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Abstract: Lithium vanadium oxide (Li3VO4, LVO) is a promising anode material for lithium-ion batteries
(LIBs) due to its high theoretical capacity (394 mAh g−1) and safe working potential (0.5–1.0 V vs. Li+/Li).
However, its electrical conductivity is low which leads to poor electrochemical performance. Graphene
(GN) shows excellent electrical conductivity and high specific surface area, holding great promise in
improving the electrochemical performance of electrode materials for LIBs. In this paper, LVO was
prepared by different methods. SEM results showed the obtained LVO by sol-gel method possesses
uniform nanoparticle morphology. Next, LVO/GN composite was synthesized by sol-gel method. The
flexible GN could improve the distribution of LVO, forming a high conductive network. Thus, the
LVO/GN composite showed outstanding cycling performance and rate performance. The LVO/GN
composite can provide a high initial capacity of 350.2 mAh g−1 at 0.5 C. After 200 cycles, the capacity of
LVO/GN composite remains 86.8%. When the current density increased from 0.2 C to 2 C, the capacity
of LVO/GN composite only reduced from 360.4 mAh g−1 to 250.4 mAh g−1, demonstrating an excellent
performance rate.

Keywords: lithium vanadium oxide; graphene; anode; lithium-ion batteries

1. Introduction

In recent decades, traditional fossil energy (coal, oil, natural gas) has been widely
exploited and utilized, which bring serve negative impacts on the environment such as
air pollution, climate warming and other issues. Moreover, fossil energy sources are not
renewable. Therefore, it is essential to developing environmentally friendly, renewable and
sustainable green energy (wind, solar, etc.). However, the green energy is not continuous.
Energy storage devices play an important role in utilizing green energy [1–6]. Among
them, lithium-ion batteries (LIBs) show many advantages such as high energy density, high
operating voltage, no memory effect, and being environmentally friendly [7–10]. Thus,
LIBs have been widely used in various fields, including portable electronic devices, hybrid
vehicles, pure electrical vehicles (EVs), and aerospace.

With the rapid development of EVs, there is an increasing demand for EVs’ LIBs elec-
trochemical performance. In general, the electrochemical performance of batteries is related
to the electrode active materials’ intrinsic properties such as theoretical capacity, electrical
conductivity, and volume change during cycling [11–13]. At present, the commercial LIBs’
anode active material is graphite which is stable during cycling and low cost. However, its
theoretical capacity is low (372 mAh g−1). In addition, the chemical kinetics of graphite
is slow. Moreover, the Li+ intercalation potential of graphite is low (0.1 V), which leads
to lithium dendrites easily forming during charge and discharge, resulting in irreversible
lithium loss and battery safety issues. Therefore, the development of novel anode materials
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with high-capacity, safe Li+ intercalation potential, and long cycle life such as silicon [14],
metal oxide [15], transition metal oxides [16] have attracted more and more attention.

Among various anode materials, lithium vanadium oxide (Li3VO4, LVO) is a promis-
ing anode material for LIBs due to its high theoretical capacity (394 mAh g−1) and safe
working potential (0.5–1.0 V vs. Li+/Li) [17]. However, its electrical conductivity is low
which leads to poor electrochemical performance. Combining LVO with high conductive
carbon material is an effective method to enhance LVO electrochemical performance. Zhai
et al. prepared carbon-coated nanosized LVO (LVO-BMC) through ball-milling route fol-
lowed by CVD technique [18]. The LVO-BMC showed an initial discharge capacity of
396 mAh g−1 at 20 mA g−1, and maintained 245 mAh g−1 after 50 cycles with an improved
capacity retention of 61.9%. Zhang et al. synthesized carbon encapsulated LVO with
core-shell nanostructure in which the carbon was uniformly coated on the LVO [19]. Thus,
LVO/C showed enhanced cycling stability (maintain 401 mAh g−1 at 0.1 C after 50 cycles).
Zhao et al. fixed LVO nanoparticles in graphitized porous carbon (HP-LVO/C) [20]. The
HP-LVO/C showed significantly improved cycle stability (kept a high-capacity of 381 mAh
g−1 at 0.2 A g−1 after 100 cycles) because the hierarchically porous carbon can provide fast
ion transport path and release the volume change of LVO during cycling.

