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Abstract: Herein, we demonstrate the synthesis of sandwiched composite nanomagnets, which
consist of hard magnetic Cr-substituted hexaferrite cores and magnetite outer layers. The hexaferrite
plate-like nanoparticles, with average dimensions of 36.3 nm × 5.2 nm, were prepared via a glass
crystallization method and were covered by spinel-type iron oxide via thermal decomposition of iron
acetylacetonate in a hexadecane solution. The hexaferrite nanoplates act as seeds for the epitaxial
growth of the magnetite, which results in uniform continuous outer layers on both sides. The thickness
of the layers can be adjusted by controlling the concentration of metal ions. In this way, layers with
an average thickness of 3.7 and 4.9 nm were obtained. Due to an atomically smooth interface, the
magnetic composites demonstrate the exchange coupling effect, acting as single phases during
remagnetization. The developed approach can be applied to any spinel-type material with matching
lattice parameters and opens the way to expand the performance of hexaferrite nanomagnets due to
a combination of various functional properties.

Keywords: permanent magnets; hexaferrites; magnetic nanocomposites; nanomagnets; epitaxy;
exchange coupling; shape anisotropy

1. Introduction

Nanoparticle magnets should combine several important inherent properties. Firstly,
they must maintain a constant magnetic moment, even at very small particle sizes; the
material must demonstrate non-zero residual magnetization and coercive force. This allows
the nanomagnets to create a magnetic field around themselves and interact with external
magnetic fields in such a way that it is possible to control not only their position but also
their orientation. Secondly, the materials must be chemically and thermally stable so as
not to degrade in the environment. Thirdly, it should be possible to integrate them with
other materials to create composite nanomagnets combining various functional characteris-
tics. Therefore, not many substances are known that can be used to design nanomagnets.
Metal-based magnetics (i.e., FePt, FeCo, Nd-Fe-B and other rare-earth alloys) demonstrate
superior magnetic characteristics; however, they are highly reactive at the nanoscale [1,2].
The spinel ferrites (Fe3O4, γ-Fe2O3, CoFe2O4, etc.), which are commonly used to produce
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ferrofluids, lose their remanence and coercivity when particle sizes decrease due to su-
perparamagnetism [3]. Among magnetically hard ferrites, two possible candidates are
known, which are ε-Fe2O3 and M-type hexaferrites (MFe12O19, M = Ba, Sr). Epsilon iron
oxide reveals very high magnetocrystalline anisotropy and remains hard-magnetic down
to the nanoscale [2,4,5]. However, this polymorphic modification is metastable, and to
date, there are no methods for efficient production of this phase with controllable particle
morphologies. Currently, the best-known methods for producing ε-Fe2O3 mainly include
high-temperature crystallization in a silica matrix followed by its removal and usually
leads to the production of non-single-phase powders contaminated by impurity phases,
such as γ-, α- and β-iron oxide polymorphs, and also some amount of residual SiO2 on
the particle surface [2,6,7]. To our knowledge, there are also no reports on the successful
introduction of ε-Fe2O3 into complex nanoparticle magnets.

Hard magnetic hexaferrites are currently available materials for creating composite
nanomagnets. Hexaferrite particles retain high coercivity down to sizes of about 10 nm,
the material is thermally and chemically stable, and there are many various methods for
producing hexaferrites, including well-developed industrial routes [8,9]. Moreover, the
hexaferrite nanoparticles are usually plate-like, and such anisotropy generates additional
effects of self-organization, magnetic, and magnetooptical properties [10–15]. The main
challenge to producing hexaferrite-based nanocomposites is the need to obtain individual
non-aggregated hexaferrite nanoparticles. Most methods of hexaferrite synthesis involve
high-temperature processing, which leads to aggregation and sintering of the particles.
On the other hand, low-temperature processing often leads to phase impurity, low crys-
tallinity of the material, a large number of defects and, consequently, reduced magnetic
characteristics. In addition, even non-sintered nanoparticles tend to aggregate due to strong
magnetic attraction, so colloidal stabilization is needed to cover each particle individually
by other phases.

