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Abstract: Since the successful synthesis of [6,6]carbon nanobelt (CNB), [8,8]CNB and [12,12]CNB
have been synthesized successively. CNBs with different sizes ([2N,2N]CNB; N = 2, 3, 4, 5, 6, 7, and 8)
have quantum size effects and exhibit completely different optical properties. In this work, the linear
and nonlinear optical properties and spectral changes of [2N,2N]CNB are studied based on density
functional theory (DFT). The molecular volume, pore volume, and stability of [2N,2N]CNB are
investigated. The electron transition mechanism of the one-photon absorption (OPA) and two-photon
absorption (TPA) spectra of [2N,2N]CNB is explained, and the extrapolation formula between the
wavelength of the absorption peak and the absorption coefficient (ε) and size is given. The infrared
(IR) and Raman spectra of [2N,2N]CNB are calculated, and the vibrational modes of characteristic
peaks are provided. Finally, the nonlinear optical properties of [2N,2N]CNB are studied, which
reflect the anisotropy of molecular polarization. The extrapolation formulas for the polarizability
(α) and second hyperpolarizability (γ) of [2N,2N]CNB under different external fields are given.
The extrapolation formulas given in this work will help to predict the linear and nonlinear optical
properties of arbitrary [2N,2N]CNB beyond computational power, laying the foundation for the
practical application of [2N,2N]CNB’s theoretical basis.

Keywords: volume parameters; OPA; TPA; IR; Raman; nonlinear optical properties

1. Introduction

Carbon-based nanomaterials have attracted much attention due to their novel physical
properties such as quantum size effects and surface effects [1–5]. With the development of
nanomaterial-preparation technology and the improvement of observation methods, more
and more nanoscale carbon-based materials (CNB, trigonenes, infinitene, cyclo[18]carbon,
Möbius CNB, etc.) have been prepared [6–9]. Under the quantum size effect, they exhibit
novel physical properties such as topological electronic features and deep ultraviolet
emission regions. They have broad potential applications in quantum computing and
topological materials for the future.

CNB composed of fully fused conjugated benzene rings have been a hot and dif-
ficult point in organic chemistry during the past 60 years [10]. By an iterative Wittig
reaction followed by a nickel-mediated aryl–aryl coupling reaction, scientists successfully
prepared circular-shaped CNBs that could be used as seeds for the preparation of carbon
nanotubes [6]. Subsequently, CNBs of different scales were prepared [11]. These CNB
materials exhibited strong quantum size effects and different spectroscopic properties,
such as regular absorption, infrared, and Raman spectra. The highly delocalized electronic
structure of sp2-hybridized graphene nanomaterials suggests their utility as optoelectronic
and nonlinear optical materials [12–15]. Organic conjugated graphene nanomaterials have
good applications in optoelectronic fields such as photoelectric sensors, photodetectors,
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and photovoltaic devices due to their strong charge-transfer ability [15]. Nonlinear optics
is a broad field that describes the phenomena of elastic and inelastic light scattering when
intense laser light interacts with materials. Nonlinear optics have great applications in
optical imaging and sensing, optical switching and signal processing, biophotonics, and
other fields [16–19].

Here, we theoretically studied the OPA, TPA, IR, Raman, and (hyper)polarizability
of CNBs with different sizes ([2N,2N]CNB; N = 2, 3, 4, 5, 6, 7, and 8; see Figure 1a) based
on quantum chemical calculations and wave function analysis and explained the physical
mechanism of light absorption by visualizing the charge-transfer process. Our research
provides a theoretical basis for the application of CNB in optoelectronics, linear optics, and
nonlinear optics.
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Figure 1. (a) Schematic diagram of the geometric structure of [2N,2N]CNB, with gray (white) spheres
representing carbon (hydrogen) atoms. (b) Molecular volume and pore volume of [2N,2N]CNB.
(c) The atomization energy per (4C + 2H) of [2N,2N]CNB. EC and EH are the electron energies of
carbon and hydrogen atoms, respectively.

2. Materials and Methods

The quantum chemical calculations for this work were completed by Gaussian 16
software [20]. We optimized the geometry of [2N,2N]CNB by density functional theory
(DFT) [21], B3LYP functional [22], and def2-SVP basis set [23] combined with DFT-D3
dispersion correction [24]. Electron excitation spectra were calculated by the CAM-B3LYP
functional [25] and the def2-SVP basis set. At the same time, the energy, dipole moment
of each state, and transition dipole moment between each state used in the sum-over-
states (SOS) [26] calculation all came from the electronic excitation calculation. The single-
point energies used to calculate the atomization energy were calculated using the B3LYP
functional and the def2-TZVP basis set. All wave-function analysis in this paper was
completed by the multiwfn program [27], while 3D maps including molecular volume and
pore volume were drawn by VMD [28].

