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Abstract: Due to the significant rise in atmospheric carbon dioxide (CO2) concentration and its
detrimental environmental effects, the electrochemical CO2 conversion to valuable liquid products
has received great interest. In this work, the copper-melamine complex was used to synthesize
copper-based electrocatalysts comprising copper nanoparticles decorating thin layers of nitrogen-
doped carbon nanosheets (Cu/NC). The as-prepared electrocatalysts were characterized by XRD,
SEM, EDX, and TEM and investigated in the electrochemical CO2 reduction reaction (ECO2RR)
to useful liquid products. The electrochemical CO2 reduction reaction was carried out in two
compartments of an electrochemical H-Cell, using 0.5 M potassium bicarbonate (KHCO3) as an
electrolyte; nuclear magnetic resonance (1H NMR) was used to analyze and quantify the liquid
products. The electrode prepared at 700 ◦C (Cu/NC-700) exhibited the best dispersion for the copper
nanoparticles on the carbon nanosheets (compared to Cu/NC-600 & Cu/NC-800), highest current
density, highest electrochemical surface area, highest electrical conductivity, and excellent stability
and faradic efficiency (FE) towards overall liquid products of 56.9% for formate and acetate at the
potential of −0.8V vs. Reversible Hydrogen Electrode (RHE).

Keywords: CO2 conversion; electrocatalysts; copper catalysts; carbon materials; ECO2RR

1. Introduction

Recently, intensive fossil usage (such as coal, petroleum, and natural gas) is considered
globally as the major energy source and has led to a dramatic increase in CO2 emission [1,2].
The present CO2 level is greater than 414 ppm [3]. Therefore, great efforts for the capture,
sequestration, and utilization of CO2 should be devoted. Several techniques including
biochemical, thermal, and electrochemical methods, have been extensively studied for their
potential to convert CO2 into valuable chemicals [4,5]. The electrochemical CO2 reduction
(ECO2RR) draws substantial attention due to its several advantages. In ECO2RR, the
conversion process is controlled by the applied potential in the process [6]. The process also
operates with electricity at ambient conditions, resulting in zero carbon emission. However,
the ECO2RR required relatively high energy due to the stability of the CO2 molecule in an
aqueous electrolyte. In order to lower the energy barrier and improve the performance and
selectivity, an effective and long-lasting electrocatalyst is needed [7,8].

In the previous few years, several transition metals catalysts have been investigated,
such as (Cu, Co, Zn, Sn, Ni, Bi, etc.) [9–14], bi-metallic (Cu-Zn, Cu-Ag, Cu-Sn, etc.) [15–18],
oxides (CuOx, CuO-ZnO, etc.) [19,20], metal-organic frameworks [21–24], and zeolites [25,26].
Carbon-based electrocatalysts showed additional benefits beyond those already described,
including low cost and availability, high electrical conductivity, and a large surface area
that allows for the even distribution of active sites and the efficient adsorption of reac-
tants [27–29]. Additionally, when nitrogen is doped in the carbon, the electrical conductivity
is improved, and CO2 molecules are drawn to the catalyst’s surface more readily [30–35].
Han and co-authors claimed in their reports the synergy between the active sites of the
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Cu NPs and the N terminals in the supports facilitate the coupling of the CO (produced
in the N-sites) and secondary (C), which lead to the formation of higher carbon alcohols
products [36]. Recently, Bhunia et al. [31] reported the production of several liquid products
with FE of 54 % at a potential of 1.0 VRHE using Cu NPs supported on N-doped graphene.
The selective ethanol production was also reported by Wang et al. [30], using N-doped
carbon nanospikes decorated by the Cu NPs; this catalyst exhibited FE of 63% at a potential
of 1.2 VRHE. Zhou et al. synthesized Cu@Cu2O coated with N-doped carbon derived from
Cu-BTC MOF. The reported electrocatalysts showed 45% FE toward methanol production
at −0.7 V potential [37].

This work involved the fabrication of copper nanoparticle-decorated nitrogen-doped
carbon nanosheets. The copper precursor for this electrocatalyst was complexed with
a cheap organic linker (melamine), and then the resulting complex was pyrolyzed at
various temperatures to produce the final electrocatalyst. After pyrolysis, small and evenly
scattered Cu-NPs are formed due to the complexation of copper with melamine, which aids
in the homogenous dispersion of copper atoms. Yuan and co-workers [38] reported the
use of melamine crosslinked with 1-hydroxyethylidene-1,1-diphosphonic acid and some
transition metal to form core-shell transition metal phosphides in N-doped carbon for
water electrolysis and zinc air battery applications. However, in this study, the condition is
optimized and melamine is directly crosslinked with the metal (Cu). The as-prepared Cu
NPs/NC is used for the ECO2RR in H-Cell for the production of liquid products, as shown
in Figure 1.
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Figure 1. Schematic presentation of the three-electrode setup (H-Cell) for electrochemical
CO2 reduction.

