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Abstract: Currently, hydrogen is recognized as the best alternative for fossil fuels because of its
sustainable nature and environmentally friendly processing. In this study, hydrogen dissociation
reaction is studied theoretically on the transition metal doped carbon nitride (C2N) surface through
single atom catalysis. Each TMs@C2N complex is evaluated to obtain the most stable spin state for
catalytic reaction. In addition, electronic properties (natural bond orbital NBO & frontier molecu-
lar orbital FMO) of the most stable spin state complex are further explored. During dissociation,
hydrogen is primarily adsorbed on metal doped C2N surface and then dissociated heterolytically
between metal and nitrogen atom of C2N surface. Results revealed that theFe@C2N surface is the
most suitable catalyst for H2 dissociation reaction with activation barrier of 0.36 eV compared with
Ni@C2N (0.40 eV) and Co@C2N (0.45 eV) complexes. The activation barrier for H2 dissociation
reaction is quite low in case of Fe@C2N surface, which is comparatively better than already reported
noble metal catalysts.

Keywords: hydrogen dissociation reaction; hydrogen energy; C2N surface; single atom catalyst;
catalysis; transition metals

1. Introduction

Catalysts are the backbone of many commercially available energy conversion and
industrial processes [1]. Currently, catalytic technology is managing the production of
approximately more than ten trillion dollars of goods annually in power, petroleum, food,
and chemicals industries [2]. Noble metals have displayed exceptionally outstanding
catalytic properties for energy conversion and production and have surpassed all other
catalysts. Despite their wide-range use, there are some challenges associated with noble
metals catalysts, such as their limited availability and high prices [3]. From economical
perspective, the cost and scarcity of many promising catalytic metals such as palladium
and platinum reduces their extensive use [4,5]. To deal with this problem effectively, many
other catalysts are being considered with the motive of obtaining commercially viable
economical catalyst with uncompromised catalytic efficiency.

The key goal of alternative approaches being considered is to reduce the quantity of
these expensive noble metals while possibly improving or at least maintaining performance.
Thus, in recent times, single atom catalysis (SAC) approach has been proposed, so that
catalysis can be accomplished via single metal atom on a support surface [6–8]. Single
atom catalysts usually include uniformly distributed catalyst on supports which act to
stabilize these catalysts. With the passage of time, many synthetic procedures have been
developed to prepare these catalysts. Novel techniques that are used to synthesize and
characterize single atom catalyst are wet chemistry [9], atomic layer deposition [10] and
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mass selected soft landing [11]. The catalytic efficiency of these catalysts is taking hold,
but the understanding of these type of catalysts is still limited. Therefore, the study of
supported single metal atom catalysis is of great interest [12].

Over the years, hydrogen has been recognized as the best alternative for fuels because
of its sustainable nature and environment friendly processing [13]. Among chemical
reactions being catalyzed in industries, hydrogen dissociation reaction is the most carried
out process. It is a part of many important chemical reactions including production of
ethylene from hydrogen-based energy fuel cells [14], and in Fischer-Tropsch process [15]. It
is also part of famous Haber Bosch process for ammonia synthesis [16].

Previous studies have revealed that numerous noble metals such as Pt [17], Ru [18],
Pd [19], Rh [20], and Au [21] have the potential to efficiently catalyze hydrogen dissoci-
ation reactions. However, these noble metals are very expensive and generally work at
high temperature, which make them economically non-feasible [22]. Transition metals
such as Mn, Fe, Ni, Co, Zn, and Cu etc. have gained much interest due to their relatively
high abundance and low cost [23,24]. Replacing noble metals with a low-cost material is
necessary for large-scale and practical application. On the contrary side, the carbon-based
materials, organic frameworks [25], graphyne [26], graphene [27], graphitic carbon nitride
(g-C3N4) [28], porous and other nanostructured materials have received considerable at-
tention as adsorbent (support materials for catalyst) due to their promising H2 storage
capacities, large surface areas at low temperature and potential thermal and electronic
properties [29,30]. Yan et al. investigated the Pd doped graphene surface for hydrogen
dissociation reaction during the hydrogenation of 1,3-butadiene. They observed that disso-
ciation of H2 occurred over the Pd atom (for subsequent hydrogenation) with moderate
energy barrier of 0.84 eV [31]. However, scientists are still trying to search and design
more efficient catalysts that could offer more selectivity and economical way for hydrogen
dissociation reaction.

