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Abstract: The article reports the successful fabrication of Eu3+-doped WO3 thin films via the radio-
frequency magnetron sputtering (RFMS) technique. To our knowledge, this is the first study showing
the tunable visible emission (blue to bluish red) from a WO3:Eu3+ thin film system using RFMS. X-ray
diffractograms revealed that the crystalline nature of these thin films increased upto 3 wt% of the Eu3+

concentration. The diffraction peaks in the crystalline films are matched well with the monoclinic
crystalline phase of WO3, but for all the films’, micro-Raman spectra detected bands related to WO3

monoclinic phase. Vibrational and surface studies reveal the amorphous/semi-crystalline behavior
of the 10 wt% Eu3+-doped sample. Valence state determination shows the trivalent state of Eu
ions in doped films. In the 400–900 nm regions, the fabricated thin films show an average optical
transparency of ~51–85%. Moreover, the band gap energy gradually reduces from 2.95 to 2.49 eV,
with an enhancement of the Eu3+-doping content. The doped films, except the one at a higher doping
concentration (10 wt%), show unique emissions of Eu3+ ions, besides the band edge emission of
WO3. With an enhancement of the Eu3+ content, the concentration quenching process of the Eu3+

ions’ emission intensities is visible. The variation in CIE chromaticity coordinates suggest that the
overall emission color can be altered from blue to bluish red by changing the Eu3+ ion concentration.

Keywords: films; defects; optical properties; Burstein–Moss effect

1. Introduction

Tungsten oxide, referred to as WO3, is a well-known n-type wide-energy band gap
oxide semiconductor material that has gained much attention as a promising candidate for
different applications in various fields [1]. It shows exciting novel functionalities because
of its unusual electronic behavior. Generally, different nanostructures of WO3 such as
nanorods, nanoparticles, nanowires, nanoplates, etc., are of great concern as a promising
candidate for electrochromic applications [2,3], photocatalysis [4], gas sensors [5,6], solar
cells [7], etc. The general morphology of WO3 is defect-perovskite, with the formula of
ABO3. In the ABO3 structure, the ‘A’ sites are unoccupied, whereas the ‘B’ sites are occupied
with ‘W’ atoms, forming a 3-D network of corner or edge-shared or a layered structure of
WO6 octahedra, depending on whether they are stoichiometric WO3 or sub-stoichiometric
WO3 or WO3 hydrates [1]. Thin films of WO3 have been used as gas sensors [8] and
the photocatalyst [9] in photochromic devices [10] and as transparent conducting elec-
trodes [11]. Various methods are employed to fabricate thin films of tungsten trioxide,
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such as hydrothermal techniques [12], solvothermal technique [13], pulsed laser deposi-
tion [1], radio-frequency magnetron sputtering [8], electrodeposition [14], atomic layer
deposition [15], etc. In this study, Eu2O3-embedded WO3 films are synthesized using
radio-frequency magnetron sputtering (RFMS), since it is a very simple technique, so by
using this technique high-quality homogeneous films can be deposited.

Rare earth (RE)-based luminescence systems have gained considerable attraction due
to their significant use in various technological fields. It is a well-established fact that the
emission behavior of RE ions is greatly influenced by the surrounding environment of
the host. Among RE elements, europium has a particular interest as a dopant, since it
exhibits the property called valence fluctuation, i.e., it displays two valence states: +2 or +3.
Depending on the valency, europium ions show different characteristic emissions [16]. Eu3+

ions exhibit an intense red emission via intra-4f transition, while Eu2+ ions present a broad
range of emissions in the red to UV region due to 5d–4f transitions, which are influenced
by the surrounding host matrix [16]. In europium-ion-doped host lattices, the intensity
of emission peaks and their positions have a strong relationship with their morphology,
grain size distribution and chemical composition, etc. [17]. In the present work, europium-
embedded thin WO3 films are deposited using RF-magnetron sputtering, and their various
properties are analyzed by adopting different characterization techniques.

2. Materials and Methods

The targets for sputtering were synthesized from WO3 and europium oxide (Eu2O3)
(purity ~99.99%-Aldrich). Tungsten oxide powder was mixed with some selected contents
(i.e., 0.0, 1.0, 3.0, 5.0 and 10.0 wt%) of Eu2O3 powder, then the mixture was ground, and
a fine powder was obtained, which was taken as the target for film coating. Films were
coated on amorphous quartz plate fixed at 50 mm distance w.r.t. target material. The details
of film preparation have already been explained in our previously published work [18].
The sputter-coated films were then annealed at 600 ◦C (1 h). The annealed films, with
different Eu2O3 contents, viz. 0.0, 1.0, 3.0, 5.0 and 10.0 wt%, are marked as WEu0, WEu1,
WEu3, WEu5 and WEu10, respectively.

