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Abstract: In this study, graphene and N-doped graphene nanosheets were synthesized through
the shock-induced reduction of CO2 using a cylindrical shock-loading apparatus. The mixture of
solid CO2 and Mg powder was filled in the pre-cooled sample tube and then impacted by a shock-
driven cylindrical flyer tube. The impact generated a shockwave that propagated into the mixed
precursor, inducing a chemical reaction between CO2 and Mg at a high shock pressure and high shock
temperature. The recovered black powders were characterized via various techniques, confirming the
presences of few-layer graphene. The mechanism is carefully shown to be that CO2 was reduced by
Mg to form few-layer graphene under shock-induced high pressure and high temperature. By adding
carbamide as an N source, this synthetic route was also applied to synthesize N-doped graphene
nanosheets. Moreover, the yield and mass of the graphene materials in this study are up to 40% and
0.5 g, respectively. This study showed an efficient and easy-to-scale-up route to prepare few-layer
graphene and N-doped few-layer graphene through shock synthesis.

Keywords: few-layer graphene; shock synthesis; nitrogen doping; CO2 conversion

1. Introduction

Graphene, the first two-dimensional (2D) material synthesized by Noveselov et al. [1],
has been proven to be an excellent future material [2–8]. Compared with other carbon
nanomaterials, its atom-thick graphitic layer leads to its quantum confinement effect and
contributes to its various unique properties [9], including outstanding mechanical prop-
erties [5,6,10], ultra-high thermal transport property [11,12], excellent optical properties
adjusted by layers [13,14], superconductivity [15,16], electronic properties [1,4,17–19], etc. A
vast number of research has revealed the abundant applications of graphene in multiple ar-
eas, such as field effect transistors [1,20], nano-sensors [21,22], metal-free electrodes [23,24],
energy storage materials [25], biomedical carriers [26], etc. In addition, the properties
of graphene materials can be adjusted and improved by their specific morphology [4,25],
lateral dimension [27–29], elemental doping [30], and combination with other materials [31].
Among the large quantities of research on graphene, one central focus is to synthesize
doped graphene materials with better electrochemical properties [30–37]. For example, the
doped effect of phosphorus-doped rGO [38] and sulfur-doped rGO [39] allow graphene
films to possess better capacities and higher rate performance because the doping increases
the defect density of graphene and its carrier quantity.

Multiple approaches have been documented for producing graphene materials, includ-
ing the mechanical exfoliation approach, the oxidation reduction method, epitaxial crystal
growth, chemical vapor deposition (CVD), the liquid exfoliation method, the arc-discharge
method, the electrochemical exfoliation method, pulsed wire discharge, etc. Through
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the mechanical exfoliation of highly oriented pyrolytic graphite, mono-layer graphene
with a lateral size of 1 mm was obtained successfully [3,12]. In the oxidation reduction
method, graphite flakes were partially oxidized to enlarge the graphitic layer distance
and then exfoliated and reduced to form a reduced graphene oxide [8,40]. With respect
to the epitaxial crystal growth method, the anneal treatment of SiC substrate in vacuum
induces graphitization on its surface, which is identified as epitaxial graphene [41]. In
the CVD method, the free carbon atoms from the hydrocarbon gases decomposition are
transferred to deposit on certain metal surface to form graphene film [42]. Hernandez
et al. [43] prepared a graphene suspension through the ultrasonic treatment on the graphite
flakes dispersed in N-methylpyrrolidone by the ultrasonic cavitation phenomenon. More-
over, Geng et al. [44] mixed FeCl3 intercalated graphite powder with H2O2 to induce the
decomposition of H2O2 to form O2 and the further expansion of graphitic layers to form
graphene. In the arc-discharge method, Wu et al. [45] obtained high-quality graphene
nanosheets via self-maintained direct current arc-discharge between two graphite elec-
trodes in a mixture of inert gases. In these conditions, the graphite electrodes were ablated
by the arc to generate free carbon atoms which were deposited on the chamber wall to form
graphene. Rao et al. [46] applied an electrochemical reaction to prepare graphene materials
through a primary battery consisting of two graphite rods and a salt solution, in which the
electrochemical reaction induced the oxidation of graphitic layers and the intercalation of
ions to exfoliate graphene. Through the pulsed wire discharge method, a graphite stick
was exfoliated at a high inner pressure and high temperature induced by the rapid Joule
heating of a pulsed discharge, leading to the formation of graphene [47,48].