Recently, a novel 2-D C2N monolayer was synthesized experimentally by Mahmood
et al. [32]. The special nitrogenated cavities in the C2N monolayer are evenly distributed
which serve as optimal site for capturing and holding single metal atom. The surface
used is quite stable and employed in many research areas including sensors [33], storage
materials [34], as support [35] and in drug delivery [36]. Furthermore, metal coordinated
C2N-based materials are also employed as catalyst in lithium sulfur batteries as well as in
oxygen reduction [37,38]. Therefore, the C2N sheet can be employed as a support for single
metal atom similar to g-C3N4 and graphene [35]. 2D C2N surface has been previously
reported in literature to effectively catalyze several important reactions, for example H2
evolution reaction, N2 reduction, CO [39] and O2 reduction reactions [40] due to rich
nitrogen content and periodic porous structure [41–44].

Herein, we have investigated the hydrogen dissociation reaction through late transition
metal (TM) atoms based single atom catalysis using density functional theory. In the current
study, we mainly focus on the dissociation of H2 on low-cost transition metals (TMs), for
example Fe, Co and Ni supported on C2N surface [45–47]. Being quite stable, C2N surface
stabilizes the single atom catalyst quite amazingly. In comparison to carbon-based surface,
this surface also bears nitrogen which can play a good role in hydrogen dissociation reaction
due to electronegativity difference with hydrogen and can tune the electronic properties of
TMs [48,49].

2. Computational Methodology

In this study, M06-2X/6-31G(d,p) is used for the optimization of all the structures
using Gaussian09 software. M06-2X is a long-range functional which is well reported to
estimate non-covalent interaction energies and barrier heights [50]. Benchmark studies
show that M06-2X functional perform better for interactions of stacked system. M06-2X also
shows better performance when interactions of TMs are studied with other systems [51].

TMs show various spin states, therefore, each of these metal complexes were opti-
mized at various spin states to obtain the most stable spins state. The electronic config-
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urations of Fe, Co and Ni are [Ar] 3d64s2, [Ar] 3d67s2 and [Ar] 3d68s2, respectively. In
case of Fe and Ni doped C2N, singlet, triplet, quintet, and septet spin states were con-
sidered, and the most stable spin states are septet and triplet for Fe and Ni, respectively
(see Table S1 of Supplementary Material). For Co doped C2N, doublet, quartet, sextet, and
octet spin states were optimized in search of the most thermodynamically stable spin state
of metal doped C2N. Among the optimized spin states, doublet is the most stable in case of
Co@C2N complex. The interactions energies of these complexes were based on the stable
spin states. Hydrogen dissociation reaction was also performed on the most stable spin
state metals.

Interaction energies are calculated for the most stable geometries of studied complexes
by using the following expression:

Eint = ET.M@C2N − (EC2N + ET.M) (1)

Here, ET.M@C2N, EC2N and ET.M are interaction energies of TMs@C2N complexes, bare
C2N surface and TMs, respectively.

For hydrogen dissociation, primary step is adsorption of hydrogen on metal doped
C2N surface. The adsorption energy of hydrogen doped catalyst is calculated through
following equation:

Eads. = EH2@C2N-M − (EM@C2N + EH2) (2)

Here, EH2@C2N-M, EM@C2N and EH2 represent the energies of the hybrid structures of
hydrogen adsorbed complexes, metal@C2N, and H2, respectively.

For calculation of activation barrier and energy of reaction, Equations (3) and (4) were
used, respectively.

Ea = ETS − EReactant (3)

∆ER = EProduct − EReactant (4)

In Equation (3), the Ea represents activation barrier and ETS represents the energy of
transition states. Whereas in Equation (4), the ER shows energy of reaction.