Structural studies and phase identification of the un-doped and Eu2O3-doped WO3
films were analyzed by studying the X-ray diffractograms, recorded with XPERT PRO X-ray
diffractometer (Bruker). By employing Bragg–Brentano geometry, X-ray diffractograms
were measured in 10–70◦ range (with an increment of ~0.0203◦ and scan speed ~2◦/min)
using CuKα radiation of wavelength, λ = 1.5406 Å. Raman spectroscopic studies were
done using Labram-HR800 micro-Raman spectrometer (HORIBA JobinYvon) fitted with
an Ar-ion (λ = 514.5 nm) laser. Nova NanoSEM 450 (Field Emission) SEM was employed
to analyze the topography of the prepared films. Moreover, atomic force microscopic
(AFM) images were used to study the geometry of the synthesized thin films using Bruker
Dimension Edge (Scan Asyst) atomic force microscope. Constituent elements in the fabri-
cated thin films were analyzed using AMETEK EDAX Octane series attached to the Carl
Zeiss EVO 18 scanning electron microscope. The ionized states of the respective elements
were probed by using X-ray photoelectron spectroscopic (Thermo Scientific ESCALAB
250Xi) measurements. VeecoDektak 6M profilometer was employed to determine the films
thickness. Transmittance and absorbance studies were analyzed using JASCO V-550 UV–
VIS double-beam spectrophotometer with a spectral resolution of ~1 nm. The emission
behavior of the films was studied using FLS980 spectrofluorometer (Edinburgh) provided
with a 450 W xenon lamp (continuous).

3. Results and Discussion
3.1. Structural Analysis

The structural identification as well as the variation in the crystalline nature of the
WO3 films with a change in Eu3+-doping concentrations are analyzed using the X-ray
diffraction technique. Figure 1a–e presents the X-ray diffraction profiles of the Eu3+-doped
WO3 thin films annealed at 600 ◦C. It is clear that all the films, except the WEu10 film,
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show a poly-crystalline structure and present the typical X-ray diffraction pattern of the
monoclinic crystalline phase (ICDD Card No. 83–0951), while the XRD pattern of the
WEu10 film does not present any XRD peaks, indicating its amorphous nature. In the
diffraction patterns, peaks related to the dopant impurity are not detected at all. This
result demonstrates that the dopant atoms are well-diffused without any segregation of
the Eu2O3 phase in the deposited films. For all crystalline films, the XRD patterns show
an a-axis orientation along the (h00) crystal plane despite, the added dopant, because of
the reduced surface free energy quantity [19]. This strong orientation of the film along a
selected crystal plane can be described using the model given by Van der Drift (“survival
of the fastest” model) [20,21]. In this model, Van der Drift explained that at the initial film
growth stage, nucleation takes place at different orientations, and these nuclei compete
to enlarge in size. However, at the final stage of film growth, a nucleus having a larger
growth rate exists, so the film will be oriented in that particular direction. From Figure 1f,
it can be seen that the intensity of the peak along the (h00) crystal plane is enhanced
by the increase in Eu3+-doping content up to 3 wt%; beyond that, the intensity reduces,
and, finally, the film became amorphous at higher Eu3+ level (at 10 wt%). At low doping
concentrations, the growth of the film along the a-axis can be attributed to the development
of additional growth centers in the presence of Eu3+ ions, which may reduce the nucleation
energy barrier [19,21].