3. Results
3.1. Study on Volume Parameters and Stability of [2N,2N]CNB

In this section, mainly the geometrical parameters including the molecular volume
(Figure 1b) and pore volume (Figure 1c) of [2N,2N]CNB are investigated. This is very
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meaningful for understanding the interaction of [2N,2N]CNB with other substances. The
definition of molecular volume is not unique, and the molecular volume calculated in this
work is the van der Waals volume. The pore volume is defined as the superposition of
the electron density of each atom in the free state, forming a promolecular density. This is
equivalent to the state where atoms appear in the corresponding positions in the molecule,
but the electron density has not yet been relaxed due to the distribution of bonds. The
region within a certain isosurface of the excimer density is considered as the intramolecular
region, and the region outside the isosurface can be regarded as the molecular hole. It can
be seen that the molecular volume increases linearly. The reason is simple: the number
of atoms in the system also grows linearly. However, the volume of the pores shows a
nonlinear growth trend, while the curve shows a quadratic function.

The relative stability of [2N,2N]CNB is closely related to the possibility of its practical
synthesis and application. Atomization energy is the energy change corresponding to the
decomposition of a polyatomic molecule in the ground state of the gaseous state into atoms.
It also corresponds to the energy released by the formation of covalent bonds between
atoms and molecules, which can reflect the stability of the molecule. However, due to
differing molecular sizes, direct comparisons cannot be made. Therefore, we evaluate
the stability of [2N,2N]CNB by the atomization energy per (4C + 2H). It is not difficult
to see that the atomization energy per (4C + 2H) increases gradually with the increase in
[2N,2N]CNB (Figure 1c). This reflects the stronger stability of CNB with a large size. In
addition, when N = 5, the stability begins to gradually converge.

3.2. One-Photon Absorption Spectra of [2N,2N]CNB
In this section, we calculate the UV–Vis absorption spectra of [2N,2N]CNB (Figure 2a).

The strongest absorption peaks of [2N,2N]CNB all appear in the near-ultraviolet region.
Moreover, with the increase in size, the strongest absorption peaks of [2N,2N]CNB grad-
ually redshift. It is a common phenomenon that the absorption peaks of π-conjugated
systems gradually redshift with an increase in size, which is caused by the increase in
occupied orbital energy and the decrease in empty orbital energy [29]. The change in
the energy levels of the 10 highest occupied orbitals and the 10 lowest empty orbitals of
[2N,2N]CNB can be clearly seen in Figure 3. When N = 3, 4, 5, 6, 7, and 8, the wavelength
of the strongest absorption peak of [2N,2N]CNB has strong regularity. We supply the
orbital contribution of the excited states with the strongest oscillator of [2N,2N]CNB in
the Supporting Information (Tables S1–S14). We complete a quadratic fit to the size and
wavelength of [2N,2N]CNB, and the result is perfect (R2 = 0.99948) (Figure 2b). This also
shows that the wavelength of the strongest absorption peak of any size [2N,2N]CNB can
be calculated according to this formula. To describe the electronic excitation characteristics
of [2N,2N]CNBs with different sizes, we visualize the transition behavior of electrons
by means of charge-density difference (CDD) maps [30–33]. The electron-hole density is
defined as

ρhole(r) = ∑
i→a

(ωa
i )

2
ϕi ϕi − ∑

i←a

(
ω′ai
)2

ϕi ϕi + ∑
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∑
j 6=i→a

ωa
i ωa

j ϕi ϕj−∑
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a
i ω′

a
j ϕi ϕj (1)
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where ω is the excitation configuration coefficient, and ω′ is the de-excitation configuration
coefficient. r is the coordinate vector, ϕ is the orbital wave function, i or j is the occupied
orbital label, and a or b is the empty orbital label. Thus, ∑

i→a
represents every excitation

configuration of the cycle, and ∑
i←a

represents every de-excitation configuration of the cycle.



Nanomaterials 2023, 13, 159 4 of 12

Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

is the occupied orbital label, and a  or b  is the empty orbital label. Thus, 
→


i a

represents 

every excitation configuration of the cycle, and 



i a

represents every de-excitation con-

figuration of the cycle. 

  

Figure 2. (a) OPA spectrum of [2N,2N]CNB. The absorption peak of the absorption spectrum is 

broadened by a Gaussian function, FWHM = 0.5 eV. (b) The relationship between the wavelength 

and   of the maximum absorption peaks of [2N,2N]CNB and the size. 