The glass-ceramic technique is a suitable method for creating hard magnetic hexaferrite
cores for composite nanomagnets [16,17]. Unlike other production methods, it obtains
non-aggregated hexaferrite nanoparticles of high structural quality. The method makes
it possible to additionally adjust the morphology of the formed particles by varying the
composition and glass crystallization conditions [18], as well as to carry out elemental
substitutions in the hexaferrite structure, which result in an adjustment of the magnetic
characteristics [19]. Previously, we reported the preparation of chromium-substituted
hexaferrite nanoplates by glass crystallization, which resulted in record values of the
coercivity among nanosized hexaferrite particles [20]. Such particles are very promising for
application as hard magnetic cores for composite nanomagnets.

Modifying the surface of each hexaferrite particle individually with different materials
is not an easy task due to the interparticle attraction and irreversible adhesion. Only a few
examples are known when hexaferrite particles were coated from stable colloidal solutions,
e.g., amorphous SiO2 shells prepared by fast hydrolysis of tetraethoxysilane [21] and
exchange-coupled sandwiched composite nanoparticles with spinel ferrite layers (γ-Fe2O3,
ZnFe2O4 and MnFe2O4) produced by co-precipitation from aqueous solutions [9,22–24].
Recently, we have developed a method for the direct deposition of CoFe2O4 outer layers
on hexaferrite particle surfaces via the decomposition of metal-organic salts in high-boiling
solvents. It was shown that spinel ferrite grows epitaxially on the hexaferrite surface,
continuing the spinel block of the hexaferrite crystal structure. It has been suggested that
layers of other spinel phases can be grown in this way, and the thickness of the layers can
be adjusted by changing the concentration of the initial salts in the solution.

Herein we report the synthesis of sandwiched nanoparticles based on chromium-
substituted strontium hexaferrite as cores of the composite and outer layers of epitaxially
grown magnetite Fe3O4. High-quality hexaferrite nanoplates were obtained using the glass
crystallization method, and the spinel layers of various thicknesses were produced by iron
acetylacetonate thermal decomposition in a hexadecane solution.
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2. Materials and Methods
2.1. Materials

Strontium carbonate SrCO3 (≥99.9%), iron (III) oxide Fe2O3 (<5 µm,≥99%), chromium
(III) oxide Cr2O3 (≥98%), boric acid H3BO3 (≥99.8%), oleylamine (cis-1-amino-9-octadecene,
technical grade, 70%), oleic acid C17H33COOH (90%), iron (III) acetylacetonate Fe(C5H7O2)3
(≥97%), hexane C6H14 (≥97.94%), hexadecane C16H34 (≥98.0%). All from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Hexaferrite Nanoparticles Synthesis

Individual strontium hexaferrite nanoparticles were obtained by the oxide glass crys-
tallization technique described in ref. [20]. Briefly, for the preparation of glass with a
nominal composition of 25SrO-4Fe2O3-2Cr2O3-12B2O3, precursors (SrCO3, Fe2O3, Cr2O3,
and H3BO3) were mixed in a stoichiometric ratio and then melted in a platinum crucible
in a high-temperature furnace. The mixture was heated up to 1350 ◦C at a rate of about
35 ◦C/min and then exposed to that temperature for 1 h. The resulting melt was quenched
between rotating steel rollers into the water to form glassy flakes. The obtained glass
was isothermally annealed at 750 ◦C for 2 h to crystallize hexaferrite nanoparticles. The
resulting glass-ceramic sample, consisting of strontium hexaferrite and a borate matrix, was
ground in an agate mortar. The obtained powder was treated with 3% hydrochloric acid
to dissolve the borate matrix and extract the hexaferrite particles. Hydrochloric acid was
added to the powder and the mixture was sonicated for 10 min with simultaneous heating
to 40 ◦C. After that, the magnetic particles were separated by a magnet, then the remaining
powder was again washed in acid until the non-magnetic matrix was completely removed.
The precipitate obtained after the magnetic separation and decantation was dispersed in
distilled water. Then the particles were separated by centrifugation, and the powder was
dried in a drying box for 30 min at 120 ◦C. The obtained raw hexaferrite sample is labeled
as SHF in this manuscript.

2.3. Hexaferrite/Magnetite Composites Synthesis

Two composite samples with different hexaferrite-to-iron oxide ratios were prepared.
The samples were labelled FO_32 and FO_11, corresponding to nominal volume propor-
tions SrFe12O19:Fe3O4 equal to 3:2 and 1:1, which were estimated from the maximum
possible iron oxide content.

