]. Further-
more, nanoparticles can also serve as catalytic activators for cellular processes, which
facilitates cell differentiation or reprogramming. For instance, hydroxyapatite nanopar-
ticles have been employed for the development of bone graft substitutes that promote
osteointegration and bone regeneration. Additionally, solid AuNPs with electromagnetic
properties have been shown to stimulate the cell reprogramming process by regulating
histone acetylation H4K12ac [5].

Reducing oxidative stress is critical for the DLR process because the conversion of
cell fate requires significant energy undertaking. A recent study by Lee et al. showed
that the use of gold nanoporous rods (AuNpRs) to alleviate cell stress had a considerable
impact on the efficacy of induced neuron direct conversion. The researchers observed that
AuNpRs functioned as ROS scavengers in DLR, thus, lowering internal cellular conversion
stress. Their discovery demonstrated that the use of AuNpRs enhanced the efficiency
of DLR-induced dopaminergic (iDA) neurons originating from brain astrocytes, thereby,
ameliorating the Parkinsonian phenotype in animal models [29].

Neurological disorders are one of the major interests in the field of gene therapy, with
many researchers suggesting the possibility of treating neurological diseases, such as PD
and SCI, using DLR technology. The use of master regulators that positively control cellular
stress or activate the neuronal actuator (related genes) by opening the related chromatin can
serve as a novel therapeutic approach for treating neurological diseases using DLR technol-
ogy [29,30]. Another way to accelerate DLR is to apply modified nanoparticles. The use of
nanotechnology in the biomedical engineering field is emerging as a novel therapeutic ap-
proach for treating neurological diseases, with over 10 studies having described how some
nanosized gold or graphene nanostructures can facilitate the DLR process [5,14,23,31–36].

Nanotechnology has brought significant advancements in the biomedical engineering
field and has revolutionized the treatment of various diseases. Various nanotechnology
approaches have been implemented in this field including nanocarriers, which have pro-
vided numerous experimental and clinical benefits. One of the experimental advantages is
their ability to facilitate targeted drug delivery. Nanocarriers such as gold nanoparticles
and nanorods can transport growth factors or drugs to specific regions in the brain [37–39].
Delivery of targeted growth factors or drugs allows for higher doses of drugs to reach a
target area while minimizing toxicity to healthy neurons, improving cargo efficacy, and
reducing side effects. In addition, nanotechnology methods have also facilitated the de-
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velopment of regenerative medicine, which aims to repair or replace damaged tissues and
organs. Scaffold nanomaterials can mimic the extracellular matrix and provide neuronal
structural support for neuronal growth, allowing for the regeneration of neuronal networks
in the brain [40,41]. Taken together, nanotechnology methods have significant experimental
and clinical importance in the biomedical engineering field.