In addition, the shock synthesis method can also be utilized to produce graphene [49].
In the shock synthesis method, under shock treatment, shock-induced transient high
pressure and high temperature lead to intense chemical reaction resulting in the materials
synthesis. Under these extreme conditions, a series of catastrophic changes occur in the
chemical and physical properties of the materials. Various studies have been conducted
using this process for material synthesis and modification. In particular, this unique process
can form a supercritical reaction environment in microseconds, converting CO2 to useful
carbon nanostructures. However, in a previous study, the yield of graphene recovered from
shock-induced chemical reaction was 10%, approximately, due to the high sublimation rate
of dry ice [50].

In this work, we optimized the shock synthesis method to prepare few-layer graphene
(FLG) and N-doped FLG by using CO2, Mg fine powder, and carbamide (CH4N2O) with
a high graphene yield. This work implies a potential large-scale production of graphene
materials through carbon fixation using the shock synthesis method.

2. Materials and Methods

To perform the shock treatment on precursors and for the recovery of the graphite
samples, a cylindrical shock recovery apparatus was applied, as shown in Figure 1. The
copper sample tube (10 mm in inner diameter and 100 mm length) was filled with mixed
precursor powder and blocked using a copper plug. Then, the sample tube was immersed
into liquid nitrogen for 30 min to inhibit the sublimation of solid CO2. Subsequently,
the sample tube and cylindrical flyer tube were fixed on the cylindrical steel base with
accessorial fixation of ring-like support to keep a gap of 2 mm between the sample tube
and flyer tube. Then, the apparatus was assembled according to Figure 1a with the main
charge (ammonium nitrate and fuel oil explosive, ANFO) for the shock treatment. In the
apparatus, the cylindrical flyer tube can protect the main charge from the low temperature
of sample tube to ensure stable detonation. During the detonation process, the flyer tube
was accelerated by detonation to impact on the sample tube. The generated converging
shockwave was transmitted into the cylindrical sample tube and acted on the precursor
powder. Consequently, the shockwave front propagated in the mixed precursor powder
with a conical wave front. This further enhanced the shock pressure through oblique
impact [51], leading to multiple extreme effects on the precursor powder, such as transient
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high pressure and temperature, strong shear effect, etc. The incident shock pressure (P)
and shock temperature (T) on the sample were calculated based on the Hugoniot curve
of powder materials and the Mie–Grüneisen equation (as illustrated in literature [48,49]).
After shock treatment, the sample was recovered and purified using 15% HCl (4.4 mol/L)
to remove MgO powder and a small amount of Cu fragments from the copper sample tube.
Finally, the sample suspension was washed to remove MgCl2 and HCl, and dried using a
vacuum-frozen drier for further characterization.
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Figure 1. (a) Illustration of cylindrical shock recovery apparatus with flyer tube and (b) photograph
of recovered graphene suspension after purification. 1—detonator; 2—RDX (cyclotrimethylen-
etrinitramine with detonation velocity of 8750 m/s); 3—PVC tube; 4—main charge; 5—support ring
lid; 6—steel block; 7—sample; 8—sample tube; 9—cylindrical flyer tube; 10—steel block; 11—steel
base; 12—momentum block; 13—plastic support.

In these shock synthesis experiments, the mixed precursor consists of solid CO2 as an
oxidant and carbon source, Mg as a reductant, and carbamide as a nitrogen source. The
solid CO2 and Mg powder were mixed at a molar ratio of 1.1:2 in a mixing chamber cooled
by liquid nitrogen. For the experiment to synthesize N-doped graphene, the carbamide is
added in the precursor as a nitrogen source with the molar ratio 1:0.1 (solid CO2:carbamide).
The carbamide powder was firstly mixed with Mg powder and then subsequently mixed
with solid CO2 in the mixing chamber cooled by liquid nitrogen. The mass of the sample
tube before and after filling it with the precursor were measured to obtain the mass of
precursor powder (m0). The detailed experimental conditions and calculated shock pressure
were listed in Table 1.