The synthesis of the composites was carried out by thermal decomposition of iron (III)
acetylacetonate Fe(C5H7O2)3 under an inert atmosphere in hexadecane acting as a high-
boiling solvent (boiling point at 287 ◦C [25]). The strontium hexaferrite powder (100 mg
for each sample) and iron acetylacetonate (591 and 887 mg for samples FO_32 and FO_11,
respectively) were added to 40 mL of hexadecane. Furthermore, 2 mL of oleic acid and
oleylamine (again, 2.6 and 4 mL for samples FO_32 and FO_11) were added both acting
as surfactants and reducing agents. The mixture of these components was sonicated for
30 min at room temperature to disperse the particles, then it was placed in the three-neck
flask (necks for thermocouple, Ar inlet, and mechanical stirrer). Argon flow of 150 mL/min
for 30 min was used to remove air from the flask and then was kept during the synthesis.
After that, the solution was heated to 270 ◦C and exposed at this temperature for 30 min
with continuous stirring. The flask with the solution was then quickly cooled to room
temperature, after which the Ar flow was stopped.

The composite particles were magnetically separated from the reaction mixture, and
then washed several times alternately with increasing polarity: hexane, acetone, ethanol,
1 M sodium hydroxide solution, and distilled water until the behavior of the powder
changed to hydrophilic to remove surfactant residues.

2.4. Characterization of Samples

Powder X-ray diffraction studies (XRD) were performed using a Rigaku (Tokyo, Japan)
D/MAX 2500 diffractometer (Cu Kα radiation) at room temperature. The full-profile
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analysis of the patterns was carried out by the Rietveld method using MAUD software
(ver. 2.99) [26] (Trento, Italy). The instrumental broadening was calculated using the
Y2O3 standard.

The inductively coupled plasma mass spectrometry method (ICP-MS) was used to
determine the chemical composition of the magnetic composites. The analysis was carried
out using a PerkinElmer (Waltham, MA, USA) Elan DRC II instrument. The powders were
dissolved in an aqua regia for ICP-MS sample preparation.

For the transmission electron microscopy (TEM) investigation, a tiny amount of the
powder sample was dispersed in ethyl alcohol, and then one drop of the suspension was
deposited onto a carbon film supported by a copper grid. Transmission electron microscopy
was performed using a 200 kV field emission microscope JEOL (Tokyo, Japan) 2100 F in a
bright-field mode. For magnifications 100 kX and lower, the objective aperture was in use to
contrast images. To determine the average particle diameter, more than 400 particles were
counted for each sample, and for the particle thickness, we used at least 66 particles for
each sample. Mean particle dimensions and standard deviations were obtained by fitting
TEM histograms with a lognormal distribution function. Selected area electron diffraction
(SAED) patterns integration and background elimination were carried out using CrysTBox
software (ver. 1.10) [27,28] (Prague, Czech Republic). Atomic resolution high-angle annular
dark field scanning transmission electron microscopy (HAADF-STEM) images as well
as energy-dispersive X-ray (EDX) maps were acquired on a probe aberration-corrected
ThermoFisher (Waltham, MA, USA) Titan Themis Z electron microscope at 200 kV equipped
with a Super-X system for EDX analysis.

Magnetic measurements in the maximum field strength of 30 kOe and at temperatures
of 5, 100, 200, and 300 K were carried out using a Vibrating Sample Magnetometer (VSM) as
part of the PPMS-9T Physical Property Measurement System (Quantum Design, San Diego,
CA, USA). Powder samples were fixed with a polymer varnish to avoid their movement in
the magnetic field.

The Curie temperature of the magnetic composites was determined using a PerkinElmer
(Waltham, MA, USA) Pyris Diamond TG/DTA thermal analyzer in the field generated by
a permanent neodymium magnet. The magnet was suspended above the sample being
heated and cooled, so a mass gain was observed during the transition to the demagnetized
state and vice versa. The rate of heating and cooling during measurements was 10 ◦C/min;
the samples were cyclically heated and cooled in the temperature range of 100–700 ◦C. Prior
to measurement, the sample was magnetized in the applied magnetic field of the magnet by
heating to a temperature of 400 ◦C and cooling in the field. The Curie points were defined
as the intersection points of the tangents to the curves before and after the transition.

