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Abstract: The encapsulation of magnetic nickel nanowires (NiNWs) with gelatin is proposed as an
alternative for optical label detection. Magnetic nanowires can be detected at very low concentrations
using light-scattering methods. This detection capacity could be helpful in applications such as
transducers for molecular and biomolecular sensors; however, potential applications require the
attachment of specific binding molecules to the nanowire structure. In the present study, a method is
presented which is helpful in coating magnetic nanowires with gelatin, a material with the potential to
handle specific decoration and functionalization of the nanowires; in the first case, silver nanoparticles
(AgNPs) are efficiently used to decorate the nanowires. Furthermore, it is shown that the synthesized
gelatin-coated particles have excellent detectability to the level of 140 pg/mL; this level of detection
outperforms more complex techniques such as ICP-OES (~3 ng/mL for Ni) and magnetoresistance
sensing (~10 ng/mL for magnetic nanoparticles).

Keywords: encapsulation; detection labels; magnetic nanowires; optical markers

1. Introduction

Emerging technologies based on nanomaterials offer solutions to different technolog-
ical applications. Many of these materials respond to external stimuli and emit optical,
electrical, and mechanical signals. Using these materials as labels in immunoassays makes
it possible to identify several biological analytes for detecting diseases such as cancer [1]
Currently, bio-functionalized magnetic nanoparticles are being used in biodetection because
they can be selectively manipulated and attached to biological systems [2–7].

Recently, our research group reported a magnetic aligning device capable of detecting
magnetic nanowires in a colloidal suspension; this concept is based on the intensity change
of scattered laser light due to the alignment change of the magnetic particles when a
magnetic field is applied. This method efficiently detects magnetic nanowires down to
concentrations of 2 ng/mL suspended nickel nanowires (NiNWs) [8,9].

Functionalization and decoration of the magnetic nanowires are crucial factors in
achieving the use of these nanowires to detect specific analytes; we have found that
direct covalent attachment of molecules to the surface of NiNWs is challenging, unstable,
and sometimes detrimental to their optical detectability. Although more studies must
be performed in this direction, in this work, the encapsulation of the nanowire inside a
gelatin matrix is proposed that could easily be functionalized via covalent binding or by
embedding molecules and nanoparticles.

Gelatin is used as an encapsulating agent and offers many advantages over other poly-
mers due to its abundance, low cost, biological compatibility, physicochemical properties,
organic origin, and the presence of carboxyl (-COOH) and amino (-NH2) groups [10]. These
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groups can interact with metallic surfaces, allowing the gelatin to act as a stabilizing agent
in the synthesis of metallic particles that generate stable colloids [11–13]. Furthermore,
functional groups can bind to different biomolecules, making gelatin an attractive coating
material for medical and biosensing applications [10,14].

NiNWs have been used in several applications such as magnetic cell manipulation
and the fabrication of sensors [15,16], and the fabrication method of using electrodeposition
over porous alumina substrates stands out due to the ease of their synthesis and control of
their dimensions [17–19]. In addition, NiNWs have magnetic properties and exhibit high
light-scattering changes when a magnetic field is applied [20,21].

We propose a two-stage synthesis procedure for the encapsulation process: (1) coat-
ing NiNWs with gelatin to provide particle stabilization and biological compatibility,
and (2) impregnating the gelatin coating with silver nanoparticles (AgNPs). Furthermore,
the addition of AgNPs sets an example, demonstrating how the proposed technique can
help decorate the nanowire–gelatin structures with other required artifacts; for instance,
the addition of proteins will serve as a basis for bio-detection applications [22].

2. Methodology
2.1. Ni Nanowires

NiNWs were fabricated via electrodeposition using anodized aluminum as a template
in a procedure described by Nielsch et al. [19] with minor changes. First, pure Al foil
anodization was performed at 30 VDC in an oxalic acid solution of 0.3 M at 20 ◦C for
20 min. Next, metal electrodeposition into the porous alumina film was carried out in
a saturated solution of NiSO4 and H3BO3 (45 g/L). A nickel counter electrode was the
voltage source (6 VAC at 60 Hz). NiNWs were released by dissolving the alumina film in
a NaOH 0.3 M solution. Next, NiNWs were washed via ultrasound dispersion followed
by precipitation using a neodymium magnet and redispersion in deionized water; this
procedure was repeated three times.

2.2. Ag Nanoparticles

Gelatin type A (1.25 g) and AgNO3 (0.025 g) was dissolved in 25 mL deionized water
under stirring and constant heating at 45 ◦C; after homogenization for 5 min, to trigger the
photoreduction of silver ions, the dispersion was exposed to light from an ultraviolet LED
lamp (360 nm at 2 W) for 60 min.

