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Abstract: Herein, we reported the simulation study of lead (Pb)-free all-perovskite tandem solar
cells using SCAPS-1D. Tandem solar cells are comprised of two different cells which are known
as the top cell and the bottom cell. We simulated tandem solar cells using methyl ammonium
germanium iodide (MAGeI3) as the top subcell absorber layer due to its wide band gap of 1.9 eV.
Further, FA0.75MA0.25Sn0.25Ge0.5I3 = FAMASnGeI3 was used as the bottom subcell absorber layer due
to its narrow band gap of 1.4 eV. The tandem solar cells were simulated with MAGeI3 as the top cell
and FAMASnGeI3 as the bottom subcell using SCAPS-1D. Various electro-transport layers (ETLs) i.e.,
titanium dioxide, tin oxide, zinc oxide, tungsten trioxide, and zinc selenide, were used to examine the
impact of ETL on the efficiency of tandem solar cells. The observations revealed that TiO2 and ZnSe
have more suitable band alignment and better charge-extraction/transfer properties. A reasonably
improved efficiency of 23.18% and 22.4% have been achieved for TiO2 and ZnSe layer-based tandem
solar cells, respectively.

Keywords: MAGeI3; FAMASnGeI3; Pb-free all-perovskite tandem solar cells; tandem solar cells;
SCAPS-1D

1. Introduction

The energy crisis is one of the major challenges for the scientific community which
needs significant attention [1–3]. Current energy resources are limited, which may be
responsible for energy crises in the future [4–6]. Hence, it is important to find renewable
energy sources to overcome the issue of the energy crisis [7]. Solar energy is one of the most
abundant energy sources which can be a suitable candidate for the production of neat and
clean energy [8–10]. Solar energy can be directly converted and transformed into electrical
energy via photovoltaic cells (solar cells) [11]. In the past few decades, various solar cells
such as dye-sensitized solar cells, organic solar cells, thin film solar cells, silicon-based
solar cells, polymer solar cells, bulk-heterojunction solar cells, quantum dot solar cells, and
perovskite solar cells (PSCs) have been developed [3,7,12,13]. At present, silicon-based
solar cells are widely used in practical applications but their fabrication process is quite
complicated [3]. In addition, silicon-based solar cells are expensive, and it is important to
reduce the cost of solar cells [7]. In this connection, a new visible light sensitizer (methyl
ammonium lead halide = MAPbX3; X = halide anion) was explored in the fabrication of dye-
sensitized solar cells [14]. This MAPbX3-based dye-sensitized solar cell device exhibited
power conversion efficiency (PCE) of less than 4% [14]. However, it was further improved
to more than 25% by employing extensive efforts and novel approaches [8]. Unfortunately,
a single-junction solar cell has some drawbacks such as sub-bandgap and thermalization
losses [15]. Additionally, it has been found that single-junction solar cells cannot exceed the
Shockley–Queisser (SQ) single-junction limit proposed by SQ in 1961 [16]. Thus, tandem
solar cells have been developed which may be a more suitable and efficient alternative to
silicon-based solar cells [15]. In this connection, all-perovskite tandem solar cells have been
developed by various research groups which showed decent performance [17–21]. Lead
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halide-based perovskite materials have been used in the fabrication of tandem solar cells,
but the presence of toxic lead (Pb) still remains a concern for their practical applications [19].
In further studies, Pb-free perovskite materials such as methyl ammonium bismuth iodide,
methyl ammonium antimony iodide, methyl ammonium tin iodide (MASnI3), or methyl
ammonium germanium iodide (MAGeI3) have been explored in the construction of single-
junction PSCs or tandem solar cells [22–30]. The reports suggested that Sn- or Ge-based
perovskite materials have excellent optoelectronic features and a less toxic nature [30]. Thus,
Sn- or Ge-based materials could be the alternative to lead-based perovskite materials [29].