3. Results and Discussion

According to XRD (Figure 1, left), the raw hexaferrite sample SHF is a single-phase
M-type hexaferrite (space group P63/mmc) with the unit cell parameters a = 5.8710(5) Å and
c = 23.012(3) Å. The parameters are slightly reduced in comparison with undoped SrFe12O19
(a = 5.885 and c = 23.05(3) Å [29]), due to a substitution of some iron ions by chromium [20],
which has a smaller ionic radius (rIV(Fe3+) = 0.645 Å and rIV(Cr3+) = 0.615 Å [30]). A
noticeable broadening of the diffraction lines indicates the small size of the particles; an even
stronger broadening of the hk0 reflections (Figure A1 from Appendix A) indicates the shape
anisotropy of the particles with a smaller particle dimension along the crystallographic
direction c, that is, the plate-like shape.

The morphology of the raw hexaferrite particles was also investigated using trans-
mission electron microscopy (TEM) (Figure 1, right). According to TEM, SHF particles
are thin anisotropic plates with an average diameter of 36.3 nm and an average thickness
of 5.2 nm (Figure A2 from Appendix A), which is consistent with the observation of the
anisotropic XRD line broadening. In addition, the particle dimensions are estimated by
the XRD line broadening analysis, resulting in 30 nm and 6 nm for the estimated average
thickness and diameter, correspondingly. A comparison of the integration of the selected
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area electron diffraction (SAED) pattern with hexaferrite diffraction maxima confirmed that
the nanoparticles on the image possessed the strontium hexaferrite structure (Figure A3
from Appendix A). The chemical analysis of the raw sample resulted in a Sr:Fe:Cr ratio
equal to 0.9:10:2. The reduced strontium content in hexaferrite nanoparticles compared
with the bulk state was previously reported, and it is due to the limited number of atomic
layers in the c-direction and preferential spinel blocks on the particle surfaces, which do
not contain strontium [20,31,32].
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Figure 1. X-ray diffraction patterns (left) and transmission electron microscopy images (right) of the
hexaferrite and composite samples.

According to XRD, the samples FO_32 and FO_11 are two-phase composites consisting
of strontium hexaferrite and spinel iron oxide, i.e., magnetite Fe3O4 or maghemite γ-Fe2O3.
These spinel phases possess very similar soft magnetic properties, as well as identical
crystalline structures, and even form a continuous solid solution; thus, it is difficult to
accurately distinguish them, especially at the nanoscale. The calculated lattice parameter of
the spinel phase is a = 8.370(1) Å for each sample, which is smaller than that of magnetite
(a = 8.387 Å, PDF 89-0691) and larger than that of maghemite (a = 8.352 Å, PDF 39-1346).
Taking into account the reducing atmosphere during the synthesis, the spinel phase was
considered as magnetite Fe3O4. M-type hexaferrite and magnetite match structurally in
a certain crystallographic direction, due to the presence of the spinel-structured block
in the hexaferrite unit cell. In the X-ray diffraction patterns of the composite samples
(Figures 1 and A1 from Appendix A), the peak at 35.5 degrees, which corresponds to the
most intense peak of Fe3O4, significantly rises, indicating the presence of magnetite. The
patterns are well fitted by these two phases, and the phase content can also be estimated
(Table 1). To more accurately determine the excess of the iron oxide phase compared with
the initial hexaferrite powder, the chemical composition of the samples was investigated
using ICP-MS (Table 1). The mass fraction of Fe3O4 (ICP-MS) was calculated considering
the additional amount of iron relative to chromium, assuming that the ratio of chromium to
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iron in the hexaferrite cores did not change during the synthesis. According to the analysis,
the mass fraction of the spinel iron oxide increases with an increase in the amount of iron
acetylacetonate used during the synthesis; however, it is lower than the nominal values.
The decreased amount of Fe3O4 relative to the nominal composition can be explained by
an incomplete chemical reaction during the synthesis.

Table 1. Magnetite contentω determined by chemical analysis of the samples (ICP-MS) and by the
Rietveld refinement of diffraction patterns. Chemical composition is normalized to (Fe + Cr) = 12 for
the initial hexaferrite sample.