2. Generation of Induced Neurons via Cell Fate Conversion
2.1. Acceleration of the Direct Neuronal Reprogramming Process

Cell fate conversion techniques hold substantial promise within the realm of gene
therapy for neurological diseases, and therefore, have garnered immense interest among
researchers in the field. Consequently, numerous approaches aimed at expediting the
process of cell fate conversion have been investigated [5,31,42,43]. Of particular note, cell
DLR represents a cutting-edge technology within the field of regenerative medicine. A pio-
neering study discovered that the direct conversion of induced neurons could be achieved
by transducing key transcriptional factors. The ectopic expression of ASCL1, BRN2, and
MYT1L (ABM) induced cortical neuronal reprogramming; ASCL1, NURR1, PITX3, and
LMX1A (ANPL) induced dopaminergic neuronal reprogramming; and ASCL1, BRN2,
MYT1L, and Lhx3 produced motor neurons’ action potential, forming the neuromuscular
junction [2,3,44]. Several studies have described various methodologies for promoting neu-
ronal DLR. Table 1 presents an overview of the different types of DLR enhancers, including
small molecules, such as CHIR99021, a GSK3 inhibitor; LDN193189, a BMP type 1 receptor
ALK2/3 inhibitor; A83-01, a TGF-β type 1 receptor ALK4/5/7 inhibitor; and ascorbic acid.
RNA interference (RNAi) using miR-124 and miR-9/9 and biocompatible materials such as
AuNpRs, nanotopographical substrates, and graphene nanosheets, have also been shown
to improve the efficiency of DLR [5,19,23,31,45,46]. Recent evidence suggests that inor-
ganic materials can regulate cellular mechanisms by modulating epigenetic modifications.
Graphene, a single-atom-thick sheet of carbon atoms with a two-dimensional honeycomb
structure, possesses unique physical, chemical, and mechanical properties. This materials
has been shown to significantly activate H3K4me3 by inducing mesenchymal-to-epithelial
transition [28]. Additionally, nanogrooved substrates have been reported to upregulate
H3K4me3 and decrease H3K9me3 and H3K27me3 levels, thereby, activating FAK and
promoting dopaminergic neuronal fate [23]. Furthermore, the in vivo injection of electro-
magnetized AuNPs has been documented to significantly activate H4K12 acetylation in
histones, which resulted in the generation of iDNs in a mouse model of PD [5].

Table 1. Table showing the various type of DLR accelerators.

Species Starting Cells Target Cells Materials Efficiency Ref.

Ms/Hu Fibroblasts Neurons Small molecules (CHIR, LDN, AA) ~35% [22]

Ms/Hu Fibroblasts Neurons miRNA ~40% [4]

Ms/hu Fibroblasts Dopaminergic
neurons

Electromagnetized
gold nanoparticles ~55% [5]

Ms Fibroblasts Dopaminergic
neurons

Electromagnetized
graphene nanosheet ~20% [31]

Ms/Hu Fibroblasts Dopaminergic
neurons

Elongated nanoporous
gold nanorod ~40% [29]

Hu Fibroblasts Neurons Polymer-functionalized Nanodot ~40% [46]

The use of an appropriate DNA carrier for reprogramming transcriptional factors is
necessary for applying DLR technology in the field of gene therapy. Currently, there is
significant interest among researchers in using viral vectors for gene therapy, owing to
their ability to effectively deliver the necessary genetic material to the target cells. Globally,
lentivirus, retrovirus, adenovirus, and adeno-associated virus (AAV) are commonly used
viral vectors for ex vivo cell therapy and in vivo gene therapy [47–50]. There are still some
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concerns surrounding the use of AAV vectors. One of the concerns is an AAV-induced
autoimmune response, which can decrease the effectiveness of the treatment or cause
adverse reactions in AAV-treated patients [51]. Additionally, AAV vectors have a limitation
since they carry cargoes that are dependent on the size or complexity of the gene [52].

Nonetheless, AAV is a promising candidate for in vivo gene therapy because of its
unique features and key advantages over other viral vectors. AAV is known for its nonge-
nomic integration and low toxicity, which significantly alleviate the risk of immunogenicity,
mutagenesis, and genotoxicity associated with other viral vectors. For example, systemi-
cally administered recombinant AAV used for cancer therapy has shown that rAAVV2/5
has no genotoxicity in nonhuman primate and human livers [53]. In research on the AAV5-
cohPBGD vector used in cancer therapy, its intravenous administration had no side effects
or integration of immunogenicity and genotoxicity in primate tissues, such as the liver,
spleen, and adrenal gland [54]. As a result, AAV has gained widespread attention and is
being increasingly used in clinical studies [55,56]. A review of gene therapy trials indicated
that 149 clinical trials employed pAAV plasmid vector, of which 94 have been concluded,
with 51 reaching the endpoint of efficacy [57]. Most ongoing gene therapy trials are phase
1/2 safety tests. Furthermore, clinical trials that employed AAV serotype 2 were primarily
conducted in the field of neurological disorders [58]. AAV2 has the greatest safety and
efficacy record in neurological research, as evidenced by over 40 completed clinical trials.
The ongoing and completed clinical trials based on AAV2 are listed in Table 2 [58–69].