 

Figure 3. Energy levels of the 10 highest occupied orbitals and the 10 lowest empty orbitals in 

[2N,2N]CNB. 

The strongest absorption peaks of [2N,2N]CNB are both contributed to by a pair of 

degenerate excited states, and the pair of degenerate excited states are complementary in 

the transition region of the whole molecule. This is caused by the symmetry of 

[2N,2N]CNB. By observing the CDD diagrams, it can be found that the transitions corre-

sponding to the maximum absorption peaks of [2N,2N]CNB with different sizes are *-   

transitions (Figure 4). The transition dipole moment density reflects the magnitude of the 

transition dipole moment, and the magnitude of the transition dipole moment is propor-

tional to the oscillator strength of the excited state. It can be seen that the transition dipole 

moment density is mainly distributed on both sides of the [2N,2N]CNB (Figure 5) that 

corresponds to the CDD. In addition, with the increase in the size of [2N,2N]CNB, the 

Figure 2. (a) OPA spectrum of [2N,2N]CNB. The absorption peak of the absorption spectrum is
broadened by a Gaussian function, FWHM = 0.5 eV. (b) The relationship between the wavelength
and ε of the maximum absorption peaks of [2N,2N]CNB and the size.
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Figure 3. Energy levels of the 10 highest occupied orbitals and the 10 lowest empty orbitals in
[2N,2N]CNB.

The strongest absorption peaks of [2N,2N]CNB are both contributed to by a pair of
degenerate excited states, and the pair of degenerate excited states are complementary in
the transition region of the whole molecule. This is caused by the symmetry of [2N,2N]CNB.
By observing the CDD diagrams, it can be found that the transitions corresponding to
the maximum absorption peaks of [2N,2N]CNB with different sizes are π-π∗ transitions
(Figure 4). The transition dipole moment density reflects the magnitude of the transition
dipole moment, and the magnitude of the transition dipole moment is proportional to the
oscillator strength of the excited state. It can be seen that the transition dipole moment
density is mainly distributed on both sides of the [2N,2N]CNB (Figure 5) that corresponds
to the CDD. In addition, with the increase in the size of [2N,2N]CNB, the transition
dipole moment also increases gradually. This is also the reason why the ε of the strongest
absorption peak increases gradually with the increase in the size of [2N,2N]CNB.
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3.3. Two-Photon Absorption Spectra of [2N,2N]CNB

In this section, we calculated the two-photon absorption spectrum of [2N,2N]CNB
and calculated the transition dipole moment between excited states through a script we
wrote ourselves [34]. The two-photon molar absorptivity is defined as

δtp = 8 ∑
j 6= g
j 6= f

|〈 f |µ|j〉|2|〈j|µ|g〉|2

(ωj−ω f /2)
2
+Γ2

f

(
1 + 2 cos2 θj

)
+8 |∆µ f g|2|〈 f |µ|g〉|2

(ω f /2)
2
+Γ2

f

(
1 + 2 cos2 φ

)
.

(3)

where |g〉, |j〉, and | f 〉 are the wave functions of the ground state, intermediate state, and
final state during the TPA process, respectively.〈j|µ|g〉 and 〈 f |µ|j〉 are the transition dipole
moments from the ground state to the intermediate state and the intermediate state to the
final state, respectively. θj is the angle between the two transition dipole moments.∆µ f g
is the difference in the permanent dipole moments between the ground state and the
final state. φ is the angle between ∆µ f g and 〈 f |µ|g〉.ωj and ω f are the energies of the
intermediate state and the final state, respectively. Γ f is the lifetime of the ground state.