Table 1. Experimental conditions and the yield of shock-synthesized graphene *.

No. Precursor
Molar Ratio

ρ00
(g/cm3)

m0
(g)

v
(km/s)

p
(GPa)

T
(K)

m1
(g)

Graphene
Yield

1 CO2 + Mg
1.1:2

1.274 6.00 2.63 14.3 3170 4.73 78.8%
2 1.304 6.14 3.07 18.8 4010 4.36 70.1%

3
CO2 + Mg +
carbamide

1.1:2:0.1
1.282 6.04 3.12 18.4 4470 4.80 79.5%

* ρ00 is packing density of mixed precursor powder, v is impact velocity, p is shock pressure, T is shock temperature,
m1 is the mass of FLG sample after purification. Graphene yield is calculated according to the ratio of m1 to m0.
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An X-ray Diffractometer (XRD) (D/MAX-2500, Rikagu, Tokyo, Japan) was applied
to record the XRD patterns of recovered samples with Cu Kα radiation (k = 0.15406 nm)
and a step size of 0.0330◦ (2θ) from 10–90◦. Transmission electron microscopy (TEM) and
high-resolution TEM (HRTEM) observations of recovered samples were performed with a
FEI Tecnai G2 F20 S-Twin transmission electron microscope at an accelerating voltage of
200 kV to analyze the micromorphology of the recovered samples. Field emission scanning
electron microscopy (SEM) observations were performed using a Hitachi S-4800 at an
accelerating voltage of 5–15 kV. A LabRAM Aramis Raman spectrometer equipped with a
He–Ne laser (excitation wavelength of 633 nm) was carried out to record the Raman spectra
of recovered samples. The chemical composition and bonding states of recovered samples
were probed by X-ray photoelectron spectroscopy (XPS) using a Thermo ESCALAB 250
Xi spectrometer with monochromatic AlK (1486.6 eV) X-ray sources. The recorded XPS
spectra of all recovered samples were fit using a Gaussian–Lorentzian peak with non-linear
Shirley background correlation. In addition, the samples for the characterization of SEM
and Raman were separated in distilled water via ultrasonic dispersion and then dried on a
Si plate.

3. Results

Figure 2 presents the representative TEM and HRTEM images of recovered samples
Nos. 1–3, indicating the presence of wrinkled and extended ultra-thin films with lateral
sizes of 1~5 µm, which are in accordance with the typical micromorphology of graphene
materials [40–44]. In addition, the edge observation of these ultra-thin films from HRTEM
images (Figure 2b,d,f) further reveal that the layers of shock-synthesized ultra-thin films are
in the range of 3–7, 4–8, and 4–6, respectively, with corresponding interlayer distances of
0.3–0.4 nm. Thus, the recovered samples are identified as FLG. Furthermore, the thicknesses
of all three recovered samples are of the same order, implying that the experimental
conditions induce similar formation conditions of FLG. Furthermore, the selected area
electron diffraction (SAED) patterns (the insets of Figure 2a,c) of the corresponding samples
display ring-like diffraction patterns with dispersed bright spots, suggesting the presence
of representative rotational staking faults in the matrix of the graphene sheets [47,52]. This
finding suggests that the high crystallinity of recovered FLG samples are in accordance
with the results observed in highly crystalline FLG [48,50]. Moreover, the inset of Figure 2e
shows a ring-like diffraction pattern with multiple dispersed spots, indicating that the
crystallinity of No. 3 sample is partially disorientated due to the structural distortion
caused by the interposition of N atoms [53]. Thus, the TEM examination shows that the
FLG synthesized through shock loading process is highly crystalline.

