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Abstract: In this report, a Fe2O3:ZnO sputtering target and a nanograins-based sensor were developed
for the room temperature (RT) detection of hydrogen peroxide vapor (HPV) using the solid-state
reaction method and the radio frequency (RF) magnetron sputtering technique, respectively. The
characterization of the synthesized sputtering target and the obtained nanostructured film was carried
out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-
dispersive X-ray (EDX) analyses. The SEM and TEM images of the film revealed its homogeneous
granular structure, with a grain size of 10–30 nm and an interplanar spacing of Fe2O3 and ZnO,
respectively. EDX spectroscopy presented the real concentrations of Zn in the target material and
in the film (21.2 wt.% and 19.4 wt.%, respectively), with a uniform distribution of O, Al, Zn, and Fe
elements in the e-mapped images of the Fe2O3:ZnO film. The gas sensing behavior was investigated
in the temperature range of 25–250 ◦C with regards to the 1.5–56 ppm HPV concentrations, with
and without ultraviolet (UV) irradiation. The presence of UV light on the Fe2O3:ZnO surface at RT
reduced a low detection limit from 3 ppm to 1.5 ppm, which corresponded to a response value of 12,
with the sensor’s response and recovery times of 91 s and 482 s, respectively. The obtained promising
results are attributed to the improved characteristics of the Fe2O3:ZnO composite material, which
will enable its use in multifunctional sensor systems and medical diagnostic devices.

Keywords: gas sensor; hydrogen peroxide vapor; iron oxide; magnetron sputtering; nanograins;
zinc oxide

1. Introduction

Hydrogen peroxide (HP) is an oxygen–oxygen single bond compound primarily used
as an oxidizing, bleaching, and antiseptic agent, and therefore, it is a significant substance
used in pharmaceutical, biochemical, clinical, and food analyses. Trace detection of low
HPV concentrations is a current issue in the development of non-invasive diagnostic sys-
tems for precisely monitoring human exhaled air at the ppm to ppb level. The quantitative
analysis of HPV-containing environments can be carried out by numerous techniques, such
as chromatography, electrochemistry, fluorescence, chemiluminescence, chemosensory,
etc. Despite the variety of methods, resistive sensors designed based on chemosensory
principles (so-called chemoresistors) are advantageous due to their high sensitivity and
stability, low power consumption, and relatively easy fabrication technology [1–5].

Metal oxide semiconductors (MOSs) are advanced multifunctional materials consid-
ered as the main candidates for use in resistive gas sensors due to their high sensitivity,
chemical and temporal stability, wide and tunable band gap, simple fabrication technology,
and cost-effectiveness [6,7]. One of the most widely used MOSs in gas sensors is iron oxide,
which is an inorganic compound with the chemical formula of Fe2O3. It appears in two
polymorphic forms, α and γ, of which α-Fe2O3 (hematite) is an inexpensive, common,
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eco-friendly, and non-toxic material with a tunable band gap (∼2.1 eV). The most stable
form of iron oxide, hematite, exhibits excellent gas sensing characteristics, and hence, it is
considered one of the main candidates for use in this field. Furthermore, electrical, chemical,
and gas sensing properties of α-Fe2O3 can be notably improved by the functionalization of
the material using dopants (or solid solutions) in the bulk and noble metal nanoparticles as
a surface enhancement [8–11].

In the last decade, ZnO-based nanostructures have become one of the most widely used
metal oxides in the manufacturing of nanostructured gas sensors because of their unique
sensing behavior, high electron mobility (~400 cm2 V−1 s−1), wide bandgap energy (3.37 eV),
and large excitation binding energy (60 meV). Moreover, nanocomposite structures based
on multicomponent materials show much better gas-sensing results than the pure materials
themselves [12–14]. For instance, iron oxide nanorods were synthesized and decorated with
zinc oxide nanoparticles using the hydrothermal method [15]. A response enhancement of
approximately 59% was registered toward toxic gases/alcoholic vapors for ZnO-decorated
α-Fe2O3 nanorods, along with a faster response rate compared to that of the pure α-Fe2O3
nanorods. Fan et al. [16] synthesized a Fe2O3/ZnO heterostructure using the atomic layer
deposition (ALD) technique. The Fe2O3/ZnO heterostructure showed a better response
(133.1) to 100 ppm H2S compared to the Fe2O3 nanosheet response (8.7) at 250 ◦C. Li
et al. [17] synthesized Au/Fe2O3-ZnO gas-sensing materials by combining co-precipitation
and microwave irradiation processes. The Au/Fe2O3-ZnO based sensor showed a high
sensitivity (154) to acetone vapor at 270 ◦C, while the selectivity could be tuned by adding
the Fe2O3 content to the ternary materials.