3. Results and Discussion
Geometries and Electronic Properties

The optimized structure of C2N consists of hexagonal unit cell (see Figure 1). The C-N
bond length is 1.32 Å whereas for C-C bond length is 1.46 Å in the benzene ring and 1.42 Å
in the pyrazine ring. The observed C-N-C bond angle is 116.73◦. All of these bonding
parameters are comparable with already reported in the literature [52].
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For each TM being considered, we have studied various spin states in order to obtain
thermodynamically the stable spin state. The most stable spin state geometries are reported
in the main manuscript (see Figure 2), while least stable M@C2N complexes are given in
Supplementary Information (Figure S1). While the interaction energy values for studied
TM@C2N clusters are reported in Table 1.
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Table 1. Interaction energy of metal doped C2N surface (eV), M-N distance (Å) between the metal
atom and the neighboring nitrogen (N) atoms, charge transfer between the adsorbed metal atom and
surface (e−) and the HOMO-LUMO energy gap (eV) of M@C2N complexes.

M@C2N Eint M-N NBO HOMO LUMO EH-L

Fe@C2N −3.19 2.53, 2.69 1.43 −4.84 −2.29 2.56
Co@C2N −1.42 2.66, 2.67 0.92 −7.27 −2.15 5.11
Ni@C2N −2.51 2.64, 2.71 0.74 −4.08 −2.59 1.50

C2N – – – −7.59 −1.99 5.61

Optimized structure of Fe@C2N cluster is presented in Figure 2a. Fe atom binds with
neighboring nitrogen atoms. The stabilization or adsorption energy in case of Fe@C2N
cluster is −3.19 eV. The geometry of Co@C2N surface is given in Figure 2b, Co shows
interaction with neighboring nitrogen atoms and the calculated stabilization energy is
−1.42 eV, whereas adsorption of Ni atom over C2N surface resulted in the interaction
energy of −2.51 eV (Figure 2c). The highest interaction energy value is observed in case
of Fe@C2N among all studied M@C2N clusters, which is attributed to least interaction
distance between Fe and N atoms of C2N surface. The bonding distance between Fe
and nitrogen atoms of C2N is 2.53 Å, as compared to 2.64 Å and 2.66 Å for Ni@C2N and
Co@C2N, respectively. Furthermore, it is observed in studied complexes that as the number
of unpaired electrons (d-orbital of TMs) decreases, decrease in their interaction energy is
observed. Moreover, no distortion is observed in M@C2N clusters upon adsorption of TMs
(Fe, Ni & Co) due to fused rings of benzene and pyrazine. In addition, no change in bond
lengths of C-N and C-C are observed upon adsorption of TMs on C2N surface.

4. HOMO-LUMO and DOS Analysis

HOMO-LUMO analysis and DOS spectra have been investigated to fully understand
the corresponding changes in electronic properties. The charge transfer results and the
HOMO-LUMO energy gap of metal doped C2N complexes are reported in Table 1. Density
of states graphs are presented in Figure 3, which show the formation of new states causes
the change in H-L gap. In the DOS graph of Ni doped on C2N, the formation of new
HOMO states also confirms the change in H-L energy gap.

Upon adsorption of metal atoms, the energy gap (EH-L) is significantly reduced. Least
reduction in energy gap is observed in case of Co@C2N complex which is from 5.61 eV
to 5.11 eV. However, a significant decrease in energy gap is observed for Fe@C2N and
Ni@C2N complexes as compared to bare C2N surface i.e., EH-L values are 2.56 eV and 1.50
eV, respectively. The change in electronic parameters is confirmed through DOS analysis
which clearly shows the formation of new states. Thus, it also explains the significant
lowering of HOMO-LUMO energy gap in Fe@C2N and Ni@C2N complexes.

In case of Ni@C2N complex, potential decrease in H-L gap is observed due to increase
in HOMO and decrease in LUMO energies as compared to bare C2N surface. Same type of
observations is observed from TDOS spectra of Ni@C2N due to increase in HOMO energy
and decrease in LUMO energy.
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5. Natural Bond Orbital (NBO) Analysis

NBO analysis was performed on studied TM doped C2N clusters to investigate the
transfer of charge between C2N surface and TM atoms. The values of NBO charges are
reported in Table 1. The adsorption of Fe on C2N surface resulted in a net charge of 1.43e−

on Fe atom. The appearance of positive charge (1.43e−) on the Fe atom upon adsorption
over C2N represents the electron recipient character of C2N and electropositive nature
of Fe in the most stable geometry of Fe@C2N complex. Similarly, in case of Co and Ni
dopants, the NBO charges observed are 0.92e− and 0.74e−, respectively. In both Co@C2N
and Ni@C2N complexes, the positive sign of charge transfer indicates that charge is shifting
towards C2N surface from TMs, revealing the electropositive character of studied TMs.
Highest charge transfer is observed in case of Fe@C2N complex, which reveals the strong
interaction among Fe atom and C2N support through a charge transfer from Fe atom to
C2N surface [53].