The representative SEM images (Figure 3) of the FLG synthesized through the shock
loading process indicate that the samples possess a typical micromorphology of 2D ma-
terials and curved and extended ultra-thin nanosheets [41,44,54] due to their thermody-
namic instability [55]. Moreover, the formed graphene nanosheets agglomerate to form a
3D-porous-like structure, implying the thermodynamic instability of 2D materials. Further-
more, Figure 3 also reveals the presence of bowl-like FLG, which may imply that the MgO
particles formed by shock-induced chemical reactions become the deposition substrate of
reduced carbon atoms. Similar formation processes have been reported by Xu et al. [56]
in the study on the formation of porous carbon nanomeshes using a self-sustained sol-
pyrolysis approach. After the purification process, the MgO substrates are removed from
the products. In addition, the lateral size distributions of recovered FLG are in the range
of 1~5 µm, approximately, based on the statistics of SEM examination (30 SEM images for
each sample).

Figure 4a shows the XRD patterns of the recovered samples, suggesting only one
peak appearing at approximately 26.5◦ assigned to graphite (002) diffraction. It also
demonstrates the existence of pure FLG in all recovered samples. The calculated lattice
distance values corresponding to the (002) peaks of recovered samples are in range of
0.34–0.345 nm based on Bragg’s law. The calculated results are slightly larger than those of
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bulk graphite (0.335 nm), which is also in a good agreement with the TEM results and is in
accordance with previous reports [23,48], thus showing the presence of FLG. Furthermore,
the absence of XRD peaks corresponding to copper, MgO, MgCl2, etc., also indicates the
high purity of the recovered FLG samples after the purification process.
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The analysis based on Raman spectra is widely used as a facile and credible charac-
terization of the phase and structure of carbon materials. Figure 4b presents the Raman
spectra of recovered samples, in which three characteristic Raman bands of SP2 carbon
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are observed, including the D band (1332 cm−1), G band (1581 cm−1), and 2D band (in a
range of 2663~2687 cm−1) in each spectrum. Through the spectra, the intensity ratios of
the 2D band to the G band (I2D/IG) and the D band to the G band (ID/IG) are calculated to
estimate the graphitic layers of the recovered samples [55,57] and the degree of disorder in
the formed graphene nanosheets [58,59], respectively. The I2D/IG values of the recovered
samples are 0.71–1.13 (see Table 2) smaller than 2, indicating the presence of FLG [55,57] in
the recovered samples. Note that the ID/IG value of sample No. 1 is approximately 0.35,
suggesting a high degree of disorder in the recovered graphene nanosheets. However, the
ID/IG values of samples No. 2 and 3 are in a range of 0.13–0.15 (see Table 2), suggesting the
low degree of disorder in the recovered graphene nanosheets. These results may imply that
the higher temperature and pressure condition contributes to the crystallinity of formed
FLG nanosheets, which is in accordance with the results reported by Cheng et al. [60] on
the Joule heating treatment on graphene films.

Table 2. Raman characterization results of recovered samples.

No. I2D/IG ID/IG Main Phase

1 1.13 0.35 FLG
2 0.71 0.15 FLG
3 0.77 0.13 FLG

XPS measurements were carried out to probe nitrogen atoms in sample No. 3 obtained
from the precursor mixed with a nitrogen source, carbamide. As shown in Figure 5,
the XPS spectrum of sample No. 3 contains an intense C1s band at ca. 284 eV, an N1s
band at ca. 400 eV, and an O1s band at ca. 532 eV. Based on the band areas and atomic
sensitivity factor of C1s and N1s, the corresponding N/C atomic ratio of sample No. 3
is calculated to be 6.71%. Note that the physical and chemical performance of doped
graphene is positively correlated to the doping content [49,50]. Thus, this study further
indicates that the transient extreme conditions generated by the shock loading process
could benefit the atomic ratio of N/C, which provides an important basis for a wider
application range of N-doped graphene. Furthermore, the N content is higher compared to
previous studies, implying the higher chemical activity of synthesized graphene [49,50].
The high-resolution XPS N1s spectrum (inset of Figure 5) reveals two types of N-doping in
the shock-synthesized graphene’s molecular structure, including pyridinic-like (399.1 eV)
and pyrrolic-like (399.7 eV) N atoms [61]. Consequently, N atoms have been incorporated
into the graphene hexagon rings of the N-doped graphene in sample No. 3. However, the
O1s band appearing at 532 nm in the XPS spectrum is possibly due to the incorporation of
physically adsorbed oxygen [50]. XPS analysis reveals that the atomic percentage of oxygen
in the shock-synthesized N-doped graphene is 6.74 at%. Moreover, XPS results suggest that
no extra bands of impure elements appeared other than those of C, N, and O, indicating
the high purity of the N-doped graphene after the HCl purification process.
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4. Discussion