Recently, numerical simulations of single-junction PSCs and tandem solar cells using
SCAPS-1D have received enormous attention, and a large number of publications have
been reported [31–38]. In this connection, Pandey et al. [37] simulated tandem solar cells
by exploring CH3NH3Pb0.5Sn0.5I3 and Cs2AgBi0.75Sb0.25Br6 as the bottom cell and top cell,
respectively. The simulated tandem solar cells exhibited a decent short-circuit current
density (Jsc) of 15.21 mA/cm2 with an excellent open circuit voltage (Voc) of 1.95 V. A high
PCE of 21.9% was reported for the simulated tandem solar cell architecture [37]. Further,
Madan et al. [38] also simulated tandem solar cells using SCAPS-1D. Madan et al. [38] used
FACsPb0.5Sn0.5I3 as the top cell layer and Cs2AgBi0.75Sb0.25Br6 as the bottom cell layer. The
authors achieved an interesting Jsc of 14.9 mA/cm2, Voc of 1.83 V, and PCE of 17.3% using
SCAPS-1D. In 2022, MASnI3 and MASnIBr2 were used as the bottom and top cell materials
by Abdelaziz et al. [15]. The authors reported a good PCE of 15.6% which included a Jsc
of 13.94 mA/cm2 and Voc of 1.89 V. The above results indicate that simulation of tandem
solar cells using SCAPS-1D may be useful for the scientific community.

In the present work, our group reports the simulation study on the development of
Pb-free all-perovskite tandem solar cells with MAGeI3 as the top subcell and FAMASnGeI3
as the bottom subcell using SCAPS-1D. The obtained results exhibited the presence of an
excellent PCE of 22.4% for the simulated Pb-free all-perovskite tandem solar cells.

2. Device Structure and Simulation

Before the investigation of the photovoltaic performance of the all-perovskite tandem
solar cell devices, we simulated the device with single-light-absorber layer devices using
MAGeI3 or FAMASnGeI3 with ZnSe as the HTL using Cu2O as the HTL. The simulation
parameters (band gap, dielectric permittivity, and electron affinity, etc.) and their used
values for the simulation studies are presented in Tables S1 and S2. The simulation for all
the devices were performed (illumination of AM 1.5 G; 100 mW/cm2; temperature = 300
K) using SCAPS-1D software developed by Prof. Marc Burgelman, Belgium [39]. In multi-
junction tandem solar cells, two diodes are joined in a series to form the subcells. These
joined diodes (subcells) generate the same current which is called the current of the tandem
solar cells. Similarly, the sum of the voltage in the subcells is referred to as the voltage of the
tandem solar cells. It is well known that SCAPS-1D could not fully support multi-junction
tandem solar cells. Thus, the top and bottom subcells were separately simulated. In our
simulations, the top subcell was illuminated using standard AM 1.5 G (1 sun conditions)
and the bottom subcell was illuminated using the spectra filtered by the top subcell which
can be described as below [40]:

S (λ) = S0(λ).exp
(
∑4

i=1 − ai(λ)di
)

(1)

where S(λ) = filtered spectrum; S0(λ) = spectrum incident on the top subcell; ai(λ) = ab-
sorption coefficient; and di is the thickness of the material. Under the above conditions,
the Jsc of the two subcells was matched to simulate the tandem solar cells. We have also
schematically described the simulation process in Figure S1 in the Supporting Information.

3. Results and Discussion
Photovoltaic Investigations

In the first stage, MAGeI3-based solar cells were simulated using SCAPS-1D. The
performance of the MAGeI3-based solar cells was checked using a short-circuit current
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density (Jsc)–voltage (V) analysis. A schematic representation of the MAGeI3-based solar
cell device architecture (FTO(500 nm)/ZnSe(50 nm)/MAGeI3(500 nm)/Cu2O(350 nm))
is shown in Figure 1A. The collected J–V graph of the simulated MAGeI3-based solar
cell is presented in Figure 1B. The observations revealed that an excellent open circuit
voltage (Voc) of 1.37 V can be achieved for MAGeI3-based PSCs with a PCE of 17.61%. In
addition, the MAGeI3-based simulated device also showed a good Jsc value. The obtained
photovoltaic parameters showed the promising performance of MAGeI3-based PSCs.
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Figure 1. Schematic device structure (A) and J–V curve (B) of MAGeI3-based PSCs.

In a further stage, another absorber layer (FAMASnGeI3) was used for the simulation
studies. The device architecture (FTO(500 nm)/ZnSe(50 nm)/FAMASnGeI3(500 nm)/
Cu2O(350 nm)) of the simulated solar cells is shown in Figure 2A. The FAMASnGeI3-based
PSCs device was simulated under the same thickness and conditions. The obtained J–V
graph of the simulated device is depicted in Figure 2B. The interesting PCE of 14.25% was
obtained for the simulated FAMASnGeI3-based PSCs device. In addition, a decent Voc
of 0.83 V and an excellent Jsc of 29.05 mA/cm2 were obtained. The J–V graph indicated
that a high Jsc value of 29.05 mA/cm2 could be achieved for FAMASnGeI3-based PSCs
compared to the MAGeI3-based PSCs. This also suggested that FAMASnGeI3 has a better
light absorption property, which is related to the narrow band gap of FAMASnGeI3.