Table 2. Table showing the AAV2-based ongoing and completed clinical trials.

No. Name Application Phase Status Identifier Ref.

1 AAV-SMN1 Muscular Atrophy,
Spinal Phase 4 Active, not recruiting, NCT05073133 [60]

2 AAV2-BDNF Alzheimer’s disease Phase 1 Recruiting NCT05040217 [61]

3 AAV2-GDNF Parkinson’s disease Phase 1 Recruiting NCT04167540 [62]

4 AAV2-
hRPE65v2

Inherited retinal
dystrophy - Active, not recruiting NCT03602820 [58,63]

5 AAV2/5-RPGR X-linked retinitis
pigmentosa Phase 1/2 Completed NCT03252847 [69]

6 rAAV2.REP1 Choroideremia Phase 2 Completed NCT02671539 [58]

7 AAV2-REP1 Choroideremia Phase 2 Completed NCT02553135 [64]

8 AAV2-hAQP1

Squamous cell head
and neck cancer

Radiation induced
xerostomia

Salivary hypofunction

Phase 1 Recruiting NCT02446249 [65]

9 AAV2-hCHM Choroideremia Phase 1/2 Active, not recruiting NCT02341807 [66]

10 rAAV2.REP1 Choroideremia Phase 1/2 Completed NCT02077361 [58]

11 AAV2-GDNF Parkinson’s disease Phase 1 Completed NCT01621581 [62]

12 AAV2-sFLT01 Macular degeneration Phase 1 Completed NCT01024998 [67]

13 AAV2-NTN Parkinson’s disease Phase 1 Completed NCT00252850 [68]

2.2. The Role of AuNpRs in the Direct Neuronal Reprogramming Process

The other potential clinical method for gene therapy in the future is to apply biocom-
patible nanomaterials, particularly AuNpRs. Several studies have shown that specifically
modified or functionalized nanoparticles exert crucial effects on biological processes, such
as cell survival and differentiation. AuNPs exhibit various therapeutic characteristics,
including biocompatibility, ROS scavenging effect, high surface reactivity, and plasmon
resonance [29,70–73]. Not all AuNPs have these effects; however, specifically modified
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AuNPs or AuNPs integrated with other materials have a drastic impact on the DLR process.
Recently, Yoo and Park et al. reported that AuNpRs played a key role as ROS scavengers,
ameliorating Parkinsonian phenotypes (i.e., slowness, muscle rigidity, and loss of move-
ment) [29]. They injected AuNpRs into the substantia nigra region in 6-OHDA-induced
Parkinsonian mouse model with ASCL1, NURR1, PITX3, and LMX1A, which are dopamin-
ergic neuron conversion transcriptional factors [29]. In the group treated with AuNpRs, a
higher number of TH-, DAT-, Forkhead Box A2 (FOXA2)-, and G protein-activated inward
rectifier potassium channel 2 (GIRK2)-positive neurons were observed using immunos-
taining (Figure 2a). To investigate the underlying mechanism, the researchers performed
RNA transcriptomic studies during the AuNpR treatment in the reprogramming process.
The results revealed an increase in antioxidation-related molecules, particularly ROS scav-
enging molecules (i.e., Gsta4, Mt3, Sod1, Sod2, and Sirt3), in the AuNpR-treated groups
(Figure 2b). Most gene ontology analyses were classified under the oxidation–reduction
processes and detoxification.