The strongest absorption peaks of the TPA spectra of [2N,2N]CNB are located at
500 nm, and the ε increases continuously with the increase in size (Figure 6a). The relation-
ship between the size of [2N,2N]CNB and the maximum ε is also fitted (Figure 6b), and
the curve is a quadratic function curve with a gradually increasing slope, which indicates
that the ε gradually increased with the increase in size. Unlike the OPA spectrum, the TPA
spectrum does not show a redshift of the absorption peak. By visualizing the charge transfer
of the [2N,2N]CNB during the TPA process, it is found that the intermediate state in the
transition process is the pair of degenerate states with the strongest oscillator intensity in
the OPA spectrum. This is because this pair of degenerate states has the strongest transition
dipole moment. Taking [2N,2N]CNB as an example, the strongest TPA peak of [2N,2N]CNB
is contributed to by S46, S12, and S13, which are the intermediate states of S46. (Figure 7). The
first-step transition of the two transition channels is the same as that of the OPA transition.
The second-step transition is also a local excitation at both ends of the molecule, and the
excitation region and the first-step transition are in a complementary state. The two-photon
electronic transition processes of CNBs with different sizes are shown in Figures S1–S6.
The second-step transitions of [6,6]CNB and [8,8]CNB are localized excitations located
throughout the molecule. The two-photon transition process of [10,10]CNB, [14,14]CNB,
and [16,16]CNB is the same as that of [12,12]CNB.
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Figure 6. (a) TPA spectrum of [2N,2N]CNB. The absorption peak of the absorption spectrum is
broadened by a Gaussian function, FWHM = 0.5 eV. (b) The relationship between the ε of the
maximum absorption peaks of [2N,2N]CNB and the size.
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3.4. IR and Raman Spectra of [2N,2N]CNB

IR and Raman spectroscopy are common detection methods based on molecular
vibrational modes, which can identify molecular types by the wavenumbers of characteristic
peaks. The ε of the IR spectrum of [2N,2N]CNB gradually increases with the increase in
size (Figure 8a,b). The IR spectrum of [2N,2N]CNB has more characteristic peaks in the
range of 500–2000 cm−1, and the characteristic peak at 900 cm−1 is stronger. There is only
one characteristic peak in the range of 2000–4000 cm−1, which is located at 3200 cm−1.
The Raman spectrum has more characteristic peaks in the range of 1000–2000 cm−1, and
the Raman intensity gradually increases with the increase in size. There is a characteristic
peak with very small Raman intensity at 3200 cm−1, which does not change with the size
of CNB.

The vibrational modes of the larger characteristic peaks in the IR and Raman spec-
tra of [12,12]CNB are shown in Figure 9. Among them, 925.5 cm−1, 1565.3 cm−1, and
3198.8 cm−1 have strong characteristic peaks in the IR spectrum, while 1360.3 cm−1 and
1482.7 cm−1 have strong characteristic peaks in the Raman spectrum. The vibrational mode
of 925.5 cm−1 is that the hydrogen atom vibrates perpendicular to the circular molecu-
lar plane. The vibrational mode of 3198.8 cm−1 is the vibration of the hydrogen atom
in the molecular circular plane. The vibration modes of 1565.3 cm−1, 1360.3 cm−1, and
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1482.7 cm−1 are that carbon atoms and hydrogen atoms vibrate together in the molecular cir-
cular plane. The vibration modes of CNBs with different sizes are shown in Figures S7–S13,
and the vibrational modes of the same wavenumber in different CNBs show similar dis-
placement vectors.
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3.5. Nonlinear Optical Properties of [2N,2N]CNB

In this section, we calculate the static/frequency-containing polarizability (α) and sec-
ond hyperpolarizability (γ) of [2N,2N]CNB using the sum of states (SOS). Since [2N,2N]CNB
is a centrosymmetric system, the first hyperpolarizability (β) is completely negligible. The
SOS method is a common method for calculating (hyper)polarizability. The formulas for
calculating α and γ are as follows:

αAB(−ω; ω) = ∑
i 6=0

[
µA

0iµ
B
i0

∆i −ω
+

µB
0iµ

A
i0

∆i + ω

]
= P̂[A(−ω), B(ω)]∑

i 6=0

µA
0iµ

B
i0

∆i −ω
. (4)

γABCD(−ωσ; ω1, ω2, ω3) = P̂[A(−ωσ), B(ω1), C(ω2), D(ω3)]
(
γI − γII

)
. (5)
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γI = ∑
i 6=0

∑
j 6=0

∑
k 6=0

µA
0iµ

B
ijµ

C
jkµD

k0

(∆i −ωσ)
(
∆j −ω2 −ω3

)
(∆k −ω3)

. (6)

γII = ∑
i 6=0

∑
j 6=0

µA
0iµ

B
i0µC

0jµ
D
j0

(∆i −ωσ)(∆i −ω1)
(
∆j −ω3

) . (7)

µA
ij = 〈i|µ̂A|j〉. (8)

µA
ij = µA

ij − µA
00δij. (9)

ωσ = ∑
i

ωi. (10)

where ω is the external field energy, and, when it is 0, it corresponds to the static (hy-
per)polarizability. Addition means summing over all the excited states. ∆ is the excitation
energy of the excited state relative to the ground state. P means to replace the items in
square brackets. uA

ij represents the A-direction component of the transition dipole moment
of the two states i and j. When i = j, the A-direction component corresponds to the dipole
moment of the i-th state, so u00 is the dipole moment of the ground state. δij is the Kronecker
symbol, which is 1 when i = j and 0 otherwise.