The above characterizations confirm that shockwave action is an effective method
to produce graphene materials. The formation mechanism of FLG from shock-treated
precursor powder consisting of a mixture of solid CO2 and Mg is difficult to investigated
via the in situ observation route due to the transient non-equilibrium process. We speculate
that the formation of graphene materials in these experiments to be a shock-induced, dense
fluid–solid reaction process. Considering that solid CO2 can react with Mg powder under
high temperatures at atmospheric pressure, a similar chemical reaction can be easily ignited
under the conditions of shock-induced high temperature (3000~4000 K) and high pressure
(14~18 GPa). These extreme conditions sublimate solid CO2 rapidly to form a high-density
CO2 fluid in an enclosed sample tube with a small amount of CO and O2 formed by the
partial decomposition of CO2. The high density of CO2 fluid also contributes to the reaction
rate of the mixed precursor. Furthermore, shockwave propagation through the precursor
powder is much higher than the combustion rate of Mg and CO2, leading to the ultra-high
reaction rate of the mixed precursor in microseconds. Under this condition, the reduced
free C atoms and oxidized MgO separate uniformly in the sample tube. Consequently,
the free C atoms deposit on the surface of the adjacent MgO powder to form few-layer
graphitic layers during the subsequent ultra-fast cooling process. After the purification
process, the few-layer graphitic layers remain as FLG.

Moreover, the ultra-fast reaction rate, led by the shock loading and the uniform
separation of free C atoms and MgO powder, also contributes to the uniform deposition to
form FLG with the same orders of thickness and lateral size. Note that the higher pressure
and higher temperature also contribute to the crystallization process of graphene to form
graphene with a higher crystallinity considering the transient duration of this crystallization
process. With respect to sample No. 3, the carbamide molecules decompose to produce free
C atoms and N atoms under extreme high pressure and temperature during shock loading.
These C atoms and N atoms also deposit on MgO surface, forming graphene and inducing
the nitrogen doping during the deposition process to form N-doped graphene.

In addition, the pre-cooling treatment of the sample tube using liquid nitrogen effi-
ciently inhibits the CO2’s sublimation rate during experimental operation before detonation,
leading to a high-efficiency preparation of graphene materials with a higher yield compared
with previous studies. The graphene yield of samples Nos. 1–3 are in the range of approxi-
mately 70~80%. The formed N-doped graphene powder may have potential applications
in the preparation of outstanding metal-free electrodes, which has been investigated using
the specimen synthesized by the detonation method in our previous research.

5. Conclusions

In this study, graphene and N-doped graphene materials are obtained through the
shock-induced chemical reaction of CO2 and Mg powder (with carbamide as N source).
The shockwave technique provides an efficient carbon fixation route to transform CO2 into
useful graphene materials. Experimental results confirm that shockwave action can induce
the sublimation of solid CO2 to form dense CO2 fluid and further trigger the redox reaction
between CO2 and Mg to produce FLG nanosheets within microseconds during the shock
loading process. By adding carbamide as a N-doping agent, N-doped graphene can be
obtained with a similar approach in one-step reaction route. The experimental results also
imply that the increase in shock pressure and temperature is conducive to the crystallinity
of the formed FLG and N-doped FLG though this shock-induced carbon fixation method.
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