Regarding the XRD peak, the full width at half maximum (FWHM) intensity for the
intense (200) peak was estimated for the crystalline films, and the variation of the FWHM
of the (200) peak with Eu3+ doping content is presented in Figure 1f and Table 1. The
FWHM value for the (200) peak of pure film was found to be 0.2148◦. With an increase in
Eu3+-doping concentration, the FWHM decreases up to 3 wt% of Eu3+ concentration, and,
after that, it increases. Out of the prepared films, the WEu3 film exhibits a low FWHM,
indicating its superior crystalline quality among the films. From this observation, it can
be established that moderate doping of the Eu3+ ions in the WO3 lattice enhances their
crystalline nature, while a high concentration of Eu3+ ions decreases the crystalline behavior.
The reason behind this reduction in crystallinity at a higher doping concentration can be
understood from the following facts: (i) at a higher impurity concentration, the impurity
atoms may segregate along the inter-particle boundary regions [22]; (ii) the addition of
newer growth centers may become abstained at a higher impurity concentration [23];
(iii) the crystal reorientation effects become predominant at higher Eu3+ concentrations [24].
These factors can considerably reduce the crystalline quality of WO3 thin films with more
Eu3+ contents. The mean crystallites size (Dhkl) in the crystalline films is calculated from the
(2θhkl) position and broadening (βhkl , FWHM) of the most intense peak using the Scherrer
formula (Equation (S1), additional information) [25]. The evaluated quantities of (Dhkl)
are shown in Table 1, which is in the range of 30–73 nm. For the pure film, the size of the
mean crystallites is around 38 nm. In the lightly Eu3+-doped WO3 films, i.e., for WEu1 and
WEu3 films, the mean crystallites size is 70 and 73 nm, respectively, whereas, in the WEu5
film, the average crystallites size reduces to 30 nm. This crystallite-size reduction in higher
Eu3+-doped WO3 films may be because of the accumulation of the dopant atoms along the
grain boundary region, which will produce a hindering force. When the hindering force
exceeds the driving force for the grain growth, the movement of the grain boundary is
curbed and, therefore, reduces the average size of crystallite [26].

Table 1. Structural parameters of the un-doped and Eu3+-embedded WO3 films annealed at 600 ◦C.

Sample Code FWHM (Degree)
Crystallite Mean Size

(nm) from
Scherrer Formula

Micro Strain (×10−3) Dislocation Density
(lines/nm2) d200 (nm)

WEu0 0.2148 38 1.97 0.00069 0.3705
WEu1 0.1162 70 1.06 0.00020 0.3708
WEu3 0.1112 73 1.03 0.00018 0.3711
WEu5 0.2678 30 2.50 0.0011 0.3750
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The center of the (200) peak shows a systematic shift towards the lower angle side
with the enhancement in Eu3+-doping concentration, and the observed change in the peak
position is shown in Figure 2a. This regular variation in the 2θ value may be because of
the longer ionic radius of the incorporated Eu3+ (~0.94 Å) [27] compared to the W6+ host
ions (~0.65 Å) [28]. According to Vegard’s law [29], the incorporation of the impurity ions
of the longer ionic radii into a lattice of the shorter ionic radii will expand the lattice due
to substitutional incorporation, and, hence, the diffraction patterns will move to lower
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diffraction angles (2θ). The inter-planar distance of the (200) plane (d200) is also calculated
using Bragg’s relation, which is shown in Figure 2b and in Table 1. It is clear that the
value of d200 increases with a rise in Eu3+-doping concentrations. This variation of the
most intense peak location towards a lower angle side and the marked increase in the
value of d200 indicate the WO3 lattice expansion, due to the presence of impurity ions.
This expansion of the host lattice will produce stress in the thin films, which may arise
due to different factors. The presence of defects and distortion and also the deviation
in the ionic size of the host and impurity ions produce intrinsic stress in the deposited
films. The disparity in the lattice constants and thermal expansion coefficients between the
fabricated film and quartz substrate create extrinsic stress [30]. In the present study, due
to the amorphous behavior of the quartz substrate, it is difficult to estimate the extrinsic
stress that originated because of the lattice mismatch between the quartz substrate and thin
film [31]. However, it was reported that this type of extrinsic stress might relax upon the
nucleation of the particles, followed by a 3D structure formation on the 2D surface [32].
The role of temperature-dependent extrinsic stress can also be neglected when the film
thickness is large [33]. In the present study, film’s thickness is determined with the help of
stylus profilometry, which is in the region of 134–301 nm, as shown in Table 2; therefore,
the effect due to thermal stress can be neglected. Hence, the stress in the thin films has
a major role from the intrinsic portion, and this is mainly due to the ionic size variation
between the added impurity and host ions. Moreover, the film-deposition conditions and
the film’s surface topography have a unique role in the formation of stress.
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Figure 2. (a) Variation in the diffraction angle (2θ) (blue dots) and (b) inter-planar separation (d200)
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Table 2. Optical and morphological parameters of the un-doped and Eu3+-embedded WO3 films
annealed at 600 ◦C.