Different techniques have been applied to obtain nanostructured thin films for gas
sensor application, such as sol-gel, chemical bath deposition (CBD), pulse laser deposition
(PLD), polymer-assisted deposition, RF magnetron sputtering, etc., among which the RF
sputtering method provides a good film uniformity and a high deposition rate at low
temperatures [18–21].

Herein, we designed and characterized a Fe2O3/ZnO nanostructured sensor obtained
by the RF magnetron sputtering method. We also studied the gas sensing behavior toward
HPV under UV irradiation at temperatures ranging from 25 to 250 ◦C. The measured
sensing results demonstrated high sensitivity and selectivity to low concentrations of HPV
at RT.

2. Experimental
2.1. Gas Sensor Fabrication

First, the Fe2O3:ZnO ceramic cylindrical target was prepared by the solid-state reaction
method for magnetron sputtering. The technological steps of this procedure were presented
in more detail in our previous works [22,23]. For this purpose, α-Fe2O3 and ZnO (wurtzite)
nanopowders (nanopowders, 20–40 nm, Alfa Aesar, Haverhill, MA, USA) with a purity of
99.9% were used to synthesize the cylindrical Fe2O3:ZnO target, with a thickness of 2 mm
and a diameter of 50 mm, containing 20 wt.% of ZnO (Figure 1a).
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Dual-Head High Vacuum Magnetron Plasma System; (b) representation of the magnetron sputter-
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technique for obtaining nanostructured thin films [24]. Here, we used the synthesized 
Fe2O3:ZnO ceramic target after mechanical and chemical treatment. The main mechanism 
of magnetron sputtering methods is shown in Figure 1b. The sputtering target is bom-
barded with energetic ions of inert gases that are present in the pre-ignited plasma envi-
ronment. The dynamic striking of these energetic ions on the water-cooled target emits 
nanograins of the target material condensing on the substrate as a deposited nanostruc-
tured layer. We used a high purity (99.99%) argon (Ar) as the most preferred ‘inert’ or 
‘noble’ gas, considered non-explosive when subjected to the RF (13.56 MHz) magnetic 
field. 

At the beginning of the sensor fabrication, we ordered factory-designed Multi-Sen-
sor-Platforms (TESLA BLATNÁ, Blatná, Czech Republic) as sensor substrates (Figure 2). 
This sensor platform contains interdigital electrode structures (IDES), a heater, and a tem-
perature sensor (Pt 1000) on an alumina substrate [22]. The Fe2O3:ZnO sensing layer was 
deposited onto the IDES, converting the platform into an HPV sensor. Then, the surface 
of the Fe2O3:ZnO based film was sensitized with the palladium catalytic nanoparticles de-
posited by DC sputtering method. Generally, these nanoparticles create spillover zones 
around themselves on the surface of the gas sensing layer, where the mechanism of chem-
ical and electrical sensitization takes place. Target gas molecules arriving in such zones 
are more easily dissociated, which leads to improved sensitivity and response times. The 
technological regimes of the sputtering processes are summarized in Table 1. In the final 
step of sensor manufacturing, the sensor platform with the Fe2O3:ZnO film and the Pd 
nanoparticles was annealed for 3 hours at 350 °C to stabilize its performance parameters. 

Figure 1. (a) Actual photographs of the Fe2O3:ZnO sputtering target and the VTC-600-2HD DC/RF
Dual-Head High Vacuum Magnetron Plasma System; (b) representation of the magnetron sputtering
operating mode.