2. Experimental
2.1. Materials

Copper chloride dihydrate (CuCl2.2H2O) (99.95%) and melamine (99.0%) were pur-
chased from Sigma Aldrich, US. Methanol (CH3OH) (99.8%) and diethyl ether ((CH3CH2)2O)
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(99.9%) were procured from Sharlu (Sharjah, United Arab Emirates). Nitrogen gas (N2)
was supplied by Abdullah Hashem Industrial Gas Co., Ltd., Dammam, Saudi Arabia.

2.2. Preparation of Copper Melamine Complex

A total of 170 mg copper chloride dihydrate was dissolved in 20 mL of N2-purged
methanol, then melamine (250 mg) was added to the solution. The mixture was heated to
100 ◦C for 14 h. After that, the solution was kept to cool at room temperature. The green
powder was collected, washed three times with diethyl ether, and dried under vacuum
at 50 ◦C.

2.3. Preparation of Copper Nanoparticles Decorated on Thin Carbon Nanosheets

The as-prepared copper melamine complex was placed in crucible and heated under
N2 atmosphere at different temperatures (600, 700 and 800 ◦C) with 5 ◦C/min heating rate
for 2 h to obtain Cu-NP/NC.

2.4. Preparation of Electrocatalyst

10 mg of the Cu-NP/NC catalyst was dispersed in 1 mL mixture of 750 µL isopropanol,
200 µL DI water and 50 µL Nafion (5%). The mixture was sonicated for 20 min. Then 100 µL
of the suspension was drop casted onto 1 cm2 conductive carbon paper and dried at room
temperature. This preparation method is schematically presented in Figure 2.
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2.5. Characterization

Morphological and detailed microstructural attributes of the materials were dis-
cerned by transmission and high-resolution transmission electron microscopy techniques
(TEM/HR-TEM, Tecnai TF20) and field emission scanning electron microscopy (FESEM,
Tescan Lyra-3). Other techniques employed for the characterization of the samples were
X-ray diffraction (XRD, Rigaku MiniFlex) and 1H NMR spectroscopy (LAMBDA 500 spec-
trophotometer). Potentiostat (Gammray 620) was used for electrochemical analysis.

2.6. The Electrochemical Studies

The ECO2RR performance is investigated with an H-cell system consisting of a sliver
silver chloride electrode (Ag/AgCl) as a reference electrode. A platinum mesh was used as a
counter electrode. The as-prepared Cu-NP/NC film on conductive carbon paper was used
as working electrode. A potentiostat (Gammray 620) is connected to the electrodes in the H-
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Cell. The ECO2RR performance was evaluated by carrying out linear sweep voltammetry
(LSV) techniques and calculated the overpotential at different current densities (current
normalized to the geometric surface area of the electrode). The cyclic voltammetry (CV)
and LSV experiments were performed in 0.5 M potassium bicarbonate (KHCO3). All the
electrochemical measurements were normalized to the RHE by using the following formula:

ERHE = EAg/AgCl + 0.059 × pH + EAg/AgCl

where EAg/AgCl = 0.199 V [17].
The potential was swept from 0.0 to −1.4 V vs. RHE. The electrochemical impedance

spectroscopy (EIS) was performed by varying the frequency from 105 to 0.1 Hz under
identical electrolyte and electrodes to the LSV.

The reduction products were evaluated by running the potentiostatic measurements
at different potentials (−0.5 to −1.2) for 2 h, the liquid products were collected from the
cell and quantified with 1H NMR.

3. Results and Discussion

The phase structure of Cu-NP/NC was investigated with powder XRD as shown in
Figure 3. For the three catalysts Cu-NP/NC-600, Cu-NP/NC-700, and Cu-NP/NC-800,
reflections at 43.4◦ and 50.3◦ were recorded ascribed for the planes (111) and (200), respec-
tively (JCPDS number 01-085-1326) [39]. Additionally, the reflection peak at 26.2◦ (002)
corresponded to NC (JCPDS# 03-065-6212) [40], which indicates the successful formation of
metallic copper of nitrogen-doped carbon.
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Figure 3. XRD of Cu-NP/NC.

Further information about the composites’ chemical composition was explored using
the EDS (Figure S1), which confirms the existence of the elements (Cu, C and N). Therefore,
from the XRD and the EDS, the formation of metallic copper on nitrogen-doped carbon
was confirmed.