DA neurons are particularly susceptible to oxidative stress owing to several factors,
which contribute to their vulnerability in PD. First, excessive ROS can negatively affect the
enzymes involved in dopamine synthesis. TH is the rate-limiting enzyme in dopamine
biosynthesis, which converts tyrosine to levodopa. ROS can inhibit TH activity by causing
oxidative modification of the enzyme, such as the formation of disulfide bonds and carbonyl
groups. This modification results in reduced dopamine production. Second, dopaminergic
neurons store dopamine in vesicles via the action of vesicular monoamine transporter
(VMAT2). Excessive ROS can impair VMAT2 function, which decreases the vesicular stor-
age of dopamine. This process increases cytosolic dopamine levels, which, in turn, makes
more dopamine available for auto-oxidation and subsequent ROS generation, thus, leading
to a vicious cycle of oxidative stress and damage. Lastly, dopaminergic neurons themselves
are particularly susceptible to oxidative stress because of their high metabolic rate, low
antioxidant defenses, and inherent vulnerability associated with dopamine metabolism.

Owing to these reasons, regulating ROS levels during iDA reprogramming is crucial.
Yoo and Park et al. successfully demonstrated that antioxidants and ROS scavenging
molecules, mediated by AuNpRs, could enhance iDA conversion and alleviate PD pheno-
types in animal models [29].

In a study, AuNpRs were synthesized by codepositing Au and Au plating solution
at a voltage of −0.95 V to produce Au/Ag alloy nanomaterials. Subsequently, 30% nitric
acid was used to dealloy them. To create nanopores in Au nanorods, precise control of
the atomic composition of the Au/Ag alloy was achieved by varying the volume ratio
of the Au plating solution mixture. To confirm whether AuNpRs were well located in
the cell membrane, Yoo and Park attempted to modify the surface of AuNpRs. The
surface was modified by incorporating the fluorescence dye rhodamine B (Rho B). They
observed that the induced neuron-converted cells exhibited red fluorescence, which could
be attributed to the presence of the Rho B dye on AuNpRs. This result showed that the
cellular component and biological process could be manipulated by administrating specific
types of nanoparticles, such as AuNpRs. Hence, further investigations are being conducted
to explore the potential of various shapes and types of nanoparticles in the field of gene
therapy and regenerative medicine. Previously, Lee et al. revealed that nanoparticles could
be modified by galvanic replacement or the Kirkendall effect [74–76]. For example, gold
porous lens, gold porous ring, gold shell ring, or gold nanolens have been generated via
these reactions (Figure 3) [74–76]. In Supplementary Figure S1, a detailed description of
the method for producing AuNpRs (Supplementary Figure S1a,b) and nanotubes using a
three-electrode system is provided. By employing AuNpRs, they successfully generated
induced neurons.
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Figure 2. Efficient iDA neuron direct lineage reprogramming using AuNpRs: (a) Immunostaining
analysis of various types of nanomaterials (gold nanorod, gold nanotube, gold nanoporous-rod)
induced direct reprogrammed iDA neurons, immunofluorescent staining of induced neuron for
neural markers, TH and TUBB3 (Scale bar = 40 µm); Data from Lee et al. 2022, Acta Biomaterialia [29].
Copyright from {2022}Acta Biomaterialia. (b) the dot plots representing the relative expression
levels of control fibroblasts vs. APLN transduced fibroblasts (left) and APLN transduced fibrob-
last vs. APLN transduced fibroblast with AuNpR treating. Red dots, upregulated gene and blue
dots, downregulated gene; Data from Lee et al. 2022, Acta Biomaterialia [29]. Copyright from
{2022}Acta Biomaterialia.
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2.3. The Role of Biocompatible Materials as Delivery Cargo for DLR