Active films for the detection of HPV were obtained by the RF magnetron sputtering
method using the VTC-600-2HD DC/RF Dual-Head High Vacuum Magnetron Plasma
System (Figure 1a). Magnetron sputtering allows for the deposition of a very wide range
of materials, including metals, dielectrics, ceramics, etc., as an advanced vacuum coating
technique for obtaining nanostructured thin films [24]. Here, we used the synthesized
Fe2O3:ZnO ceramic target after mechanical and chemical treatment. The main mechanism
of magnetron sputtering methods is shown in Figure 1b. The sputtering target is bombarded
with energetic ions of inert gases that are present in the pre-ignited plasma environment.
The dynamic striking of these energetic ions on the water-cooled target emits nanograins
of the target material condensing on the substrate as a deposited nanostructured layer.
We used a high purity (99.99%) argon (Ar) as the most preferred ‘inert’ or ‘noble’ gas,
considered non-explosive when subjected to the RF (13.56 MHz) magnetic field.

At the beginning of the sensor fabrication, we ordered factory-designed Multi-Sensor-
Platforms (TESLA BLATNÁ, Blatná, Czech Republic) as sensor substrates (Figure 2). This
sensor platform contains interdigital electrode structures (IDES), a heater, and a temperature
sensor (Pt 1000) on an alumina substrate [22]. The Fe2O3:ZnO sensing layer was deposited
onto the IDES, converting the platform into an HPV sensor. Then, the surface of the
Fe2O3:ZnO based film was sensitized with the palladium catalytic nanoparticles deposited
by DC sputtering method. Generally, these nanoparticles create spillover zones around
themselves on the surface of the gas sensing layer, where the mechanism of chemical
and electrical sensitization takes place. Target gas molecules arriving in such zones are
more easily dissociated, which leads to improved sensitivity and response times. The
technological regimes of the sputtering processes are summarized in Table 1. In the final
step of sensor manufacturing, the sensor platform with the Fe2O3:ZnO film and the Pd
nanoparticles was annealed for 3 hours at 350 ◦C to stabilize its performance parameters.
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Figure 2. Schematic block diagram of the HPV sensor fabrication.

Table 1. The deposition regimes of the Fe2O3:ZnO based thin layer and the Pd catalytic particles.

Process Sputtering
Duration

Power of
Generator

Working
Pressure

Sputtering
Gas

Substrate
Temperature

Cathode
Current

Base
Pressure

Magnetron sputtering (RF) (Fe2O3:ZnO layer) 25 min 70 Wt 2 × 10−1 Pa Ar 200 ◦C – 1 × 10−3 Pa

Magnetron sputtering (DC) (Pd catalytic particles) 5 s – 5 × 10−1 Pa Ar 200 ◦C 250 mA 3 × 10−3 Pa

2.2. Gas Sensing Test

The HPV sensing behavior was investigated using a self-designed gas testing setup
including a 2 L gas chamber, a Keithley DMM7510 7 1/2 Digital Multimeter, a Keith-
ley 2231A-30-3 DC Power Supply, a UV LED (λ = 365 nm, with the illumination of
3 mW cm−2), a heater, and an air circulator fan (Figure 3). To obtain the HPV concen-
tration in the gas chamber, a desired amount of the liquid hydrogen peroxide was dropped
on the purpose-built evaporating crucible, converting liquid hydrogen peroxide to HPV.
The real concentrations of HPV were calculated by considering the percentage of liquid
hydrogen peroxide aqueous solution, the amount of dripped drops, and the chamber
volume [25]. For the measurements of resistance variation over time, a 3 V DC voltage bias
was applied to the IDES, while a bias voltage range of 0–5 V was used for the sensor heater
to obtain operating temperatures ranging from 25 to 250 ◦C.
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Figure 3. Schematic block diagram of the HPV testing system.

HPV leads to an increase in the sensor resistance for n-type semiconductors (Fe2O3:ZnO);
therefore, the gas response was defined as yielding values greater than one: S = Rgas/Rair,
where Rgas and Rair are the sensor resistances in the HPV environment and in the air,
respectively.