2.3. Gelatin-Coated NiNWs

The coating of NiNWs was carried out via a two-step desolvation method previously
described by Coester et al. [23,24] with minor changes. In short, 1.25 g gelatin was dissolved
in 25 mL deionized water under stirring and heating at 45 ◦C, and 25 mL acetone was
added to this solution with stirring for 20 min as a desolvating agent to precipitate the
high-molecular-weight gelatin. Next, the supernatant was discarded, and the remaining
sediment was solvated again in 25 mL acetic acidic solution (pH = 2.5) under heating; 1 mL
NiNW solution (37 µg/mL) was added to the gelatin solution, and it was dispersed via
ultrasound for 4 min at 30 watts. Then, the gelatin was dissolved via dropwise addition of
50 mL acetone under heating at 45 ◦C and non-magnetic stirring. After 10 min of stirring,
500 µL glutaraldehyde (8%) was added to crosslink the particles, and stirring continued for
30 min. Finally, the particles were purified via threefold centrifugation (6000 G for 10 min)
and redispersion in acetone/water (30/70 Vol.) using sonication (30 W for 4 min.); the
last redispersion was performed only in water. Next, nanowires were separated using a
neodymium magnet, and the resultant nanoparticles were stored at 4 ◦C.

The process described above was also used for coating of NiNWs with silver nanoparti-
cles. In this case, the precursor AgNO3 was added to the gelatin solution to form a colloidal
dispersion; chemical reduction to produce AgNPs was triggered by UV radiation from an
ultraviolet LED lamp (365 nm at 2 W) for 60 min under stirring and heating at 45 ◦C. The
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complete process of elaborating NiNWs coated with AgNPs and gelatin is schematically
described in Figure 1.
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Figure 1. Schematic of the coating of NiNWs with AgNPs/gelatin.

2.4. Structural Characterization

NiNW morphology was imaged via scanning electron microscopy (SEM; JEOL model
JSM-7610F Field-Emission Scanning Electron Microscope with EBSD, Oxford). Additionally,
the morphologies of the NiNWs, gelatin-coated NiNWs, and AgNPs were imaged via
scanning/transmission electron microscopy (STEM) using a Hitachi SU8230 Cold Field-
Emission Scanning Electron Microscope (CFE-SEM) using the bright-field (BF) and dark-
field (DF) detectors; these imaging techniques help determine the presence of NiNWs,
AgNPs, and gelatin.

2.5. Chemical Characterization

Chemical analysis of the gelatin-coated NiNW colloidal suspension was conducted
using an inductively coupled plasma optical emission spectrometer (ICP-OES) HORIBA to
determine the nickel quantity in parts per billion (ppb) in all samples.

2.6. Detection

Coated nanowires were suspended in deionized water in an optical cuvette, and they
were detected with the aid of the experimental device shown in Figure 2; this device has
been previously reported by our group [8]. In brief, this device can generate two orthogonal
magnetic fields of 100 Gauss created by four copper coils installed on each side of the cuvette.
A set of two Helmholtz copper coils helps to induce a magnetic field in the direction of the
laser beam (650 nm @ 5 mW), and other sets of two coils aligned perpendicularly will also
induce a magnetic field in a perpendicular direction to the laser beam. Synchronizing the
magnetic fields on/off in each direction promotes the rotation of the nanowires. This on/off
procedure causes a change in the scattered light intensity of the rotating nanowires; this
phenomenon is the key to detecting suspended nanowires. After removing the magnetic
field, the nanowires lose alignment due to Brownian motion. On top of the measured
sample is placed a photodetector sensor that measures changes in the scattered light
intensity. Signal changes are electronically amplified using operational amplifiers, digitally
converted using a microcontroller, and then, the digital data are transferred to a PC for
filtering and analysis; from this procedure, we can obtain measurements of the intensity of
the scattered light changes. From experiments previously reported by our research group,
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we know that this detection method yields signal intensities consistently proportional to
the concentration of suspended nanowires [8,9].
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3. Results and Discussion
3.1. Structural Characterization

Figure 3 shows SEM imaging of NiNWs with average sizes of about 30 nm in diameter
and 800 nm in length; due to these nanoparticles’ strong magnetic properties, they have a
strong tendency to bundle when characterized in dry conditions.
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Using bright-field (BF) and dark-field (DF) scanning/transmission electron microscopy
(STEM), the morphology of gelatin-coated NiNWs and gelatin nanoparticles were deter-
mined, as shown in Figure 4. Figure 4a,b show gelatin-coated NiNW micrographs by
BF- and DF-STEM, respectively; From Figure 4c,d, we can observe the incorporation of
AgNPs into the gelatin-coated NiNWs, BF- and DF-STEM, respectively. It is noteworthy
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that DF-STEM images are associated with the atomic number (Z contrast); in this regard,
it is possible to differentiate the elements that compose the sample and corroborate that
NiNWs are coated with an AgNP/gelatin matrix. Figure 4e,f show that this methodology
allows the detection of silver nanoparticles within gelatin nanoparticles.
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Figure 4. Bright-field (right) and dark-field (left) micrographs of (a,b) gelatin-covered NiNWs,
(c,d) AgNP/gelatin-coated NiNWs, and (e,f) AgNP/gelatin nanoparticles decorated with silver
nano particles to demonstrate the capacity to easily embed nanostructured components inside a
gelatin matrix.