The microstructure and morphology of the Cu-NP/NC were inspected with the SEM
and the TEM. Figure 4a shows the SEM image of Cu-NP/NC-600, which reveals sheet-
like morphology and the showed a thin sheet in the case of Cu-NP/NC-700 (Figure 4b).
However, upon increasing the temperature to 800 ◦C the copper particles start to grow
and agglomerate, as it is observed in Figure 4c for the catalyst Cu-NP/NC-800. The TEM
(Figure 4d) confirms the formation of small and uniform dispersed copper nanoparticles
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(<20 nm) onto the thin sheet of carbon. The copper nanoparticles were smaller than 10 nm
in size (Figure 4e), and in Figure 4f the high-resolution TEM (HRTEM) was carried out
for the highlighted particles and the interplanar distance was estimated to be 0.2 nm,
corresponding to the phase (111) for the metallic copper.
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The LSV was recorded for the three electrocatalysts in CO2 saturated 0.5 M KHCO3 and
compared with N2 saturated in the same electrolyte as shown in Figure 5a. The polarization
curves were demonstrated in Figure S2, which shows that the current density (CD) was
increasing with increasing potential. It can be noted that there is significant enhancement
upon the saturation of the electrolyte with CO2 (solid lines) compared to N2 (dashed
lines). The observed CD at a potential of 1.0 VRHE was −10, −6.2, and −3.7 mA cm−2

for the electrocatalysts Cu-NP/NC-700, Cu-NP/NC-600 and Cu-NP/NC-800, respectively.
This activity order could be explained as follows: for the sample prepared at 600 ◦C less
graphitic carbon and nitrogen were formed compared to the catalyst Cu-NP/NC-700,
which significantly influences the electrode’s conductivity. However, the electrode Cu-
NP/NC-800 preparation of the sample at a higher temperature led to higher degree of
agglomeration as observed in the SEM (Figure 2c), which led to a drop in the surface area
and accordingly decrease in the electrochemical performance. The partial current densities
were shown in Figure 5b, which is the current required to generate formate and acetate. It
can be observed that the partial current density is increasing with an increase the potential
until −1.0 V. Moving to more cathodic potential (−1.2 V), the partial current densities of
acetate and formate decreased.

Electrochemical surface area (ECSA) was estimated by calculating the double layer
capacitance (Cdl) [28,41]. Figure 6a–c shows the recorded CVs in the capacitive region
for the electrodes Cu-NP/NC-600, Cu-NP/NC-700, and Cu-NP/NC-800, respectively.
Figure 6d shows the respective slopes calculated from the previous figures which represent
the Cdl. The electrode Cu-NP/NC-800 exhibited the lower Cdl (0.1 mF cm−2) due to the
agglomeration of the Cu particles, followed by Cu-NP/NC-600 (0.2 mF cm−2) and finally,
the electrocatalyst Cu-NP/NC-700, which possessed the highest ECSA
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Figure 6. CVs of (a) Cu-NP/NC-600, (b) Cu-NP/NC-700, (c) Cu-NP/NC-800 electrocatalysts in
CO2 saturated 0.5 M KHCO3 electrolyte, and (d) is the respected Cdl slopes of the electrodes. The
scan rate (a to c) purple: 50 mVs−1, Green: 100 mVs−1, Orange: 150 mVs−1, Magenta: 200 mVs−1,
Pink: 250 mVs−1.

With the highest Cdl (0.6 mF cm−2). Moreover, the electrode conductivity is considered
as a critical factor in the electrochemical performance; hence, the conductivity of the
catalysts was investigated with the electrochemical impedance spectroscopy (EIS). EIS
is a very important tool used to understand the electrode conductivity and the charge
transfer resistance (Rct). The Nyquist plot is obtained from the EIS experiment; the smaller
semicircle represents the higher conductivity. Figure 7a reveals the Nyquist plot for the
three electrodes at applied potential of −1.0 vs. RHE. The Rct values were 31.5, 26.0,
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and 27.5 Ω cm2 for the electrodes Cu-NP/NC-600, Cu-NP/NC-700, and Cu-NP/NC-800,
respectively. As expected, the sample prepared at 700 ◦C with less degree of agglomeration
with graphitic carbon and nitrogen exhibited the highest conductivity (lower Rct).
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To obtain an idea about the kinetics and the mechanism of the reduction reaction
Tafel slopes were investigated and compared for the three Cu/NC electrodes. Tafel slopes
were estimated for the three electrodes using Tafel plots (Figure 7b). From the figure, the
estimated values were 130, 112, and 141 mV dec−1 for the electrodes Cu/NC-600, Cu/NC-
700, and Cu/NC-800, respectively. The Tafel equation suggests that the smaller slope
value is translated into faster reaction kinetics [42]. The Cu/NC-700 exhibited the lowest
Tafel value with an excellent agreement with values reported in the literature for Cu-based
electrocatalysts. This small value suggests facilitated activation of the adsorbed CO2 on
the surface of the catalyst (by the stabilization of the CO2 •—). Additionally, it has been
reported that the N atom doped in the carbon is considered as an excellent active site for
CO production due to its weak adsorption energy, which led to the desorption of CO [36].
Moreover, the stability of the Cu/NC-700 was investigated using chronoamperometry by
applying constant potential for a period of time and recording the produced current density.
As it is observed in Figure 8b, the electrode Cu/NC-700 exhibited excellent stability at
−15 mA cm−2 for 12 h in CO2 saturated in 0.5 M KHCO3 with no significant drop in the
current. Chronoamperometry was carried out at different potentials (−0.5, −0.8, −1.0 and
−1.2 V) for 2 h (Figure 8a), then after the chrono, the solution was evaluated using 1H
NMR (Figure S3). As in Figure 9, two conversion products were observed: formic and
acetic acid. The highest FE of 59.1% was a conversion rate of 31.0 and 3.2 µmol h−1 for the
formic acid and acetic acid, respectively. The higher cathodic current observed at higher
potential is predominant by the hydrogen evolution reaction (HER), obtained from the
water reduction [4].