In the final step, we simulated Pb-free all-inorganic tandem solar cells using MAGeI3
and FAMASnGeI3 as the top and bottom subcells, respectively. The schematic diagram of
the simulated tandem solar cell device is shown in Figure 3A. The collected J–V graph of
the tandem solar cell device is shown in Figure 3B. According to Figure 3B, it can be noted
that an improved PCE of 22.4% has been achieved. This revealed the potential of MAGeI3
and FAMASnGeI3 as the top and bottom subcell materials for the development of high
performance Pb-free all-perovskite tandem solar cells.

The J–V characteristic and photovoltaic parameters of the MAGeI3, FAMASnGeI3,
and tandem solar cell devices are summarized in Figure 4A,B, respectively. The simulated
results exhibited that the Jsc values for the FAMASnGeI3 and tandem devices are the same.
However, different Voc values were observed for the FAMASnGeI3 and tandem devices.
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The FAMASnGeI3-based PSCs device showed a lower value of Voc, whereas the
highest value of Voc was observed for the MAGeI3-based PSCs with the lowest Jsc value.
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Thus, it can be clearly understood that combining the top and bottom cells improved the
performance of the simulated tandem solar cells by reducing energy losses. However,
MAGeI3 exhibited high Voc which is quite different. Further investigations and deep study
are required to find out the reason behind this. In the above simulation studies, ZnSe
was used as the ETL and Cu2O as the HTL. Thus, it is clear that the thickness of ZnSe
and Cu2O may affect the photovoltaic performance of tandem solar cells. In this regard,
we have studied the effect of the thickness of ZnSe and Cu2O layers. Therefore, we have
investigated the influence of the thickness of ZnSe layer on the performance of tandem
solar cell devices.

We used the same thickness of 500 nm for MAGeI3 and FAMASnGeI3 layers. A
thickness of 350 nm was used for the Cu2O layer. The thickness of ZnSe was varied in
the range of 50 to 100 nm. The collected J–V graphs of the simulated tandem solar cells
device at various thicknesses of ZnSe of 50–100 nm are presented in Figure 5A, whereas
the extracted photovoltaic parameters are summarized in Figure 5B. The simulated results
demonstrated that the PCE of the tandem solar cells decreases with increasing thickness of
the ZnSe layer from 50 nm to 100 nm. It can be considered that a thin layer of ZnSe (50 nm)
has better charge transport properties and enhanced photovoltaic performance compared
to the 70 nm or 100 nm thick ZnSe layer.
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thicknesses) as the ETL.

Hence, it can be stated that the 50 nm-thick ZnSe layer is the most promising ETL, and
we used this 50 nm-thick ZnSe layer for further simulation studies. Similarly, the thickness
of Cu2O was also varied from 150 nm to 500 nm for the simulation of tandem solar cells.
The tandem solar cell devices were simulated using different thicknesses of 150–500 nm of
the Cu2O layer and the obtained results are summarized in Figure 6.

The J–V characteristics (Figure 6A) of the simulated tandem solar cells showed that
the thickness of Cu2O HTL does not significantly alter the PCE (Figure 6B) of the tandem
solar cells. Therefore, we used the optimized thickness of 350 nm for further numerical
simulation studies.

The reported literature showed that the selection of a suitable ETL is of great signifi-
cance to enhance the performance of solar cells. In this connection, we adopted different
ETLs (TiO2, WO3, SnO2, and ZnO) for further simulation studies. The J–V characteristic
curve of the TiO2-ETL-based tandem solar cells is displayed in Figure 7A which showed the
presence of an excellent PCE of 23.18%. The photovoltaic parameters of the TiO2-ETL-based
tandem solar cells are presented in Table S5.
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The energy level diagram of the TiO2-based tandem solar cells is inserted in Figure 7B.
Further, we simulated tandem solar cells using SnO2 as the ETL layer. The obtained results
using simulation studies for SnO2-ETL-based tandem solar cells are presented in Figure 8A.
The J–V results showed that an interesting PCE of 16.78% can be achieved using SnO2 as
the ETL layer.