In this work, we prepared LVO by different methods (solid-phase method, hydrother-
mal method and sol-gel method). The morphology of LVO was studied to confirm the
suitable synthesis method. Next, LVO/GN composite was synthesized by sol-gel method.
The flexible GN could inhibit the volume expansion of LVO and enhance the electrical
conductivity of the LVO/GN composite. As a result, the LVO/GN composite showed a
high initial capacity of 350.2 mAh g−1 at 0.5 C with a high-capacity retention of 86.8% after
200 cycles, which was higher than that of other researchers’ results [18–20]. When the cur-
rent density increased from 0.2 C to 2 C, the capacity of LVO/GN composite only reduced
from 360.4 mAh g−1 to 250.4 mAh g−1, demonstrating excellent rate performance. Our
LVO/GN composite provided a promising option for high-performance anode materials
for LIBs.

2. Experimental
2.1. Preparation of LVO

The LVO was synthesized by solid-phase method, hydrothermal method and sol-gel
method. In solid-state processes, Li2CO3 and V2O5 powders with a mole ratio of 3:1 were
ground for 0.5 h. The mixture was put into a muffle furnace and kept at 600 ◦C for 10 h
in air with a heating rate of 5 ◦C min−1. The obtained white sample was LVO (named as
S-LVO). For hydrothermal method, LiOH and V2O5 with a mole ratio of 6:1 were mixed in
100 mL deionized water and then poured into a Teflon-lined stainless-steel autoclave at
180 °C for 20 h in an oven. The obtained sample was LVO (named as H-LVO). The sol-gel
processes were as follows: Li2CO3 and V2O5 powders with a mole ratio of 3:1 were mixed
in 100 mL deionized water. The mixture was dried in an oven at 90 °C for 12 h to obtain the
precursor powder. Next, the precursor powder was calcined in a tubular furnace at 600 °C
for 10 h under Ar. The obtained sample was LVO (named as G-LVO).

2.2. Preparation of LVO/GN Composite

The LVO/GN composite was synthesized by sol-gel method. In this case, 200 mg
graphene oxide was added in 500 mL deionized water. Next, 30 mmol Li2CO3 and 10 mmol
V2O5 were mixed in graphene oxide solution. The mixture was dried in an oven at 90 °C
for 12 h to obtain the precursor powder. Next, the precursor powder was calcined in a
tubular furnace at 600 °C for 10 h under Ar. The obtained sample was LVO/GN composite.
The schematic illustration of LVO/GN composite synthesis is shown in Figure 1.
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Figure 1. Schematic illustration of LVO/GN composite synthesis.

2.3. Characterization

The structure of LVO and LVO/GN composite was characterized by X-ray diffraction
(XRD, Rigaku MiniFlexll, Rigaku Corporation, Tokyo, Japan). The morphologies of LVO
and LVO/GN composite was characterized by scanning electron microscope (SEM, Zeiss
Supra 55 and Phenom Prox, Carl Zeiss, Oberkochen, Germany). Thermal gravimetric
analysis was performed by a thermal analyzer (TGA, TGA/SDTA 851, Mettler Toledo,
Greifensee, Switzerland).

2.4. Electrochemical Measurements

In order to prepare anode, we mixed 80% LVO or LVO/GN composite, 10% acetylene
black and 10% polyvinylidene fluoride (PVDF) in N-methylpyrrolidone (NMP) to form
a slurry which was then coated on copper foil and dried at 100 ◦C for 12 h. The mass
loading of active material is about 1.5 mg cm−2. We assembled it into a CR2025 coin
cell in the glove box filled with high-purity Ar, with lithium foil as counter electrode,
polypropylene film (Celgard 2400) as separator and 1.0 M LiPF6 in ethylene carbonate
(EC)/dimethyl carbonate (DMC)/carbon Ethyl methyl acetate (EMC) (in a volume ratio of
1:1:1) with 2% vinylene carbonate (VC) additives as electrolyte. Cyclic voltammetry (CV)
and electrochemical impedance spectroscopy (EIS) tests were performed using a CHI660D
electrochemical workstation. The cycling performance was tested by a LAND CT2001A
battery tester (Wuhan, China).