Sample Label Film Thickness (nm) RMS Surface Roughness (nm) Average Transmittance (%) Band Gap Energy Eg(eV)
CIE Coordinates

X Y

WEu0 243 3.48 85 2.95 0.2893 0.2419
WEu1 251 15.29 80 2.92 0.3180 0.2826
WEu3 280 102.01 51 2.61 0.3635 0.3111
WEu5 301 55.07 51 2.55 0.3624 0.2961
WEu10 134 3.49 78 2.49 0.2547 0.2126

The strain in the fabricated thin films is evaluated by the value of θhkl and βhkl
for Bragg’s intense reflection plane, with the help of Equation (S2) (supporting infor-
mation) [25]. Table 1 gives the determined quantities of the lattice strain. The dislocation
density (δ), which is the length of the dislocation lines/unit volume, can be determined
using Equation (S3) (supporting details) [34]. The estimated values of ‘δ’ are also shown in
Table 1. It is clear that with the rise in Eu3+-doping concentrations, the dislocation density
first decreases up to 3 wt% of Eu3+ level, and thereafter its value increases. This shows that
the WEu3 film possesses the best crystalline property among the synthesized films [35].

Figure 3a–e show the micro-Raman spectra of the pure and Eu3+-embedded WO3
films measured (100–1100 cm−1) with an argon-ion laser (514.5 nm excitation). The lit-
erature shows that the phase of WO3 can be successfully identified using Raman spec-
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troscopy [36,37]. The spectrum of each sample shown in the figure can be categorized
into three fundamental vibrational groups. The stretching vibrational modes can be no-
ticed in the 900–600 cm−1 range; the bending vibrational modes can be noticed in the
500–200 cm−1 range; and the lattice vibrational modes can be noticed in the wavenumber
region below 200 cm−1 [38]. The spectra show a large number of vibrational modes, espe-
cially in the low wavenumber domain, which suggests a lowering of the symmetry and
an enhanced number of molecules per unit cells [39]. The structure of WO3 is reported as
distorted ReO3, and it contains corner-shared, distorted WO6 octahedra [40]. Group theory
studies for an ideal ReO3 geometry (space group: O1

h) reveal only two active Raman bands,
but, in the present analysis, a higher number of active bands are detected in the spectra,
probably because of the lowering of the symmetry and the distortion in the octahedra in
the real monoclinic structure [37]. The Raman bands detected around 273, 322, 700 and
804 cm−1 are the characteristic Raman bands of the monoclinic WO3 phase, supporting the
information obtained from XRD [41,42]. The intense band detected at 804 cm−1 is because
of the symmetric stretching mode of O-W-O bonds, while those detected around 700 cm−1

are because of their asymmetric stretching vibrations. In higher Eu3+-embedded films, the
symmetric stretching-mode position is observed at a lower wavenumber side compared
to that in lightly doped films. The bands around 273 and 325 cm−1 can be attributed to
the symmetric bending vibrations of the O-W-O bonds, while those between the 370 and
495 cm−1 regions can be ascribed to the asymmetric bending modes of the same bonds [36].
The FWHM (around ~804 cm−1) of the symmetric stretching vibrational mode is an in-
dication of the structural disorder in terms of the bond length and angle of the W-O-W
bond [43]. For the un-doped film, the FWHM value for this mode is around 34.148 cm−1.
Upon increasing the Eu3+-doping concentration, the FWHM value first decreases up to
3 wt%, and thereafter it increases. The variation of the FWHM for the Eu3+-doping con-
centration is shown in Figure 3f. Out of the prepared films, the WEu3 film exhibits the
lowest quantity (~21.945 cm−1) for FWHM, while theWEu10 film shows the highest value
(~73.626 cm−1). This result is consistent with the XRD analysis: the crystalline quality
enhances with an increase in Eu3+ content up to 3 wt%, and, after that, the crystalline
quality deteriorates with an increase in Eu3+ content. The vibrational band noticed at
990 cm−1 in all the films could be assigned to the W6+=O stretching vibrations of the bridging
oxygen, which may exist due to clusters and void structures present on the film surface [44].

In the spectrum of the WEu10 film, the integrated intensity of the bands, except for
the one around 990 cm−1, reduces considerably compared to the other films. The increase
in the Raman band intensity corresponds to the W6+=O stretching vibration points that this
film may contain species other than the crystalline WO3 phase, i.e., the sub-stoichiometric
WO3 phase [45]. Even though the X-ray diffractogram of the WEu10 film is devoid of
the characteristic XRD peaks, its Raman spectrum shows noticeable Raman bands that
correspond to the WO3 monoclinic phase, which may be due to the semi-crystalline trend of
the WEu10 film. This result points to the conclusion that Raman spectroscopy is a powerful
technique to analyze the phase of semi-crystalline materials where XRD fails.