Sample Fe:Cr Ratio
(ICP-MS)

ω (Fe3O4), wt %
(ICP-MS)

ω (Fe3O4), wt %
(XRD)

ω (Fe3O4), wt %
(Nominal)

SHF 10.0:2.0 0 0 0
FO_32 14.6:2.0 27.1 27.5 40
FO_11 18.2:2.0 39.8 37.5 50

Transmission electron microscopy (TEM) (Figure 1, right) showed that the composite
samples consist of well-defined sandwich-like particles. Hexaferrite plates are in the
center of the composite particles, and magnetite layers are formed on top of them by
heterogeneous nucleation, while free magnetite nanoparticles are not formed at all in
the volume of the solution. The sandwiched structure is visible when the particles are
oriented edge-on (Figures 2 and 3). The magnetite grows symmetrically and uniformly
producing well-crystalline layers of the same thickness on both sides. The lateral sides of
the hexaferrite cores are free of magnetite, which indicates that the seeded growth of the
spinel iron oxide occurs only on the spinel blocks of the hexaferrite structure; thus, the
magnetite layers continue the hexaferrite structure.
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Figure 3. High-resolution HAADF STEM images: overall view of the Fe3O4/SrFe10Cr2O19/Fe3O4

composite sample FO_11; inner hexaferrite and outer spinel parts (green balls represent Sr, brown—
Fe/Cr), SAED pattern of the area. At the right part of the collage HAADF-STEM image of the
composite particle and color-coded EDX elemental (Sr, Cr, Fe, O) maps are presented.

According to the results of HR-TEM with 2D FFT (Figure 2), HAADF STEM and SAED
(Figure 3) the epitaxial relations between Fe3O4 and SrFe10Cr2O19 phases are the following:{

(111)Fe3O4//(001)SrFe10Cr2O19[
112
]
Fe3O4//[100]SrFe10Cr2O19.

The results of the MD simulations are based on the algorithm reported in ref. [33]
allowed us to propose the model of the interface that had formed between the Fe3O4 and
SrFe10Cr2O19 phases (Figure 4). It should be noted that both SAED and simulation results
yield the epitaxial relations that were stated above. At first glance, it might seem unusual
that Fe3O4 and SrFe10Cr2O19 unit cells are 30 degrees rotated with respect to each other
(green and red hexagons, respectively). However, a closer look at the HAADF HRTEM
image (Figure 3) reveals that spinel iron oxide has formed on a surface which is structurally
ideal for the growth of this phase, and the rotation is only apparent; the spinel-structured
iron oxide continues the spinel structural block of the SrFe10Cr2O19 unit cell in the [111]
direction (of the cubic cell). Based on the proposed model, we have estimated the lattice
mismatch between the Fe3O4 (111) layer and the ideal coincide site lattice—CSL (green
and purple hexagons respectively). It should be noted that in the classical formula that is
commonly used to calculate the lattice mismatch between substrate and film, it is principal
which phase is being considered as the earlier and which one as the latter since the sign in
front of the mismatch value provides information as to whether the film is being stretched
or compressed by the substrate. In our case, we decided to consider SrFe10Cr2O19 as a
substrate since these nanoparticles were introduced into the high-boiling solvent to promote
the epitaxial growth of Fe3O4. The mismatch value, calculated using the formula:

ε =

√
2
3 aFe3O4 −

2√
3
2aSrFe10Cr2O19

2√
3

2aSrFe10Cr2O19

·100% = 0.81%

is quite low, which is in reasonable agreement with the experimental results. It occurs that
in the case of the synthesized nanoparticles the spinel iron oxide is slightly compressed in
the interface plane.
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hexagon sides are presented in the lattice parameter units [34].

EDX elemental maps (Figure 3) show that the hexaferrite core remains unchanged
after synthesis: strontium remains in its sublattice, and chromium is absent in the outer
magnetite layers.

The thickness of the composite sandwiches noticeably differs from the thickness
of the initial particles, and it increases with the rise in the iron oxide content: 12.6 and
14.9 nm for the samples FO_32 and FO_11, respectively (Figure A4 from Appendix A). By
subtracting the average thickness of the original particles, the thickness of the coating of
the sandwich composites can be estimated. The average thickness of magnetite, grown
on each side of the hexaferrite plate-like cores, is about 3.7 and 4.9 nm for samples FO_32
and FO_11, respectively. The advantage of the developed method for the controllable
formation of very thin as well as rather thick spinel layers upon hexaferrite nanoparticles is
high crystal quality and uniformity compared with low-temperature water solution-based
methods [23,24,35]. Furthermore, the reaction at high temperatures promotes the coating
of each particle, since when heated, the magnetization of hexaferrites decreases sharply
and particles cease to magnetize to each other. This makes it possible to successfully cover
particles that have high magnetization at room temperature.