2.3. Characterization

For magnetron sputtering processes, the morphology of the target material is quite
important because the bombardment of energetic ions on the target surface, with different
porosity and granularity, leads to different sputtering rates. Therefore, the morphological
structure of the Fe2O3:ZnO target was investigated by scanning electron microscopy using
the MIRA 3 LMH (Tescan) instrument under 15 kV of accelerating voltage (Figure 4). It
is evident from the SEM images that the average pore sizes in the target material are in
the range of 5–10 µm, which is large enough that energetic ions can easily diffuse in the
pores, slowing down the continuing sputtering process. Despite this, one of the advantages
of the high-frequency sputtering process is that the energetic ions attach and detach from
the surface of the target material at a high frequency (13.56 MHz) and do not manage to
diffuse into the pores. Moreover, the high-frequency electromagnetic field mainly prevents
the accumulation of positive ions on the target surface, ensuring the continuity of the
sputtering process [26].
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Generally, magnetron-sputtered films have a granular structure, and the size of the
grains in these films is largely determined by the sputtering conditions [27]. SEM images
of the sputtered Fe2O3:ZnO film were also obtained to confirm the granular structure
of the film (Figure 5). The granular network is quite homogeneous, ranging from 10 to
30 nm in diameter, except for the presence of some cracks with a size of about 10–20 nm.
It is assumed that these cracks are due to the film annealing as a result of the difference
between the thermal expansion coefficients of the film and the sensor substrate, or as a
result of so-called radiation damage, which is created by the electron microscope beam on
the fine surface of the films at a higher magnification, and this cannot be easily avoided.
In any event, these cracks did not affect the temporal stability of the sensor in a practical
manner because the gas sensing parameters (mainly the sensor response) were tested over
a long-term interval, and no significant drift was recorded.
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The Fe2O3:ZnO target material and the sputtered film were also well studied by the
EDX elementary analysis. The availability of Fe, Zn, and O peaks both in the target material
and in the film obviously present the weight and atomic percentage of these elements
(Figure 6). The real concentrations of Zn in the target material and in the film are 21.2 wt.%
and 19.4 wt.%, respectively, faintly deviating from the initial calculated value (20 wt.%).
Such deviations are assumed to be caused by the errors of the measuring instruments and
the peculiarities of the technological processes.
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Figure 6. EDX spectrum of the Fe2O3:ZnO target (a) and the film (b).

EDX spectroscopy yielded the e-mapped images of the Fe2O3:ZnO film confirming
the uniform distribution of O, Al, Zn, and Fe elements, with the distinctive characteristic
lines of X-ray intensity (Figure 7).
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Zn (c), and Fe (d) elements.

The crystal structure of the Fe2O3:ZnO material was analyzed by TEM, and the results
are depicted in Figure 8. The hexagonal shape of ZnO [28], with average particle sizes of
15–30 nm in diameter, was confirmed (Figure 8a,b). The lattice fringes of the Fe2O3 and ZnO
materials are clearly visible in the high-resolution TEM (EFTEM Jeol 2200 FS, JEOL Ltd.,
Tokyo, Japan) image of the Fe2O3:ZnO material (Figure 8c), with the interplanar spacing of
0.5 nm and 0.25 nm, respectively [29]. The selected area electron diffraction (SAED) pattern
of the material revealed the nearly polycrystalline structure of the Fe2O3:ZnO material [30].
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material.