3.2. Morphological and Composition Analysis

Figure 4 presents the FESEM images of the pure and Eu3+-embedded WO3 thin films.
The WEu0 film exhibits a smooth surface morphology, but, for the WEu1 film, a thick
systematic distribution of the similarly sized smaller grains can be clearly noticed. The
surface morphology of the WEu3 film presents a random distribution of the isolated bigger
grains. It is also clear that these grains have a tendency to coalesce together to form
bigger grains. The WEu5 film also exhibits almost the same surface morphology as the
WEu3 film, but the grains are fewer in number and larger in size. An entirely different
morphology can be observed in the WEu10 film. The film reveals a smooth surface with
clusters of smaller grains distributed randomly over the surface. This surface morphology
supports the amorphous/semi-crystalline nature of the WEu10 film, revealed by XRD and
micro-Raman analysis.
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The 3D AFM morphologies of the un-doped and Eu3+-embedded WO3 films are
presented in Figure 5a–e. As seen from the morphology, the AFM images of the films also
present a similar surface morphology as that of the FESEM images. The AFM micrograph
of the un-doped film exhibits a smooth surface, but for the 1 wt% Eu3+-doped film, a
thick distribution of smaller grains (uniform sizes) having well-defined boundaries can
be observed. In the WEu3 film, a random distribution of bigger grains having clear
grain boundaries can be observed. In the WEu5 film, the agglomerated bigger grains
can be seen, which are much lower in number and distributed here and there on the film
surface; in the WEu10 film, a smooth surface morphology can be observed. The root mean
square (RMS) surface roughness of the fabricated films is calculated by WSxM 5.0 Develop
6.3 software [46] and is shown in Table 2 and Figure 5f. Among the prepared thin films, the
WEu3 and WEu5 films show higher magnitudes of RMS surface roughness. Moreover, the
WEu10 film presents the lowest value for RMS surface roughness among the doped films.
It is quite interesting to observe that the grain size from the XRD analysis and morphology
images (i.e., FESEM and AFM) differ greatly. This is because, in the XRD measurement,
the size of the scattering domain is determined as the grain size (or crystallite size), but,
in the morphology analysis, the surface morphology of agglomerated grains is measured,
which mostly depends on the instrument’s resolution. Hence, it can be understood that an
average grain observed in the morphology images carries other smaller crystallites that
have individual orientations, which are detected using XRD [47].

To analyze the constituent elements in the synthesized thin films, the EDX spectra are
taken. Figure 6 presents the EDX spectra of the pure and 3 wt% Eu3+-embedded WO3 films.
For the spectrum of the un-doped film, we can only see the peaks related to ‘O’, ‘W’ and ‘Si’,
but, for the 3 wt% Eu3+-embedded film, in addition to these peaks, the ‘Eu’ peaks can be
clearly seen. The presence of the ‘Eu’ peaks in the embedded film indicates the presence of
dopant atoms in the host lattice. The detected ‘Si’ peak originates from the quartz substrate
used in the present study. It is important to note that in the EDX spectra of the films, we
can observe an enhancement in intensity corresponding to the ‘W’ peak. This enhancement
in the ‘W’ peak may be because of the overlap of the X-ray signals from the ‘W’ atom that
is present in the deposited films with that of the emission from the ‘Si’ atom present in the
quartz substrate [48]. The two-dimensional distribution of the different elements in the
WEu5 film is given in Figure 7, and the mapping image confirms the incorporation of Eu3+

in the WO3 lattice.
The XPS measurement analyzed the constituent elements and their respective oxi-