The electrochemical performance and conversion efficiency were compared with recent
similar reports in Table 1, which compares other Cu-based, carbon based, and Cu-carbon
composites for the electroreduction of CO2 into useful liquid products. The Cu/NC-700
can produce formic acid with a FE of 40.9% at low potential of −0.8 V vs. RHE. Acetic acid
can also be significantly detected with a FE of 16% is in the range of the reported literature.

The proposed mechanism for CO2 reduction using this catalyst is as follows: firstly
adsorption and reduction of CO2 (to the catalyst surface) to form CO2 radical (CO2•—). The
formed radical is got protonated by the electrolyte to form (HCOO—)ads, which desorb to
generate formate. In the case of acetate, prior to the protonation step of the first (CO2•—)
radical, a second (CO2•—) radical is combined with first one to form (—OOC—COO—);
similarly, this intermediate is protonated and forms acetate. Since the yield of formate is
higher than acetate, this means the rate of (CO2•—) protonation is faster than the rate of
(—OOC—COO—) formation [43,44].
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Table 1. Comparison of the catalytic performances of Cu/NC-700 and the similar electrocatalysts
reported in literature for the reduction of CO2 to liquid products.

Electrocatalyst Potential (V vs. RHE) Current (mA cm−2) Main
Product FE % Ref.

Cu NPs −0.8 −1.0

Ethanol 4

[9]Formate 40

Acetate 5

GN/Cu −0.9 −2.2 Ethanol 9.9 [45]

OD Cu/C −0.5 - Ethanol 34.8 [46]

B-doped
graphene −1.4 (vs. S.C.E.) −1.4 Formate 66 [47]

N-doped G −0.84 −7.5 Formate 73 [48]

Cu NPs/NG −1.2 ~−1.7 Ethanol 63 [49]

Cu2O/ZnO/G −1.8 (vs. Ag/AgCl) −8.0 N-propanol 30 [50]
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Table 1. Cont.

Electrocatalyst Potential (V vs. RHE) Current (mA cm−2) Main
Product FE % Ref.

Cu2O/NGN −1.0 −7.8

Ethanol 25

[31]
N-propanol 15

Formate 8

Acetate 6

NDD/Si RA −1.0 −2.0
Formate 14

[43]
Acetate 77

Cu/NC-700 −0.8 −4.9 Formate 40.9 This
workCu/NC-700 −0.8 −4.9 Acetate 16

4. Conclusions

In this work, N-doped carbon nanosheets supported copper nanoparticles (Cu/NC)
were prepared via pyrolysis of copper melamine complex at different temperatures and
were investigated for the electrochemical CO2 reduction reaction in 0.5 M KHCO3 solution.
The Cu/NC-700 exhibited the highest current density and selectivity for the conversion
of CO2 with faradic efficiencies of 43.2% for formic acid and 16.1% for acetic acid, with a
conversion rate of 34.0 and 3.2 µmol h−1, respectively at a reduction potential of −0.8 V
vs. RHE and a current density of −4.9 mA cm−2. Moreover, the optimized electrocata-
lyst shows long term stability without significant loss in current density for 12 h. The
Cu/NC-700 electrode exhibited a higher ECSA than Cu/NC-600 and Cu/NC-800. The EIS
measurements showed better electrical conductivity of the electrode Cu/NC-700 compared
to the other two electrocatalysts.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano13010047/s1: Figure S1: EDS of Cu/NC-700; Figure S2: LSV
curves of Cu-NP/NC electrocatalysts in N2 and CO2 saturated 0.5 M KHCO3 electrolyte.; Figure S3:
(a) Comparative NMR spectra for the blank electrolyte sample with the internal standard & D2O and
(b) the sample after the chrono for 2 h at −0.8 VRHE with the internal standard & D2O.
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