3. Results and Discussion

Figure 2a was the XRD patterns of LVO samples synthesized by solid-phase method,
hydrothermal method and sol-gel method. All LVO samples showed peaks at 2θ of 16.1◦,
21.6◦, 22.7◦, 24.1◦, 28.0◦, 32.9◦, 36.2◦, 36.4◦, 37.5◦, 40.6◦, 43.1◦, 47.9◦, 50.4◦, 56.7◦, 57.5◦,
58.4◦, 67.1◦, and 71.6◦ which were, respectively, attributed to the (100), (110), (011), (101),
(111), (200), (210), (002), (201), (112), (211), (221), (202), (230), (300), (320), (203), and (322)
diffraction planes of spinel Li3VO4 (JCPDS No. 38-1247) [21,22]. The crystallite size can
be obtained by Debye Scherrer equation d = K λ/β cosθ in which d = average crystallite
size, K = the sharp factor, λ = the X-ray wave length, β = the reflection width and θ = the
diffraction angle [23]. The crystallite sizes of S-LVO, H-LVO, G-LVO calculated from the
XRD data were about 5 µm, 3 µm, 1 µm. For the XRD diffraction pattern of H-LVO, there
were another weak diffraction peaks at about 30◦. These peaks are attributed to the (002)
and (202) diffraction planes of the Li2CO3 (JCPDS No. 36-0787) [24]. XRD results show that
the purity of LVO sample by hydrothermal method is not high. Hydrothermal synthesis
refers to the synthesis through chemical reactions in an aqueous solution above the boiling
point of water. The reaction temperature of hydrothermal method is relatively low. Thus,
the sample by hydrothermal method is not high purified. The morphologies of three LVO
samples were studied to confirm the best synthesis method. Figure 2b is the SEM image
of S-LVO (by solid-phase method). It can be seen that S-LVO particle is relatively large
(2–10 µm). In addition, the particle size is various. As shown in Figure 2c, H-LVO particle is
also big. However, the particle size is uniform. From Figure 2d, the LVO sample by sol-gel
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method showed a relatively small and uniform particle size (1 µm). From the morphologies
of three LVO samples, the sol-gel method is suitable for preparing LVO nanoparticles.

Figure 2. (a) XRD patterns of G-LVO, H-LVO, and S-LVO. (b) SEM image of S-LVO. (c) SEM image of
H-LVO. (d) SEM image of G-LVO.

According to the analysis above, LVO/GN composite was synthesized by sol-gel
method. XRD was carried out to analyze the structure of LVO/GN composite. As shown
in Figure 3a, LVO/GN composite showed peaks at 2θ of 16.2◦, 21.7◦, 22.8◦, 24.2◦, 28.1◦,
33.0◦, 36.3◦, 36.5◦, 37.6◦, 40.7◦, 43.2◦, 47.9◦, 50.5◦, 56.8◦, 57.6◦, 58.5◦, 67.2◦, and 71.7◦ which
is similar to that of LVO. The GN’s peaks were not observed in XRD pattern of LVO/GN
composite, which is due to low GN content in LVO/GN composite. In order to analyze
the content of GN, TG experiment of LVO/GN composite was conducted (Figure 3b).
From room temperature to 350 ◦C, the weight loss is 5% which is due to the evaporation
of free water on the sample’s surface [25–27]. From 350 ◦C to 700 ◦C, the weight loss is
11.2% which is the reaction of GN to CO2. When the temperature reached at 700 ◦C, the
weight kept stable. The final product is only LVO. Therefore, the content of GN in the
LVO/GN composite is 11.2 wt.%. Figure 3c is the SEM image of LVO/GN composite.
Figure 3c showed most LVO nanoparticles uniformly dispersed on GN. Figure 3d is the
TEM image of LVO/GN composite. Figure 3d confirmed the uniform distribution of LVO
particles on GN. Moreover, the LVO particle size decreased to below 500 nm due to GN
inhibiting LVO particle growth. The uniformly dispersed conductive structure can improve
the electrical conductivity of LVO/GN composite and buffer the volume expansion of LVO
during cycling.