dation states in the deposited films. The survey scan of the un-doped WO3 film (WEu0)
(Figure 8a) presented peaks due to the ‘O’, ‘W’ and ‘C’ elements, but, for the Eu3+-embedded
WO3 film (WEu3) (Figure 8b), the survey spectrum showed additional peaks corresponding
to the ‘Eu’ element. The C1s peak observed at 284.98 eV might be because of the presence
of the carbon impurity found on the surface of the film upon exposure to the surrounding
atmosphere [49]. Figure 9a and 9c, respectively, present the high-resolution XPS spectral
profile of the WEu0 and WEu3 films in the W4f and W5p regions, along with their de-
convoluted curves. In both the spectra, the 4f region contains a doublet, and the 5p region
contains a singlet, corresponding to the ‘W’ atom. The doublet peaks in the 4f region of
the WEu0 film are detected around 35.61 (4f7/2) and 37.59 eV (4f5/2), while, for the WEu3
film, these peaks are observed around 35.71 (4f7/2) and 37.69 eV (4f5/2). The singlet peak in
the 5p region of the WEu0 film is observed around 41.34 eV, and, for the WEu3 film, it is
observed around 41.28 eV. The binding energy (BE) values of the W4f5/2 and W4f7/2 peaks
in these spectra show the +6 valence state of the ‘W’ atom in WO3 [50].
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doping concentration.
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The O1s peaks of these films (WEu0 and WEu3) are presented in Figure 9b and 9d,
respectively. The asymmetric peak observed in both the spectra can be de-convoluted
into two symmetric peaks; one at a low binding energy position, and the other at a high
binding energy position. The peak observed at the low binding energy position (530.29
eV for WEu0 and 530.19 eV for WEu3) can be assigned to the O2- ions bonded to the W6+
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ions, and the peak observed at the high binding energy position (532.11 eV for WEu0 and
531.93 eV for WEu3) can be attributed to the adsorbed oxygen atoms on the film’s sur-
face [51]. Figure 9e presents the high-resolution XPS spectrum of the Eu3d core energy
level in the WEu3 film and its fitted curves. The spectrum presents two prominent peaks
at 1135.10 and 1164.51 eV, which can be, respectively, attributed to the 3d3/2 and 3d5/2
spin-orbit splitting for the Eu3+ state [52]. Hence, it is quite evident that the dopant Eu
exists primarily in the +3 states in the embedded films.
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3.3. Optical Analysis

The absorbance and transmittance spectra of the un-doped and Eu3+-embedded WO3
films in the 200–900 nm region are given in Figure 10a and 10b, respectively. The transmit-
tance of thin films mainly depends on a variety of parameters including crystalline quality,
surface smoothness, thickness, porosity, etc. An increase in crystalline quality usually in-
creases the optical transparency. In contrast, an increase in porosity, surface roughness and
thickness decreases the optical transparency [53]. The prepared thin films show an average
transmittance of ~51–85% in the 400–900 nm wavelength regions (Table 2). Among the
prepared thin films, the WEu3 and WEu5 films exhibit lower values of optical transparency
in the measured wavelength regions. Structural analysis shows an increased crystalline
quality for the WEu3 film relative to the others; at the same time, this film has larger values
for thickness and RMS roughness. This increased film thickness and surface roughness
of the WEu3 film may be the reason for its reduced optical transmittance. However, for
the WEu5 film, a reduction in crystallinity and increases in roughness and thickness have
been observed. These reasons may be accounted for the reduced optical transparency of
the WEu5 film. Moreover, the WEu10 film with the least crystalline quality may indicate
that it possesses the lowest optical transparency among all the films, but, on the other
hand, a good optical transparency has been noticed for this film. The reduced RMS surface
roughness and film thickness showed by the WEu10 film may be the reason for its good
optical transmittance.

The natures of the energy gap and optical transition of the prepared thin films are
analyzed using the relation of photon energy (hν) and absorption coefficient ‘α’ using
Equation (S4) (supporting information) [54]. In the present case, the α

1
2 vs. hν plots

(Figure 11a) show a linear nature, suggesting an indirect transition behavior for the de-
posited films. Table 2 shows the calculated quantities of the band gap energies. The varia-
tion of band gap energy with respect to the Eu3+-doping content is shown in
Figure 11b. The band gap energy of the films is in the range of 2.49–2.95 eV. The un-
doped WO3 film shows an energy gap of around 2.95 eV, but, for the Eu3+-doped films, the
band gap energy gradually decreases with an increase in the doping content. The energy
gap of a material depends on various factors such as defects, disorders, carrier concen-
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tration, strain, etc. [55,56]. For different RE-embedded CdO films, a red shift in the band
gap energy was reported by Dakhel [57–61]. Dakhel suggested that the sudden increase in
carrier concentration may be the possible reason for the decrease in the band gap energy
with an increase in doping concentration, though this result is not in agreement with the
expected band gap expansion because of the Burstein–Moss effect [62]. In semiconductors,
the enhancement in carrier concentration produces two different effects, i.e., band gap
shrinkage and band gap expansion.
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Figure 9. (a,c) Fitted W4f and W5p core energy level spectra of un-doped and 3 wt% Eu3+-embedded
WO3 films; (b,d) fitted O1s core energy level spectra of un-doped and 3 wt% Eu3+-embedded WO3