3. Results and Discussions
3.1. Gas Sensing Properties

The gas sensing characteristics of the Fe2O3:ZnO sensor at the different operating
temperatures to detect the various concentrations of HPV, with and without UV irradiation,
were thoroughly investigated. In the initial stage of the research, the gas sensing parameters
under dark conditions were examined in temperatures ranging from 25 to 250 ◦C at the
HPV concentrations of 3–225 ppm, confirming its extremely high sensitivity, even without
UV assistance. The temperature dependence curve of the sensor response appeared with a
pronounced maximum peak at 150 ◦C, corresponding to a response value of 2600 (Figure 9a).
The sensor satisfactorily responded to HPV (S = 23), even at RT, proving the existence of
the chemisorption phenomena at this temperature, without additional thermal support.
The dynamic resistance curves of the sensor for the seven different concentrations of HPV
were measured at 150 ◦C, representing a rather low detection limit of HPV (3 ppm), with a
response value of 300 (Figure 9b). Distinct response/recovery curves were plotted at each
successive concentration measurement. As the HPV concentration increased up to 120 ppm,
an almost linear characteristic appeared, while at higher concentrations, a near-saturation
trend was observed (Figure 9c). For the high performance and practical applicability
of the sensing device, it is extremely important to evaluate the response and recovery
times as a function of the operating temperature. Thus, the dependence of the response
and recovery times on the operating temperature was obtained (Figure 9d). Despite the
sensor’s reasonable response at RT, the response and recovery times at this temperature
were tens of minutes, demonstrating a fairly inefficient sensor performance, while at higher
temperatures (>200 ◦C), they reached the order of seconds. This behavior is predictable
because as the temperature increases, the rates of chemical reactions and gas diffusion tend
to increase steadily [31].
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One of the most common and effective ways to reduce the response/recovery times
and operating temperature of the sensor is revealed by exposing its active surface to UV
light [32], thus the gas sensing characteristics of the sensor in this study were tested and
investigated under UV irradiation. First, the change in the real-time resistance of the
sensor was observed when illuminated with UV light. As shown in Figure 10a, the sensor
resistance in the presence of UV irradiation dropped more than ten times, reducing from
63 kΩ to 600 Ω, while exhibiting an extremely short UV response time (~8 s). By continuing
to keep the sensor under UV rays, the sensor baseline resistance successfully stabilized,
and all subsequent investigations were performed under these conditions.
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The responses of the Fe2O3:ZnO sensor were recorded at different temperatures
(25–250 ◦C), combined with UV irradiation toward 1.5 ppm HPV (Figure 10b). Starting
from RT, the sensor response decreased persistently, becoming somewhat stable from
200 ◦C, which definitely prompted us to choose the RT as the operating temperature. It
is assumed that the effect of UV rays creates favorable conditions for gas adsorption and
further interaction with the lattice [33], and the use of UV rays, combined with temperature
heating, leads to the acceleration of the HPV desorption rate, producing a significant
decrease in the response. Moreover, without thermal excitation, the presence of UV light on
the film surface is sufficient to create light-generated free electrons in the conduction bands
of both Fe2O3 and ZnO materials, which will also lead to a decrease in the barriers between
the presumably formed nanojunctions. This will allow for the tuning of the resistance of
the Fe2O3:ZnO nanocomposite material, bringing it closer to the measurable range. Thus,
the sensor showed almost the same response at RT, with and without UV irradiation, to 3
and 225 ppm HPV, respectively (Figure 10c). The presence of UV light on the sensor surface
resulted in not only a significant improvement in the sensor response, but also an increase
in the response and recovery rates. It is assumed that UV-generated electron/hole pairs
intensively participate in the chemisorption processes on the semiconductor surface and in
parallel, UV rays also stimulate the rate of electron exchange in chemical reactions. The
sensor’s real-time repeatability—as one of the most important determinants of temporal
stability—at every successive response measurement demonstrates its suitability for use
in real environments. Therefore, at the same 1.5 ppm HPV concentration, the dynamic
responses of the sensor were recorded by performing six different measurements, and
the results are presented in Figure 10d. The sensor consistently showed a stable response,
with nearly identical response/recovery curves (the relative deviation of response values:
0.97–1.75%) obviously confirming the sensor’s high repeatability behavior.