NBO analysis reveals that TMs adsorbed on C2N surface showed electropositive
character due to their metallic behavior and electron rich C2N surface. Highest charge
transfer is observed in case of Fe, which verify its high interaction energy with C2N surface.
However, in case of Co@C2N and Ni@C2N complexes NBO charges observed are 0.92e−

and 0.74e−, respectively.

6. Hydrogen Dissociation Reaction on Iron Doped C2N Surface

The reaction started with adsorption of H2 molecule on C2N surface (Figure 4). The
hydrogen molecule is adsorbed at iron with adsorption energy of −1.35 eV. The metal atom
(Fe1) shows interaction with both hydrogen atoms marked as H2 and H3 with interaction
distances of 2.06 Å and 2.07 Å, respectively. Initially H-H bond length of isolated H2 is
0.75Å. After adsorption, the hydrogen dissociation proceeds. In the transition state, H-H
bond length increases from 0.75Å to 0.93Å and the Metal-Hydrogen bond length decreases
to 1.78Å in transition state. Single imaginary frequency confirms that the transition state is
located on Fe@C2N (see Table S2 for more details). In the product, the Fe-H bond length is
1.67Å and N-H bond length is 1.03Å. The activation barrier for this hydrogen dissociation
reaction occurring on Fe@C2N is 0.36 eV, while the enthalpy of reaction is −0.05 eV, as
mentioned in Table 2.
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Table 2. H2 dissociation energies at M@C2N clusters in eV and calculated bond lengths of H—H
bond and M—H bonds, here Ea (eV), ∆E (eV) and B.L (Å) represent activation energy barrier, energy
of reaction and bond length (Å), respectively.

Reaction Energies Fe@C2N Co@C2N Ni@C2N

Ea 0.36 0.45 0.40

∆E −0.05 −0.08 0.23

H—H
Bond length

B.LR 0.76 0.75 0.76
B.LTS 0.93 0.85 0.84
B.LP 1.68 1.80 1.84

Ni—H Bond
length

B.LR 2.06 1.83 1.89
B.LTS 1.78 1.76 1.75
B.LP 1.67 1.60 1.56

In case of Fe doped C2N catalyst, the activation barrier reduced significantly, which
show higher catalytic activity of Fe doped C2N catalyst. Iron possesses greater number
of unpaired electrons (d-orbital), which are responsible for higher catalytic efficiency of
Fe@C2N complex.
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7. Hydrogen Dissociation Reaction on Cobalt Doped C2N Surface

In the first step, H2 molecule is adsorbed over the C2N surface (Figure 5). The
stabilization energy observed for the adsorption of hydrogen molecule at cobalt site is
−1.93 eV, which is higher than the value observed for adsorption at Fe site (−1.35 eV).
Optimized geometry of H2 molecules over Co@C2N surface reveals that H2 is bit tilted.
Initially, the interaction distances of Co atom with H2 and H3 atoms of reactant molecule
are 1.83 Å and 1.92 Å, respectively (see Figure 5). Then, hydrogen dissociation proceeds
through a transition state, where H-H bond length increases from 0.76 Å to 0.85 Å and
the Co—H bond length is decreased to 1.76 Å. At final step, the Co—H and N—H bond
lengths observed are 1.60 Å and 1.03 Å, respectively. The activation barrier for hydrogen
dissociation reaction occurring on Co@C2N surface is 0.45 eV, and the enthalpy of reaction
is −0.08 eV (see Table 2).
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In case of Co@C2N complex, the activation barrier of 0.45 eV is observed for hydrogen
dissociation, which is comparatively higher as compared to Fe@C2N complex (0.36 eV). The
higher potential barrier for Co@C2N catalyst is due to less unpaired electrons (d-orbital) in
TM (Co).