films; (e) fitted Eu3d core energy level spectra of 3 wt% Eu3+-embedded WO3 film (In the figures; red
colour—experimental curve; other colours—fitted curves).
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The decrease in the energy gap may be due to the variation in the strength and nature
of the crystalline potential by the incorporation of RE ions, which include the effect of
their 4f shell valence electrons on the crystalline electronic energy levels [58]. Moreover,
the increase in doping content increases the number of cations, which may enhance the
localization of electrons that changes (increases) the concentration of the donor centers.
This enhancement in donor concentration level effectively reduces the optical band gap [63].
The observed strain in thin films can also change the energy gap [64,65]: a compression
strain increases the energy gap because of the compressed lattice, while a tensile strain
reduces the energy gap due to the elongated lattice [55,64,65]. Structural analysis from the
XRD measurement reveals an enhancement in the tensile strain because of the higher ionic
radius of dopant (Eu3+) ions, and this increase in the tensile strain also decreases the band
gap energy. For the WEu5 and WEu10 films, a reduction in crystalline quality is observed
from the XRD and micro-Raman analysis. This reduction in crystallinity may produce
oxygen vacancy sites, which may shrink the energy gap at a higher Eu3+ concentration
due to the creation of deep localized states [48,66]. After all, the many body effects on
the valence and conduction band reduce the width of the forbidden energy gap due to
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impurity scattering and electron interaction. Due to many body effects, the impurity levels
merges with the up-lying conduction band and thus decreases the band gap energy [67].

The PL emission spectra of the un-doped and Eu3+-embedded WO3 films measured
using 360 nm excitation are shown in Figure 12a. A few reports are available related to the
emission properties of the Eu3+ doped WO3 film, but there are no reports analyzing the
emission property of an RFM-sputtered WO3:Eu3+ thin film system. Luo et al. [68] reported
an enhanced electrochromic switching behavior and a tunable red emission in response to
an external bias from the Eu - doped WO3 films deposited via the hydrothermal process.
Shen et al. [69] studied the effect of pH on the luminescent and electrochromic properties
of an Eu-doped WO3 film prepared using the hydrothermal method and found that these
properties could be changed by altering the pH value. Usually, for WO3, a wide emission
spanning from NUV to the VIS spectral region (~390–500 nm) is reported, which relates to
the indirect band to band transition in WO3 [70–72]. In the present work, un-doped WO3
film presents a wide emission peak in the 390–500 nm regions, because of the band-to-band
transition in WO3. For Eu3+-doped films (except the WEu10 film), besides the band-to-
band emission, emission peaks centered around 466, 537, 586, 614 and 686 nm regions are
also observed. These peaks can, respectively, be assigned to the 5D2→7F0, 5D1→7F1,
5D0→7F1, →7F2 and →7F4 transitions in the europium ions having a valency of +3
(i.e., Eu3+) [73,74]. The emission around 614 nm (5D0→7F2) is a hypersensitive electric-
dipole (ED) transition, and its intensity is highly affected by the surrounding crystal-field
of Eu3+ ions. The radiative de-excitation due to 5D0→7F1 (586 nm) transition is a magnetic-
dipole (MD) transition, which is independent of the surrounding crystal-field effect of
the Eu3+ ions [75–78]. The intensity ratio of ED to MD transitions is commonly taken
to analyze the chemical microenvironment of the Eu3+ ions in a given host [68]. Usu-
ally, the ED transition intensity becomes prominent in the PL spectra when the Eu3+ ions
are situated at low symmetry sites having no inversion center. A strong red emission
(~614 nm) in the WO3:Eu system reveals that Eu3+ occupies the non-inversion low symme-
try centers in the WO3 host environment [74]. When the Eu3+ ion replaces W6+, the charge
compensation will produce two types of defects: interstitial Eu3+ and oxygen vacancies.
These defects may create symmetry distortion in the surrounding environment of Eu3+.
Moreover, the disparity in the ionic radii of Eu3+ and W6+ produces a symmetry distortion
in the surrounding host environment of Eu3+. This distortion in the local environment
symmetry of the Eu3+ ions may enhance the ~614 nm emission intensity in the PL spectra
of Eu3+-embedded WO3 films [79].
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An enhancement in the emission intensity attributed to the band-to-band transition is
observed with an enhancement in the Eu3+ content up to 3 wt%; after that, the intensity
reduces with an enhancement in the Eu3+ content. This enhancement in excitonic emission
intensity may be because of the enhanced crystalline quality of the films, up to 3 wt% of
the Eu3+ content; beyond that, the decrease in the crystalline property of the films leads
to a reduction in the emission intensity of the excitonic transition [18]. Moreover, the
superposition of the characteristic emissions of europium ions with that of the band edge
emission may also contribute to an increased excitonic emission intensity, up to 3 wt% of
the Eu3+ion concentration in the doped films. Moreover, the overall enhancement in the
emission intensities of the films, upto 3 wt% of the Eu3+ concentration, can also be related to
the roughness values of the films. Usually, a film having a high surface roughness shows an
enhanced emission intensity, which can be correlated to the extraction of a strong emission
due to the increased light scattering from the walls of the crystallites. In this report, the
high value of RMS roughness and the improved emission property shown by the WEu3
films may be because of the increased number of grains in them (Figure 4). The PL emission
intensities of the films are in accordance with the values of RMS roughness.