The photovoltaic parameters of the SnO2-ETL-based tandem solar cells are presented
in Table S5. The energy level diagram of the simulated device is inserted in Figure 8B.
Furthermore, a WO3-ETL-based tandem solar cell device was also simulated, and the J–V
characteristic curve of the simulated device is presented in Figure 9A. A poor PCE of 10.52%
was observed for the WO3-ETL-based tandem solar cells. The photovoltaic parameters of
the WO3-ETL-based tandem solar cells are presented in Table S5. The energy level diagram
of the simulated device is inserted in Figure 9B.
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Furthermore, we also simulated ZnO-ETL-based tandem solar cells, and the obtained
J–V characteristic data of the simulated device is presented in Figure 10A. An improved
PCE of 23.11% was obtained for the ZnO-ETL-based tandem solar cells. The photovoltaic
parameters of the ZnO-ETL-based tandem solar cells are presented in Table S5. The energy
level diagram of the simulated device is inserted in Figure 10B.
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The observation revealed that the highest PCE of 22.40% was obtained for ZnSe as the
ETL. The photovoltaic parameters of the ZnSe-ETL-based tandem solar cells are presented
in Figure 11B. The energy level diagram of the simulated device is inserted in Figure 11B.
The overall observations showed that TiO2 is the most suitable ETL layer, whereas ZnO-
and ZnSe-based tandem solar cells also exhibited excellent PCE compared to the SnO2- or
WO3-based tandem solar cell devices. The photovoltaic performance of different simulated
tandem solar cells is provided in Tables S3–S5. The performance of the ZnSe-ETL-based
tandem solar cells is compared with previous studies in Table 1. Our obtained results are
comparable with previous reports as listed in Table 1. We believe that improved PCE of
all-inorganic Pb free tandem solar cells can be achieved using further novel strategies [41].
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Table 1. Comparison of tandem solar cells with previous experimental and simulated reports
[15–22,37,38].

Bottom Cell Top Cell Jsc (mAcm−2) Voc (mV) F.F. (%) PCE (%) Method References

MAPbI3 MAPbI3 6.61 1.89 56 7 Exp. [17]
FA0.8Cs0.2Pb(I0.7Br0.3)3 (FASnI3)0.6(MAPbI3)0.4:Cl 14 1.92 78.1 21 Exp. [18]
FA0.83Cs0.17Pb(I0.5Br0.5)3 FA0.75Cs0.25Sn0.5Pb0.5I3 14.5 1.66 70 17 Exp. [19]
Cs0.15FA0.85Pb(I0.3Br0.7)3 MAPbI3 9.48 2.2 70.7 14.8 Exp. [20]
MAPbBr3 MAPbI3 8.40 1.95 66 10.8 Exp. [21]
CH3NH3Pb(I0.6Br0.4)3 CH3NH3Pb0.5Sn0.5I3 12.7 1.98 73 18.4 Exp. [22]
MASnI3 MASnIBr2 13.94 1.89 60.5 15.6 Sim. [15]
CH3NH3Pb0.5Sn0.5I3 Cs2AgBi0.75Sb0.25Br6 15.21 1.95 74 21.9 Sim. [37]
FACsPb0.5Sn0.5I3 Cs2AgBi0.75Sb0.25Br6 14.90 1.83 63.5 17.3 Sim. [38]
FAMASnGeI3 MAGeI3 29.36 0.94 83.2 23.1 Sim. Thiswork

Exp. = experimental; Sim. = simulation.

4. Conclusions

It can be concluded that all-perovskite lead-free tandem solar cells have been numer-
ically simulated using SCAPS-1D. MAGeI3 has a wide band of 1.9 eV, which makes it a
suitable candidate for the fabrication of top cells. On the other hand, FAMASnGeI3 has
a relatively narrow band gap of 1.4 eV, and it has been adopted as an absorber layer for
the simulation of the bottom cell. All-perovskite tandem solar cells were simulated using
MAGeI3 as the top cell and FAMASnGeI3 as the bottom cell materials. The thickness of
the electron-transport layer (ZnSe) and hole-transport layer (Cu2O) was optimized, and an
excellent efficiency of 22.4% was obtained using SCAPS-1D. Other electron transport layers
such as ZnO, WO3, SnO2, and TiO2 were also used, and it was observed that an improved
PCE of 23.18% can be achieved using TiO2 as the electron-transport layer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13010096/s1, Figure S1: Flow chart for the simulation of
tandem solar cells; Table S1: Numerical parameters of different materials for device simulation;
Table S2: Numerical parameters of different ETLs for device simulation; Table S3: Effect of thickness
of ZnSe on photovoltaic parameters; Table S4: Effect of thickness of Cu2O on photovoltaic parameters;
Table S5: Effect of different ETLs on photovoltaic parameters. References [32,42,43] are cited in the
supplementary materials.
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