The real-time resistance curves of the Fe2O3:ZnO sensor in the range of 1.5 to 56 ppm
HPV were also demonstrated under the UV light, corresponding to the response values of
12 to 1930, respectively (Figure 11a). It is obvious that the presence of UV rays on the sensor
surface not only improves the sensitivity and speed, but also reduces the low detection limit
from 3 ppm to 1.5 ppm, clearly justifying their use as an alternative to traditional heating.
The linearity of the sensor is a very important characteristic for the accurate estimation of
the target gas concentration, as well as for its easy calibration processes. The dependence of
the sensor response on the HPV concentration is approximately linear (Figure 11b), making
it a promising detector in the HPV concentration range of 1.5 ppm to 56 ppm; thus, it
can be successfully used, for example, in non-invasive diagnostic systems for respiratory
diseases. The recovery and response times, considered typical indicators of the sensor’s
performance, are significantly improved in the presence of UV irradiation combined with
thermal heating. As shown in Figure 11c, the registered response and recovery times
decrease with an increase in sensor temperature. Even at RT, the sensor’s response and
recovery times were within the acceptable ranges of 91 s and 482 s, respectively (Figure 11d).
The relatively high recovery time is assumed to be due to the rather difficult desorption
processes of HPV molecules from the porous (granular) film, which leads to difficulty in
reaching the sensor’s baseline resistance level.
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The sensor selectivity was evaluated by testing its response to six different gases,
including 130 ppm ammonia, 400 ppm acetone, 650 ppm ethanol, 3200 ppm water va-
por, 320 ppm toluene, and 350 ppm DMF (dimethylformamide), compared to a 1.5 ppm
concentration of HPV (Figure 12a). Despite the fairly high concentrations of reference
gases (130–3200 ppm), the sensor showed a relatively higher response to ammonia vapors
(Figure 12b), which is about 4.9 times lower than that of HPV. This is definitely a sufficient
result to consider the sensor as a device capable of working in real environments, as it is
endowed with high selectivity.
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Figure 12. (a) Selectivity of the Fe2O3:ZnO sensor for HPV under UV irradiation at RT and (b) real-
time response curves of the sensor to 1.5 ppm HPV and 130 ppm ammonia.

The gas sensing results of our Fe2O3:ZnO based sensor were compared with the char-
acteristics of currently available researched sensors to confirm the relevance and scientific
novelty of the obtained results. The comparison table includes the type of sensing materials,
HPV concentrations, operating temperatures, and response values, which invariably play a
decisive role in sensor performance (Table 2). Our sensor showed clearly comparable gas
sensing characteristics, in which rather high response values were most noticeable.
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Table 2. The comparison of HPV sensing performance of the Fe2O3:ZnO material with the perfor-
mance of previously reported sensors.

Materials T (◦C) HPV (ppm) Response Reference

MnO2/Polyimide 140 20 30% [34]

Porphyrin nanofiber/single-walled carbon
nanotubes (SWCNTs) RT 0.1 11.25% [35]

(Pt-SWCNTs) RT 2.6 2.7% [36]

Porphyrin/polydimethylsiloxane (PDMS)/paper RT 2.6 45.4 [37]

Tetrabutylammonium hydroxide (TBAH) RT 0.013 25 % [38]

Polyvinyl alcohol (PVA)/NaNO2 RT 5 14% [39]

MoS2/reduced graphene oxide (RGO) RT 50 12 (~373.1%) [40]

Silver/gold metallic nanoparticles RT 100 50% [41]

NiO-en-PPy (polypyrrole) nanocomposite RT 225 1.3 [42]

Fe2O3:ZnO nanograins 150 3 42 This work

Fe2O3:ZnO nanograins RT 1.5 12 This work

3.2. HPV Sensing Mechanism

It is known that the gas sensing mechanism of resistive type sensors is mainly deter-
mined by surface kinetic processes, which include gas adsorption/desorption processes,
diffusion of molecules on the surface and into the porous film, as well as chemical reac-
tions. The change in film resistance in the presence of a target gas is mainly due to the
surface reactions, as a result of the particular concentration of the localized oxygen ions
in the surface changes. Moreover, the surface and bulk diffusion of the oxygen species
are greatly facilitated by the oxygen vacancies on the metal oxide surface. Initially, un-
der normal atmospheric conditions, neutral oxygen species (O, O2) are physiosorbed on
the semiconductor surface, after which chemisorption is observed, accompanied by their
transformation into localized ions due to free electrons taken from the conductance band
of the semiconductor. The supposed chemical reactions characterizing these processes are
presented in Figure 13a. Under these conditions, an electron depletion layer is formed on
the surface of the Fe2O3:ZnO nanograins, and the corresponding electrical resistance is
established. Here, double Schottky barriers are formed at the intergranular junction of the
Fe2O3:ZnO nanograins [22,43,44].