It is also observed that the characteristic emission intensity of the europium ions
decreases beyond 3 wt% of the Eu3+ concentration. This reduction in the characteristic
emission intensity of the Eu3+ ions may be due to the well-known concentration quenching
effect, because of the cross-relaxation occurring between neighboring Eu3+ ions [74]. At a
low concentration of europium ions, the mutual interaction between neighboring Eu3+ ions
can be neglected, but, at a higher concentration of dopant ions, the interaction between
neighboring ions increases. Due to this mutual interaction, the energy of activated Eu3+

ions can be easily transferred to quenching centers to be released as non-radiative energy,
which may result in the quenching of the characteristic emission intensity of the Eu3+ ions
at higher Eu3+ ion concentrations [68]. It is very interesting to observe that the overall
emission intensity for the WEu10 film is very much reduced compared to all other Eu3+-
doped films. This observed reduction in the total emission intensity of the WEu10 film
may be attributed to its amorphous/semi-crystalline nature, reduced film thickness and
the enhanced concentration quenching effect, due to the high concentration of Eu3+ ions.
The CIE-1931 chromaticity diagram is plotted to study the emission-color perception of the
synthesized thin films [80] and is shown in Figure 12b. The estimated quantities of the CIE
co-ordinates (x, y) are also shown in Table 2. As seen from Table 2 and Figure 12b, the color
can be tuned from blue to bluish red by changing the Eu3+ ion concentration [81]. Moreover,
both the WEu3 and WEu5 films exhibit more or less similar bluish-red color coordinates,
whereas the WEu10 film generates close to a blue color region. For a higher europium ion
concentration (WEu10), the host emission dominates, but the active ion emission has been
reduced due to the high concentration quenching of the Eu3+ ions.

4. Conclusions

Eu3+-doped WO3 thin films are successfully deposited through the RF-magnetron
sputtering method. An XRD study reveals that the crystalline property of the films is
enhanced with an enhancement in the Eu3+ doping content up to 3 wt%; beyond that,
a considerable reduction in crystallinity is observed. At a higher Eu3+ concentration
(10 wt%), the XRD pattern reveals an amorphous nature. The XRD peaks in the crystalline
films are indexed to the monoclinic crystal geometry of the WO3. The micro-Raman
spectra of all the films show vibrational bands corresponding to the monoclinic crystal
geometry of WO3. Even though the XRD pattern of the 10 wt% Eu3+-doped WO3 film is
devoid of the characteristic XRD peaks, noticeable vibrational bands of monoclinic WO3
phase are observed in its Raman spectrum, indicating its semi-crystalline nature. The
tendency of smaller grains to coalesce together to form bigger ones at a higher Eu3+-doping
concentration can be observed from the analysis of the surface morphology of the films
using FESEM and AFM micrographs. The EDX and XPS analyses indicate the incorporation
of Eu3+ in the WO3 lattice. XPS analysis confirms the +3 oxidation state of the Eu in
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the doped samples. Optical study shows that the prepared thin films possess an average
transmittance of ~51–85% in the 400–900 nm range. The band gap energy shows a reduction
from 2.95 to 2.49 eV with an enhancement in the Eu3+ doping concentration. In addition
to the band edge emission of WO3, the doped films (except the 10 wt% Eu3+-doped WO3
film) exhibit the characteristic emissions of the Eu3+ ions, due to the 4f intra configuration
transitions in the Eu3+ ions. The reduction in the intensity of the characteristic emissions at
a higher Eu3+-doping concentration can be ascribed to the concentration quenching effect,
due to the cross-relaxation between neighboring europium ions. The CIE-1931 plot shows
that the emission spectral range can be turned from blue to bluish red by changing the Eu3+

ion content.
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