In order to investigate the electrochemical performance of LVO/GN composite, CV
experiment was carried out. Figure 4a showed the initial three-cycle CV curves of LVO in
the voltage range of 0–3.0 V at a scan rate of 0.2 mV s−1. The green line is the first cycle. In
addition, the red and blue lines are the 2nd and 3rd cycle, respectively. In the first cycle CV
curve, three reduction peaks appeared at 0.75 V, 0.62 V and 0.25 V. The peak at 0.25 V could
be attributed to the formation of solid electrolyte interface (SEI) film [28–32]. The peaks
at 0.75 V and 0.62 V corresponded to Li+ intercalation into the LVO. The oxidation peak
at 1.35 V indicated that Li+ deintercalated from LVO [33,34]. In the subsequent cycles, the
reduction peaks changed from 0.75 V and 0.62 V to 0.85 V and 0.72 V while the oxidation
peak changed from 1.35 V to 1.32 V. Moreover, the peaks’ area increased, which can be
attributed to the activation during lithiation and delithiation [35]. For LVO/GN composite,
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CV curves were similar to that of pure LVO. However, the current of LVO/GN composite
was obviously higher than that of LVO (Figure 4b), implying fast chemical kinetics for
LVO/GN composite. Figure 4c showed the galvanostatic charge-discharge curves of the
first cycle for LVO/GN electrode at 0.2 C. The galvanostatic charge-discharge curves
showed a voltage plateau at 0.85 and 1.35 V, which was consistent with the CV results.

Figure 3. (a) XRD patterns of LVO and LVO/GN composite. (b) TGA curve of LVO/GN composite.
(c) SEM image of LVO/GN. (d) TEM image of LVO/GN.