The initial hexaferrite nanoparticles are strongly hard-magnetic. Their room-temperature
coercivity of 6350 Oe is one of the highest reported for hexaferrite particles of such a small
size [8,10,18,20,32,36]. This is mainly due to the partial chromium substitution [20]. The
magnetization is also larger than is typically observed in hexaferrite nanoparticles, in which
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the saturation magnetization is reduced because of low crystallinity, rising surface effects,
and non-collinear spin orientation [8,32]. The crystal quality of the hexaferrite particles is
provided via a glass crystallization synthesis method. During cooling, the coercive force of
the material practically does not change, and the magnetization increases as expected.

The hysteresis loops of the composite samples (Figure 5) do not possess any signs of
separate soft and hard magnetic material mixtures, i.e., there are no additional inflection
points or curvature deviations from single-phase hysteresis in the entire investigated range
of temperatures. This may indicate that all samples behave as single magnetic phases
and not as a mixture of magnetically hard and magnetically soft phases. It is generally
considered that the soft magnetic phase rigidly coupled to the magnetically hard phase is
twice the width of a domain wall in the hard phase [37]. For M-type hexaferrites, the width
of the domain wall is approximately 14 nm [9]; thus, the magnetite phase should be coupled
to the hexaferrite core. The additional inflection point would have been observed on the
hysteresis loops in the absence of magnetic exchange coupling between the phases [24].
Thus, the hysteresis shape proves that the composite samples do not contain any significant
amount of non-coupled magnetite. Even though the two phases in the composites act as a
single magnetic phase during remagnetization, the Curie point measurements (Figure 6)
show two temperatures of the magnetic transitions: about 450 ◦C for the hexaferrite cores
(405 ◦C for uncovered SrFe10Cr2O19 nanoparticles) as well as 550 and 595 ◦C for the
magnetite layers in the samples FO_32 and FO_11, respectively [8,24,38]. It is also clearly
seen that sample FO_11 contains a larger amount of Fe3O4 than sample FO_32, which is
indicated by a higher mass loss during cooling below TC. It is consistent with the results of
the chemical analysis. The Curie temperature rise for both magnetite and hexaferrite phases
in the composite particles (Table 2) could be caused by structural distortions of crystal
lattices and cohesive energy changes. The structural distortions, i.e., the variation of bond
angles and lengths, led to changes in magnetic exchange interactions in both phases. The
cohesive energy is determined by bonding energies, so it greatly depends on the surface
effects in the nanoparticles and their shape as well as on the crystal structure tensions
and distortions caused by the influence of the epitaxially grown layers [39]. The observed
effects of Curie temperature shift can be explained by these changes in magnetic exchange
interactions and cohesive energy; however, further detailed research is needed.
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Figure 6. Thermogravimetry curves for raw SrFe10Cr2O19 (SHF) and composite samples (FO) mea-
sured in an applied magnetic field.

Table 2. Curie temperatures of the samples measured by thermogravimetry in a magnetic field.

Sample Curie Temperature TC, ◦C (K)

SHF 405 (678) —
FO_32 446 (719) 550 (823)
FO_11 448 (721) 595 (868)

The magnetic characteristics of the samples are shown in Table 3. The deposition of the
soft-magnetic spinel iron oxide onto the hard-magnetic hexaferrite core has a small effect on
saturation magnetization. In the sample FO_32, the magnetization even slightly decreases,
and in the sample FO_11, it slightly rises. This may be due to size effects when thinner
layers have reduced magnetization compared with bulk material. The coercivity of the
composites is reduced to 2520 and 2020 Oe for the samples FO_32 and FO_11, respectively.
Nevertheless, it should be noted that the obtained values of both magnetization and
coercivity of the composite samples exceed those reported before for the exchange-coupled
hexaferrite composites [22,24].

Table 3. Magnetic properties of the uncovered SrFe10Cr2O19 (SHF) nanoparticles and composite
samples (FO_32 and FO_11) at different temperatures. HC represents coercivity, MS—sample magne-
tization at 30 kOe, MR—remanent magnetization.

Sample Temperature, K 300 200 100 5

SHF

HC, Oe 6350 6430 6320 6450

MS, emu/g 40.2 50.0 59.3 63.6

MR, emu/g 18.7 23.5 28.3 30.8

MR/MS 0.47 0.47 0.48 0.48
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Table 3. Cont.