When HPV molecules are adsorbed on the semiconductor surface, they dissociate
into water and oxygen molecules. Water molecules are usually easily desorbed from the
surface, while oxygen molecules chemically interact with the semiconductor surface, taking
even more free electrons from its conduction band, leading to an increase in the number of
localized oxygen ions on the semiconductor surface (the corresponding supposed chemical
reactions are shown in Figure 13b). This is reflected in an increase in the double Schottky
barriers, leading to an increase in the semiconductor resistance. As a result, such a change
in film resistance is typically referred to as a sensor response.

At high temperatures (>200 ◦C), O− and O2− oxygen species predominate on the
sensor surface, whose further participation in the kinetic phenomena leads to a decrease
in the sensor response in the presence of UV rays (Figure 10b). At RT (<200 ◦C), O2

−

oxygen species play the main role in the gas sensing mechanism of the Fe2O3:ZnO sensor,
leading to rather high sensitivity. This was observed because the UV rays not only induced
the physisorption of HPV molecules on the Fe2O3:ZnO surface, but also stimulated the
chemisorption processes [43].

The excellent combination of Fe2O3 and ZnO materials results in a higher photocat-
alytic activity of the Fe2O3:ZnO composite compared to that of the pristine Fe2O3 and ZnO
materials, which is reflected in the high performance of the Fe2O3:ZnO sensor under UV
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irradiation. One of the reasons for this improvement may be that the conduction band
level of α-Fe2O3 is lower than that of ZnO, which leads to the transformation of ferric ions
in α-Fe2O3 to ferrous ions by the capturing of electrons. Due to the light activation, the
excited electrons are transferred from the conduction band of ZnO to that of α-Fe2O3. In
this case, the α-Fe2O3 will serve as a unique sieve for photogenerated electrons, which will
lead to the spatial separation of charge carriers and a decrease in the probability of their
recombination [45].
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Figure 13. The schematic diagram of the proposed HPV sensing mechanism for the Fe2O3:ZnO
sensor under UV irradiation in the air (a) and in HPV environment (b).

The illumination of UV-assisted resistive sensors is the best way to activate chemical
reactions on the MOS surface and reduce the sensor baseline resistance, making this
process an excellent alternative to energy-demanding heating. It is assumed that UV
irradiation actively affects the adsorption/desorption processes of HPV on the Fe2O3:ZnO
surface, allowing chemical reactions to occur without additional thermal stimulation.
In these conditions, more neutral oxygen species absorbed on the surface become ions,
resulting from the presence of light-generated electron/hole pairs. These ions greatly
contribute to gas sensing processes by steadily improving gas sensitivity, selectivity, and
response/recovery times [46–48].

4. Conclusions

In this study, we developed an RT HPV sensor based on the Fe2O3:ZnO nanocomposite
material. The characteristics of the Fe2O3:ZnO material were revealed, and the gas sensitiv-
ity parameters were thoroughly investigated. The interplanar spacing of Fe2O3 and ZnO
materials was 0.5 nm and 0.25 nm, respectively, and the SAED pattern confirmed the nearly
polycrystalline structure of the Fe2O3:ZnO material. The maximal response was registered
at 150 ◦C, atm which the Fe2O3:ZnO sensor displayed actual high response values of 42 and
2600, corresponding to 3 and 225 ppm HPV, respectively, even without UV assistance. The
sensor responded quickly enough (~8 s) to UV illumination and under these conditions,
the operating temperature of the sensor was reduced to RT, and the low detection limit
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was lowered to 1.5 ppm, while reducing the response/recovery times. The sensor showed
linear response dependence on the HPV concentration in the range of 1.5 ppm to 56 ppm.
The sensor selectivity was tested in the presence of different environmental gases, and
rather a high selectivity behavior was confirmed. The design and fabrication of an HPV
sensor with high sensitivity, repeatability, and selectivity to other interfering gases can be
achieved through the Fe2O3:ZnO nanograins-based composite material, which makes it a
perfect candidate for low-concentration HPV sensor application.
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