Figure 4. (a) CV curves of LVO electrode at a scan rate of 0.2 mV s−1. (b) CV curves of LVO/GN
electrode at a scan rate of 0.2 mV s−1. (c) The charge/discharge curves of LVO/GN electrode at
0.2 C. (d) The cycling performance of LVO electrode and LVO/GN electrode at 0.5 C. (e) The rate
performance of LVO electrode and LVO/GN electrode. (f) The charge/discharge curves of LVO/GN
electrode at 0.2 C, 0.5 C, 1.0 C, 2.0 C, 5.0 C, 10.0 C. (1 C = 400 mA g−1).
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Figure 4d was the cycling performance of LVO and LVO/GN composite. The LVO/GN
composite exhibited improved cycling performance. At 0.5 C, the initial reversible capacity
of LVO/GN composite was as high as 350.2 mAh g−1. After 200 cycles, the capacity was
303.9 mAh g−1 with a high-capacity retention of 86.8%. For LVO, the capacity fast decreased
during the first 15 cycles and slightly increased and then kept stable in the subsequent
cycles. This phenomenon was observed in other vanadium oxide [36]. The rapid capacity
decrease is resulted from the volume expansion and formation of SEI layer. The capacity’s
slight increase might then be attributed to the increased crystallinity of active materials and
gradual activation progress. The subsequent capacity kept stable due to the complication
of activation progress. After 200 cycles, the capacity of LVO was 248.1 mAh g−1, and the ca-
pacity retention was as low as 71.8%. The capacity was calculated by the total mass of active
material in our study. For LVO/GN composite, GN also contributed capacity. At 0.5 C, GN
showed a stable capacity of 282.6 mAh g−1 [37]. We can obtain the capacity of G-LVO in
G-LVO/GN composite by the equation: QG-LVO/GN (303.9 mAh g−1) = WG-LVO (88.8 wt%)
× QG-LVO + WGN (11.2 wt%) × QGN (282.6 mAh g−1). The G-LVO in G-LVO/GN com-
posite delivered capacity of 306.8 mAh g−1 at 0.5 C which is higher than that of pure
LVO (248.8 mAh g−1). Moreover, LVO/GN composite showed good rate performance
(Figure 4e). At 0.2 C, 0.5 C, 1.0 C, 2.0 C, 5.0 C, and 10.0 C, LVO/GN composite showed high
discharge capacities of 363.2 mAh g−1, 321.3 mAh g−1, 301.9 mAh g−1, 251.8 mAh g−1,
180.5 mAh g−1, 100.9 mAh g−1, respectively. The charge capacities of LVO/GN compos-
ite at 0.2 C, 0.5 C, 1.0 C, 2.0 C, 5.0 C, and 10.0 C were 360.4 mAh g−1, 319.8 mAh g−1,
300.3 mAh g−1, 250.4 mAh g−1, 179.6 mAh g−1, 100.3 mAh g−1, respectively. Under the
same rate, the discharge capacities of LVO were only 252.3 mAh g−1, 220.6 mAh g−1,
180.9 mAh g−1, 110.6 mAh g−1, 49.9 mAh g−1, 40.2 mAh g−1 while the charge capaci-
ties of LVO were only 249.7 mAh g−1, 219.8 mAh g−1, 180.3 mAh g−1, 110.2 mAh g−1,
49.8 mAh g−1, 40.2 mAh g−1, respectively. The galvanostatic charge-discharge curves of
the LVO/GN composite at various rates confirm the good rate performance for LVO/GN
composite (Figure 4f). The improved electrochemical performance of LVO/GN composite
can be attributed to the positive impact of GN and LVO. Compared with commercial
graphite anode, LVO/GN composite showed a higher capacity because the theoretical
capacity of LVO is higher than that of graphite. Moreover, LVO/GN composite showed
better cycling performance than pure LVO. The high mechanical performance of GN could
significantly buffer the volume change of LVO during cycling processes, effectively sup-
pressing the electrode pulverization, consequently ensuring the high cyclic stability. GN
with high electrical conductivity can increase the electrical conductivity of LVO through
offering conductive highways [38,39]. Moreover, small LVO nanoparticles were uniformly
distributed on GN to form a multi-dimensional integrated structure, building a comprehen-
sive electron/ion transport network and stable structure, which is beneficial for the cyclic
performance [40–42].

In order to characterize the positive effect of GN on LVO, EIS analysis for LVO and
LVO/GN composite was carried out. Figure 5a showed the EIS spectrum of LVO and
LVO/GN composite. In the EIS spectrum, the high-frequency region is related to the charge
transfer process which reveals the characteristics of electrochemical reaction resistance
while the low-frequency region is related to the electrical conductivity of electrode mate-
rial [43–45]. The equivalent circuit model of EIS spectrum is shown in Figure 5b, where R is
the interface resistance, Rct is the charge transfer resistance, CPE is the capacitance, and
W is the Warburg impedance. The Rct of LVO/GN composite is smaller than that of LVO
electrode, indicating that GN effectively enhances the electrical conductivity of LVO and
improves the reaction kinetics.
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Figure 5. (a) Nyquist plots of LVO and LVO/GN. (b) The equivalent circuit model.

4. Conclusions

In conclusion, a high-performance anode material for LIBs was obtained by success-
fully anchoring LVO nanoparticles uniformly on the GN through a simple sol-gel method.
The GN not only improves the ion/electron transport kinetics but also acts as a buffer
matrix to effectively alleviate the volume change of LVO during the continuous Li+ interca-
lation/delithiation processes. In addition, LVO nanoparticles were inhibited by GN, which
can alleviate the LVO particle growth. As a result, the LVO/GN composite exhibited high
reversible capacity (350.2 mAh g−1 at 0.5 C), good cyclic performance (303.9 mAh g−1 after
200 cycles at 0.5 C with a high-capacity retention of 86.8%), and excellent rate capability
(100.3 mAh g−1 at 100 C). Therefore, the LVO/GN composite is a promising anode material
for high-performance LIBs. In addition, the rational design in this work provides a guide
for decorating various nanoparticles on the GN, and these materials can be widely used in
energy storage, catalysis and other fields.
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