The polarizability of [2N,2N]CNB shows obvious anisotropy (αaniso), which is due
to the increase in the size of [2N,2N]CNB along the xy direction (Figure 10a). This results
in the delocalized π electrons on the [2N,2N]CNB having a wider delocalized space in
the xy plane under the action of the external field. As the size increases, the isotropic
average polarizability (αiso) of the CNBs gradually becomes larger. Studies have shown
that the polarizability of the system is positively correlated with the volume [35], which
is also consistent with our conclusion. αx and αy are equal and grow gradually with size.
However, αz does not change significantly with the increase in the size of [2N,2N]CNB. This
is because the size of [2N,2N]CNB does not change in the z direction. Like the polarizability,
the γ of [2N,2N]CNB also exhibits strong anisotropy (Figure 10b). In addition, with the
increase in size, the enhancement of the γ is obvious, showing a nonlinear trend. From the
unit sphere of the static (second hyper)polarizability tensor, it can be seen that the static
(second hyper)polarizability at the xy plane reaches a maximum value, and, as the angle to
the xy plane increases, the static (second hyper)polarizability gradually decreases. Next, we
calculated the dynamic α and γ of [2N,2N]CNB at external fields of 1064, 1460, and 1907 nm.
It can be seen that the frequency-containing α and γ of [2N,2N]CNB gradually increase with
the enhancement of the external field (Figure 10c,d). It is well understood that the stronger
the external field is, the more polarized the electrons will be. To clarify the relationship
between the size of [2N,2N]CNB and the (second super)polarizability, we separately fit the
function of the α and γ as a function (Tables 1 and 2) of size under different external fields
(1064, 1460, 1907, and ∞ nm). The fitting results are very satisfactory, with R2 > 0.999 for
all functions. The excellent fitting results can be used to predict the static/dynamic α and γ
of [2N,2N]CNBs of arbitrary size.

Table 1. The extrapolation formula of the polarizability of [2N,2N]CNB under different external fields.

Field Frequency
(λ, nm)

αiso=AN2+BN+C
R2

A B C

∞ 5.82 87.72 −86.80 0.99988
1064 7.25 90.08 −90.62 0.99990
1460 6.53 89.08 −89.44 0.99989
1907 6.22 88.54 −88.36 0.99988
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Table 2. The extrapolation formula of the second hyperpolarizability of [2N,2N]CNB under different
external fields.

Field Frequency
(λ, nm)

γ||=AN3+BN2+CN+D
R2

A B C D

∞ 211,176.32 −1,854,522.24 6,157,267.00 −6,525,686.13 0.99973
1064 257,845.76 −2,303,081.44 7,590,780.84 −7,991,560.47 0.99971
1460 234,094.08 −2,073,731.36 6,857,161.72 −7,241,207.30 0.99972
1907 224,148.48 −1,978,346.88 6,552,515.92 −6,929,772.45 0.99973
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4. Conclusions

In this work, the geometric structure, stability, photophysical properties, and nonlinear
optical properties of [2N,2N]CNB (N = 2, 3, 4, 5, 6, 7, and 8) are theoretically investigated.
As the size of [2N,2N]CNB increases, the system becomes increasingly stable. In addition,
when N = 5, the stability of [2N,2N]CNB gradually converges. The maximum absorp-
tion peak of the OPA spectrum of [2N,2N]CNB gradually redshifted with the increase in
size, and the absorption intensity gradually increased. The maximum absorption peak
is contributed to by a pair of degenerate excited states, and the electron transition of this
pair of degenerate excited states is localized excitation at both ends of the molecule. The
peak position of the maximum absorption peak of the TPA spectrum does not change
with the size, and the absorptivity increases gradually. The intensities of the characteristic
peaks of the IR and Raman spectra gradually increase with the increase in size. The α
and γ of [2N,2N]CNB increase significantly with increasing size and show a pronounced
anisotropy. The value of the α and γ parallel to the xy plane reaches a maximum value,
while the value of the α and γ perpendicular to the xy plane is minimal. In addition, the
α and γ of [2N,2N]CNB gradually increase with the enhancement of the external field.
These properties reflect a very strong regularity. We fit equations for the wavelength of the
strongest absorption peak, α, and γ for different external fields as a function of the size of
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[2N,2N]CNB. The relevant properties of large-scale [2N,2N]CNB beyond computational
power can be reliably obtained by these equations.
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