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Figure S1. (a) AFM scanned 2D image of GO and (b) AFM scanned 3D image of GO. 



 
Figure S2. Cyclic Voltammogram at different scan rate for (a) NMGO, (b) NGO, (c) MGO and (d) 
GO. 

 
Figure S3. Particle size distribution of (a) NiO and (b) MnO2. 



Figure S4. N2 adsorption isotherm at 77K of NMGO composite. 

Figure S5. (a) Cyclic voltammogram at slow scn rates (b) log i vs log v for  NMGO  composite,  
(c)  Pseudo capacitive and diffusion controlled charge storage contribution at different scan rates. 

Table S1. Comparison of electrochemical performance of asymmetric supercapacitors assembled 
with different nanostructures. 

Electrode ma-
terial Synthesis 

process 
Specific Ca-

pacitance 

Operating 
Potential 
Window 

(V) 

Current 
Density 

Capacitance 
retention 

Ref 

gra-
phene/MnO2 

Hydrother-
mal 

192 .2Fg-1 -0.2-0.7  0.5 Ag-1 
79 % after 5000

cycles 
[1] 

gra-
phene/MnO2 

Sonochemi-
cal 

292 Fg-1 -0.2-0.8 5 mV/s-1 91 % after 1000
cycles 

[2] 

rGO/MnO2 Reflux 234 Fg-1 0-0.8 0.1 Ag-1 
100 % after 

20000 cycles 
[3] 

RGO quantam 
dots 

hydrother-
mal 

312 Fg-1 -0.2-0.8 0.5 Ag-1 
91 % after 10000

cycles 
[4]



GO/Polypyrole 

In situ oxida-
tion 

polymeriza-
tion 

323 Fg-1 0-0.8 0.25 Ag-1 
78 % after 5000 

cycles [5] 

MnO2/rGO 
Hydrother-

mal 122 Fg-1 -0.1-0.7 0.2 Ag-1 
92 % after 5000 

cycles [6] 

GO/MnO2/NiO 
Hydrother-

mal 402 Fg-1 0-1 1 Ag-1 
93% after 14000 

cycles 
This 
work 
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