Recently, several types of biocompatible materials have emerged as promising DNA
carriers for gene therapy [77]. Nanoparticles, such as liposomes, polymeric nanoparticles,
and inorganic nanoparticles, have been engineered to improve the efficiency, specificity, and
safety of gene delivery to target cells [78–80]. Versatile carriers can protect the encapsulated
DNA from degradation, enhance cellular uptake, and facilitate controlled release, and
thereby, increase the possibility of successful gene delivery [79]. In the context of gene
therapy for neurological diseases, the use of nanoparticles as DNA carriers can overcome the
challenges associated with crossing the blood–brain barrier, thus, enabling more effective
and targeted delivery of therapeutic genes [81]. By leveraging the advances in nanoparticle
technology, DLR strategies can be further optimized to provide innovative and safer
therapeutic options for patients with neurological disorders.
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Lee et al. found that AuNpRs could function as not only DLR accelerators but also
DLR transcriptional factor carriers (Figure 4a) [29]. They hypothesized that DLR transcrip-
tional factors could be loaded inside the pores of AuNpRs, thereby, accelerating the DLR
process without administrating viruses. They used several positively charged materials (i.e,
cysteamine, PEI, and Mutab) and observed that Mutab was the most stable and nontoxic
material with the highest transfection efficiency (Figure 4b,c) [82–84]. From these results,
they hypothesized that an efficient DLR process could be performed using a virus-free
system. This method can avoid host genome integration and virus immunogenicity issues
faced in viral transduction systems.
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2.4. Gene Therapy for SCI Using DLR Technology
2.4.1. SCI: The Incurable Neurological Disorder

Over a decade ago, SCI was considered to lead to a lifetime of medical complications
and reliance on a wheelchair, with extremely limited therapeutic options being avail-
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able [85]. Patients with SCI often received frustrating and hopeless care. Since then, many
researchers have been striving to identify the most effective treatment for patients with
SCI. However, so far, no therapeutic methodology has been developed. Fortunately, recent
advancements in neurosciences have provided new hope [86]. One promising avenue
of research is gene therapy using AAV, which offers the potential for regeneration and
functional restoration. Although therapeutic methodologies for SCI remain elusive, the
prospects for successful treatment continue to improve with each new discovery [57].

In a study, the SCI animal group showed the formation of a physical barrier, known
as “glial scar”, at the injury site owing to the recruitment of reactive astrocytes. This scar
impeded axonal regeneration and was characterized by the expression of molecules, such
as monoamine oxidase B (Figure 5) [87–90]. Furthermore, certain studies have indicated
that premature removal of glial scars can enlarge an injured area and decrease functional
recovery in animal models [90,91].
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2.4.2. The Potential Therapeutic Method for SCI: AAV Gene Therapy Using DLR Technology

The possibility of using DLR to treat SCI has been studied based on the idea that
reactive astrocytes that form glial scars at the injury site may hinder axonal regeneration
and lead to neuronal impairment. In vivo DLR targeting of reactive astrocytes to convert
them into motor neurons using appropriate transcriptional factors could provide a solution
for paralysis in patients with SCI. Yoo et al. successfully identified factors, such as biocom-
patible materials or specific genetic molecules, which could accelerate the DLR of motor
neurons from fibroblasts or astrocytes. Moreover, converting GFAP-positive glial scars to
synapsin-positive motor neurons could serve as a solution for the currently incurable SCI
(Figure 6).
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3. Therapeutic Insights and Conclusions