Sample Temperature, K 300 200 100 5

FO_32

HC, Oe 2520 2630 2780 3120

MS, emu/g 37.6 44.2 49.9 52.4

MR, emu/g 15.7 19.0 22.2 24.7

MR/MS 0.42 0.43 0.44 0.47

FO_11

HC, Oe 2020 2330 2640 2990

MS, emu/g 44.3 50.8 56.3 58.5

MR, emu/g 18.2 21.2 24.7 27.9

MR/MS 0.41 0.42 0.44 0.48

The coercivity HC of uncovered SrFe10Cr2O19 nanoparticles remains almost unchanged
and increases monotonically for both composite samples during cooling, which is quite
unusual for hexaferrite materials [38]. For submicron single-domain particles, this behavior
is described by the Stoner-Wohlfarth model, in which

HC(T) ∼
K1(T)
MS(T)

where K1 is the constant of the magnetocrystalline anisotropy, and MS is the saturation mag-
netization. Since K1 decreases slower than MS with increasing temperature, the coercivity
for large single-domain hexaferrite particles has a maximum above the room temperature
(~400 K), i.e., in the range of 5–300 K the coercivity increases. For nanoparticles, the coerciv-
ity is determined not only by the magnetocrystalline anisotropy but also by the significant
contribution of the surface anisotropy

Ke f f = Kvol + 6
KS
d

where Keff is the effective constant of the magnetocrystalline anisotropy, Kvol is the mag-
netocrystalline anisotropy constant for a bulk sample, KS is the constant of the surface
anisotropy, and d is the diameter of a spherical particle. In this case, for hexaferrite, the
surface contribution significantly reduces the effective anisotropy. As the particle size
decreases, the surface contribution increases, which leads to a decrease in the coercivity [16].
The surface contribution is assumed as a non-collinear distribution of spins on the particle
surface [40]. It is believed that with a decrease in temperature, the thickness of this distorted
subsurface layer reduces, which leads to a decrease in the contribution of the surface to the
magnetic anisotropy and, accordingly, to an increase in the coercive force.

The shape of the hysteresis loop for the SHF sample with the MR/MS ratio close
to 0.5 is similar to that described by the Stoner-Wohlfarth model of randomly oriented
single-domain particles with uniaxial anisotropy [38]. For both composite samples, the
MR/MS ratio is close to 0.41 at room temperature, while for previously reported mate-
rials, it is significantly lower. This indicates that an easy magnetization axis direction is
mainly determined by the hexaferrite core. Considering both magnetocrystalline and shape
anisotropy, the exchange-coupled magnetic system can result in a somewhat tilted easy
axis [41], which affects the MR/MS ratio and leads to a change in the shape of the hysteresis
loop. This ratio gradually increases up to 0.48 for the composite samples upon cooling to
5 K, indicating the changes occurring in the magnetic system of the nanocomposites.

4. Conclusions

In summary, for the first time, we have utilized high-quality Cr-substituted hexaferrite
nanoplates as cores of sandwiched composite nanomagnets. The thin outer layers of
magnetite Fe3O4 were epitaxially grown via the decomposition of organic salts in the
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hexadecane solution containing well-dispersed hexaferrite nanoparticles. The synthesis in
the high-boiling solvent revealed two key advantages over the water-based co-precipitation
methods. Firstly, at elevated temperatures, the magnetic moments of the hexaferrite
particles sharply reduce, which promotes the formation of colloids of non-aggregated
particles. This covers each particle individually. Secondly, the growth of magnetite at
higher temperatures resulted in uniform continuous layers with high crystallinity. We have
shown that the thickness of the layers can be adjusted by changing the concentration of
metal ions. While the core hexaferrite particles had an average diameter of 36.3 nm and
thickness of 5.2 nm, the magnetite layer thickness varied from 3.7 nm to 4.9 nm.

The outer Fe3O4 layers continue the spinel block of the hexaferrite structure; thus,
the [111] axis of magnetite is co-directional with the [001] axis of the hexaferrite lattice.
Therefore, the hexaferrite cores act as a template for the formation of quite unusual plate-like
morphology of the spinel phase. The developed approach can be expanded to any spinel-
type material with matching lattice parameters, while the parameters of the hexaferrite
can be tuned by ionic substitution. This paves the way for the design of multifunctional
nanomagnets, in which the hard magnetic properties of the hexaferrite cores and their
possibility to align in a magnetic field are combined with optical, catalytic, ferroelectric,
etc., properties of the outer layers. In our case, the epitaxial interface between hard and soft
magnetic phases resulted in an exchange coupling effect, causing this two-phase composite
to act as a single magnetic phase. This makes it possible to create new nanomagnets with
synergistically combined properties which cannot be observed in the source materials.
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