8. Hydrogen Dissociation Reaction on Nickel Doped C2N Surface

H2 molecule is also adsorbed on Nickel of Ni@C2N surface with the adsorption energy
of −2.02 eV (see Figure 6). In optimized geometry, reactant hydrogen molecule is oriented
almost parallel over the C2N surface. The bond distances between nickel atom of Ni@C2N
and, H2 and H3 atoms of molecule are 1.90 Å and 1.89 Å, respectively, whereas the H—H
bond length is 0.76 Å. At transition state, H—H bond length increases from 0.76 Å to 0.84 Å
and the Ni—H bond length is decreased from 1.89 Å to 1.75 Å. Finally at product side, the
Ni—H bond length gets further reduced to 1.56 Å, whereas N—H bond length is 1.03 Å. In
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case of Ni@C2N cluster, the activation barrier for hydrogen dissociation reaction is 0.40 eV
(Table 2), while the enthalpy of reaction is 0.23 eV.
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The hydrogen dissociation barrier in Ni@C2N complex is 0.40 eV. The observed value
of activation barrier in this case is lower than Co@C2N catalyst and greater than the
Fe@C2N catalyst.

Overall, the order activation barrier observed for studied catalysts is Fe@C2N <
Ni@C2N < Co@C2N. The observed trend is quite similar with the trend of TMs doped
Al2O3 reported by Yang et al. [54] for the oxidation of CO by single atom catalysis.

For comparison, the activation barrier of hydrogen dissociation in our work and some
other surfaces are reported in Table 3. Our results show good agreement with already
reported values of dissociation barrier using noble TMs. In our case, the lowest hydrogen
dissociation barrier is observed for Fe@C2N catalyst (0.36 eV), and the value is much better
than the reported value of Au/TiO2 complex (0.54 eV). Our results are in accordance with
the already reported values of dissociation barriers obtained on different surfaces doped
with noble TMs. In our case, Fe-incorporated C2N surface displays the smallest activated
barrier (0.36 eV), which is due to the presence of strong interaction between the metal d
orbitals and molecular orbital of H2.
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Table 3. Comparison of current activation barrier of hydrogen dissociation with already reported
values over different Surfaces.

Surfaces Dissociation Barrier References

Ni adsorbed Mg17Al12 surface Mg16NiAl12 0.82 eV
Mg15Ni2Al12 0.53 eV [55]

Ti doped Mg Surface 0.35 eV [56]

Au/TiO2 0.54 eV [57]

Mg9Rh cluster 0.63 eV [58]

Fe@C2N 0.36 eV This work

Co@C2N 0.45 eV –

Ni@C2N 0.40 eV –

9. Conclusions

Herein, we have theoretically investigated the hydrogen dissociation reaction on
TMs doped C2N surface through single atom catalysis. Single atom catalysis provides
better efficiency and stability in heterogeneous catalysis. Stable spin states of TMs@C2N
complexes evaluated for catalytic hydrogen dissociation reaction. Electronic properties
(NBO, FMO) of the most stable spin state of TMs@C2N complexes are further explored.
NBO analysis reveals the electropositive character of TMs, thus, significant charge transfer
is observed between TMs and C2N surface. Hydrogen molecule, primarily adsorbed
on metal doped C2N surface during dissociation and then heterolytically dissociated
between metal and nitrogen atom of C2N surface. The mechanistic pathway of hydrogen
dissociation reaction shows that Fe@C2N complex is the most suitable catalyst for hydrogen
dissociation reaction with activation barrier of 0.36 eV compared to Ni@C2N (0.40 eV) and
Co@C2N (0.45 eV) complexes. Our results indicate that the studied TMs@C2N complexes
significantly decrease in the activation barrier, which speaks volumes about their success.
However, the highest reduction in activation barrier is observed in the case of Fe@C2N
complex, thus can act as a promising catalyst for hydrogen dissociation reaction in single
atom catalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13010029/s1, Figure S1: Optimized geometries of studied
M@C2N complexes at various possible spin states at M06-2X/6-31G(d,p) level of theory. Where grey
color is for carbon, light grey for hydrogen, blue for nitrogen, orange for nickel, purple for iron and
cobalt blue for cobalt atom; Table S1: Relative stabilities of studied M@C2N complexes at various
possible spin states (all values are in eV). Table S2: Energies and lowest vibrational frequencies of
reactants, products, and transition states over designed M@C2N catalysts.
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