3.2. Chemical Characterization

Gelatin-coated NiNWs with/without AgNPs were dispersed in 15 mL deionized
water and labeled as NiNW-gelatin and NiNW-Ag-gelatin, respectively. ICP-OES analyzed
these suspensions to determine their Ni content; Table 1 shows the results of the chemical
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analysis of gelatin-coated NiNW suspensions. This characterization aims to correlate the
amount of NiNW in the suspension to the actual measurements made using our proposed
magnetic alignment light-scattering technique.

Table 1. Results of ICP analyses for gelatin-coated nanowire samples.

Sample ppb Standard Deviation g/mL

NiNW-gelatin 45 1.0 9.0 × 10−7

NiNW-Ag-gelatin 56 0.7 11.2 × 10−7

3.3. Detection

Aliquots of 10 mL each of NiNW-gelatin, NiNW-Ag-gelatin, and as-synthesized non-
coated NiNW suspension were prepared from known concentrations. These aliquots
were tested in our magnetically responsive detection device to determine the detection
capabilities of gelatin-coated nanowires. Before optical detection measurements were taken,
all samples were ultrasonically agitated for 4 min at 30 W.

Detection measurements were performed by applying oscillating magnetic (on/off)
fields at 6 Hz for an integration duration of 20 min; the signal-to-noise ratio was calculated
using the difference of the signal change when no magnetic field was applied (baseline). A
computer interface collected NiNWs’ optical dispersion data to perform statistical analysis
such that the signal-to-noise ratio (SNR) could be computed. The SNR data of different
nanoparticle dilutions are shown in Figure 5, and the results show that as the concentration
of NiNWs decreases, the signal decreases. The NiNW-Ag-gelatin complexes exhibit higher
SNR than NiNW-gelatin, especially at very low concentrations; however, the non-coated
NiNWs show the highest signal intensity. From these measurements, it is remarkable that
even at a very low concentration of 140 pg/mL, in the case of NiNWs coated in gelatin,
we obtained a discernable signal of 13 dB. This result is promising in that the particles
synthetized in this work can be detected at a relatively low threshold level. In comparison,
other high-complexity techniques such as ICP-OES can typically detect Ni at concentrations
as low as 3 ng/mL [25], and novel research related to Magneto resistance sensors reports
the achievement of detecting magnetic nanoparticles as low as 10 ng/mL [17,26].
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Colloidal stability tests were performed by measuring the signal provided for 4 h by
the following colloidal suspensions: NiNW-gelatin, NiNW-Ag-gelatin, and non-coated
NiNWs. The concentration of NiNWs was adjusted to yield an equivalent dispersion
signal for the three samples. The results shown in Figure 6 suggest that the trend of signal
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decline between the three samples is very similar, so it can be inferred that a gelatin coating
does not negatively affect nanowire stability. In these plots, we can notice the presence of
steps during the measurement; we attribute these steps to the luminous noise present in
the laboratory.
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4. Conclusions

In this study, we have fabricated a core–shell composite with magnetic and optical
properties that are able to be manipulated using an innovative yet straightforward magnetic
alignment device for optical detection. Our composite is made of magnetic Ni nanowires
coated with gelatin to provide a valuable surface for anchor proteins or nanoparticle dec-
oration. The development of the procedure required extensive tests to find the optimal
parameters to achieve the gelatin coating, avoiding aggregation, which is a common prob-
lem in the synthesis of nanoparticles. Furthermore, the addition of AgNPs demonstrates
the capacity of the proposed encapsulation process to hold nanoparticles.

To test the proposed approach, we measured the concentration of Ni nanowires
coated with gelatin. The measurements of nanocomposite concentration using our optical
device correlate well with independent concentration measurements performed using an
inductively coupled plasma optical emission spectrometer (ICP-OES). Furthermore, our
results show that our magnetic nanocomposites are detectable at concentrations as low
as 0.14 ppb; this high detectability suggests their potential in practical applications as
labels to detect biological analytes. In this context, gelatin coating is a crucial aspect of our
nanocomposite since it is an organic polymer—biocompatible with most proteins and other
biomolecules—that can anchor antigens and antibodies in biosensing applications such as
cancer detection.
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