Recently, DLR has withnessed significant advancement. This method enables the
direct conversion of differentiated mature cells into various other cell types, without the
need for an intermediate pluripotent state. This approach was inspired by the critical
role played by transcription factors in the process of converting non-neuronal cells into
neurons. For example, the reprogramming of fibroblasts into glutamatergic neurons was
first accomplished by overexpressing three transcription factors, namely, ASCL1, BRN2
(also known as Pou3f2), and MYT1L. The expressions of these factors resulted in the
formation of neurons capable of expressing neuronal markers and establishing functional
synapses that exhibited action potential and spontaneous events [2]. Further studies
have been conducted to advance the application of DLR technology to generate human-
induced neurons. These studies have shown that the transcription factors ASCL1, BRN2,
MYT1L, and neuronal differentiation 1 (NEUROD1) could be used to successfully generate
human-induced neurons. The role of NEUROD1 in neuronal development is particularly
significant in this process [92]. The ability to directly convert non-neurogenic cells into
functional neurons is a significant development in the field of reprogramming. This has
been demonstrated by the successful generation of human-induced neurons capable of
forming synapses and displaying a functional profile. Moreover, studies have indicated that
non-neurogenic cells, such as astroglia, glial cells, and pericytes, could also be converted
into functional neurons using this approach [93,94]. Transcription factors have been shown
to be effective in converting astroglia into glutamatergic or GABAergic neurons. Additional
studies have explored these transcription factors further, leading to the production of
other subtypes of neurons, such as dopamine neurons, motor neurons, and intermediate
spiny neurons. For example, Caiazzo et al. successfully reprogrammed mouse and human
fibroblasts into dopaminergic neurons using ASCL1, NURR1, and LMX1A. These iDNs
were functionally similar to natural dopaminergic neurons [95]. Furthermore, recent
findings have suggested that the use of miRNA could be a promising approach for direct
reprogramming [19,20]. Similar to transcription factors, a combination of miRNAs can
be used to reprogram fibroblasts into functional neurons [19]. Additionally, the presence
of transcription factors can enhance the role of miRNAs in neural reprogramming. For
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instance, studies have demonstrated that miR-9/9*, miR-124, or miR-218 in combination
with other transcription factors, such as ISL1 and LHX3, could promote the reprogramming
of fibroblasts into motor neurons [19,96]. MirR-34b/c cotreated with ASCL1 and NURR1
enhanced the generation of iDNs by activating the Wnt1 signaling cascade [97]. A mixture
of miR-218 and other transcription factors, such as ASCL1, NEUROD1, and LMX1A,
promoted the conversion of astrocytes to dopaminergic neurons in vitro and in vivo [13].
Collectively, these findings highlight the crucial role of both transcription factors and
miRNAs in directing the fate of neuronal cells.

A recent study has suggested that the combination of miRNAs with transcription
factors contributes to regulating ROS in vivo and in vitro. miRNA-containing nanoparticles
are known to reduce ROS. According to a previous study, polyketal (PK3) nanoparticles that
contained a mixture of miR-106B, miR-148b, and miR-204 significantly improved cardiac
function after myocardial infarction by reducing ROS, which was enhanced by nicoti-
namide adenine dinucleotide phosphate oxidase [98]. In DLR research, AuNpRs containing
the viral transcription factors, ASCL1, NURR1, PITX3, and LMX1A have significantly
increased TH-positive neurons by scavenging ROS molecules, which led to the conversion
of dopaminergic neurons in PD mouse model. Given the possibility that nanoparticles
containing miRNA and transcription factors can reduce ROS in vivo, nanoparticle-based
ROS removal may play a vital role in DLR.

The human brain has limited regenerative capacity, indicating that it is unable to
naturally replace damaged neurons at the same rate as other organs. This limitation could
be attributed to the fact that the process of neurogenesis, or the growth and development of
new neurons, is more complex and tightly regulated in the brain than in other tissues of the
body [99]. Hence, alternative cell sources are required for treating central nervous system
diseases. In this regard, in vivo reprogramming has emerged as a promising therapeutic
approach. However, for successful reprogramming, ensuring precise targeting of specific
cell populations is crucial. AAV-mediated gene therapy is a viable method for regulating
the final cell type during in vivo reprogramming, which could lead to optimal therapeutic
outcomes for central nervous system diseases.

Meanwhile, the use of transcription factors in DLR has faced limitations in clinical
translation, due to the fact that obtaining sufficient cells is difficult owing to low efficiency
and lack of maturity. Therefore, the development of new strategies, such as the use of ROS
scavenging molecules and biocompatible nanomaterials, such as AuNpRs, have opened
new avenues in the field of gene therapy for incurable diseases. Further research in this area
could lead to breakthrough treatments that would improve the quality of life of patients
with central nervous system diseases.
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working electrode.
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