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Abstract: Due to its environmental cleanliness and high energy density, hydrogen has been deemed
as a promising alternative to traditional fossil fuels. Photocatalytic water-splitting using semicon-
ductor materials is a good prospect for hydrogen production in terms of renewable solar energy
utilization. In recent years, halide perovskite nanocrystals (NCs) are emerging as a new class of
fascinating nanomaterial for light harvesting and photocatalytic applications. This is due to their
appealing optoelectronic properties, such as optimal band gaps, high absorption coefficient, high
carrier mobility, long carrier diffusion length, etc. In this review, recent progress in halide perovskite
NCs for photocatalytic hydrogen evolution is summarized. Emphasis is given to the current strategies
that enhance the photocatalytic hydrogen production performance of halide perovskite NCs. Some
scientific challenges and perspectives for halide perovskite photocatalysts are also proposed and dis-
cussed. It is anticipated that this review will provide valuable references for the future development
of halide perovskite-based photocatalysts used in highly efficient hydrogen evolution.

Keywords: halide perovskite nanocrystals; photocatalysis; hydrogen evolution; heterojunction;
charge separation

1. Introduction

With the rapid growth of human consumption, the world is faced with surging energy
demands amidst the quick depletion of fossil fuels and severe natural environmental issues.
To alleviate the threat of energy crisis and environmental deterioration, it is urgent to seek
more eco-friendly and sustainable renewable energy sources. As a carbon-free and clean
energy source, hydrogen has been deemed as a promising future energy source to replace
traditional fossil fuels [1–3]. Among various approaches to hydrogen generation, photo-
catalytic water splitting utilizing abundant solar energy and semiconductor materials has
been regarded as one of the most attractive routes. In the photocatalysis field, the rational
design and fabrication of advanced photocatalysts with ideal solar-to-hydrogen (STH)
energy conversion efficiency is the most critical aspect [4,5]. Since the pioneering work of
photoelectrochemical water splitting on TiO2 electrodes by Fujishima and Honda [6], the
field of hydrogen production from water splitting has been systematically investigated,
which includes exploring the basic photocatalytic mechanism, developing novel photocat-
alytic materials, and designing efficient photocatalytic systems. Generally, the fundamental
working principle of photocatalysis includes the absorption of light energy by semicon-
ductors to create electron-hole pairs, which then migrate to the semiconductor’s surface
to initiate redox reactions. Thus, the separated electron-hole pairs play crucial roles in the
photocatalytic redox reaction. To date, various kinds of semiconductor photocatalysts have
been developed for hydrogen generation, including oxides (CeO2, WO3, Ga2O3, etc.) [7–17],
sulfides (CdS, MoS2, ZnS, etc.) [18–27], C3N4 [28–33], etc. However, conventional semicon-
ductor photocatalysts still have a low STH energy conversion efficiency that is far from
satisfactory due to their wide bandgaps and high electron-hole recombination rates.
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Recently, halide perovskite materials—on account of their fascinating electronic and
optical properties, including outstanding visible light harvesting ability, suitable band
positions to provide sufficient driving potential, as well as their high carrier mobility and
long electron-hole diffusion lengths—have emerged as a class of promising candidates
for photocatalytic applications. To date, various kinds of halide perovskites, in either an
organic–inorganic or all-inorganic fashion (e.g., CH3NH3PbX3, CsPbX3, X = Cl, Br, I), have
shown great potential in photocatalysis fields such as CO2 reduction [34–40], hydrogen
generation [41–45], pollutant degradation [46–51], phemethylol oxidation [52,53], organic
reaction [54,55], etc. Since the first demonstration of using methylammonium lead iodide
(CH3NH3PbI3, MAPbI3) for hydrogen generation via the solar-driven splitting of hydrogen
iodide by Park et al. [44], the potential of halide perovskites for photocatalytic hydrogen
production has been investigated by many researchers. In virtue of the advantages of halide
perovskites mentioned above, such as the excellent light-absorption ability and suitable
band positions, the applications of these materials in photocatalytic hydrogen production
begin to flourish and exhibit outstanding photocatalytic performances.

In this review, we summarize the recent progress made in using halide perovskites for
solar-driven photocatalytic hydrogen production. To date, numerous review articles have
summarized recent advances in halide perovskites applied in solar energy conversion. In
contrast to previous reviews, this review focuses exclusively on the application of halide
perovskites in photocatalytic hydrogen production. Firstly, we introduced the property
and photocatalytic mechanism of halide perovskites, and highlighted strategies used for
enhancing the photocatalytic hydrogen production performance of these materials. Finally,
we concluded by introducing a perspective on the future challenges and opportunities of
this field, which could provide guidelines for further research on halide perovskite-based
photocatalysis applications.

2. Properties of Halide Perovskites
2.1. The Composition of Halide Perovskites

Halide perovskite materials have a general structural formula of ABX3 (Figure 1a),
where A is usually a monovalent cation (Cs+, methylammonium (MA+), or formamidine
(FA+)), B is a divalent metal ion (Pb2+, Sn2+, or Ge2+), and X is the halogen anion, namely
I−, Br−, or Cl− [56,57]. The B cation coordinates with six halogen anions to form [BX6]4−

octahedra. The large monovalent A cation behaves like a total charge neutralizer, which
is bridged to a network of corner-sharing BX6 octahedrons, forming the ideal perovskite
structure. The A-, B-, and C-site ions can be substituted isomorphically by other similar
ions, thus altering the defect properties, electronic structure, and catalytic performance
of the material [58–61]. Both the B and X ions play an important part in governing the
band structure of halide perovskites that affects their catalytic performance, while the
function of the A cation is ignorable. Although the A cation generally does not construct
the energy level, its size plays a crucial role in judging the formability of the perovskite
structure, since either a smaller or larger A cation could lead to either a contraction or
expansion of the perovskite lattice. Usually, perovskites exhibit a cubic structure (space
group: Pm3m), which can transform into orthorhombic (space group: Pnma) or tetragonal
(space group: I4/mcm) phase when the temperature decreases [62–64]. As observed in the
crystal structure, the B-site cation and the anion are tightly bound, while the A-site cation
and the anion have a weak interaction. The BX6 octahedral structure can be distorted by
the difference between the electronegativities and ionic radii of the A and B cations, leading
to a weakened symmetry of the crystal structure. It has been proved that the tilt angle can
affect the electronic band structure, photoluminescence, dielectric, and the charge transport
properties of the perovskites [65–67]. Various types of perovskite crystals with desirable
characteristics can be designed by adjusting these interactions via placing different types of
cations at corresponding lattice sites [68,69].
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Figure 1. (a) Schematic illustration of the crystal structure of halide perovskite. (b) Colloidal
halide perovskite CsPbX3 NCs (X = Cl, Br, and I) exhibit size- and composition-tunable bandgap
energies covering the entire visible spectral region with narrow and bright emission. (c) Typical
optical absorption and PL spectra of CsPbX3 NCs. (d) Typical optical absorption and PL spectra of
CsSnX3 NCs. (b,c) Reproduced with permission [70]. Copyright: 2015, American Chemical Society.
(d) Reproduced with permission [71]. Copyright: 2016, American Chemical Society.

2.2. Optoelectronic Properties of Halide Perovskites

Understanding the composition, crystal structure, and the electronic band structure
of the perovskite is of vital importance because these pivotal factors are intercorrelated
in judging its potentiality for satisfactory photocatalytic performances. The energy band
strucure of halide perovskites consists of an antibonding valence band maximum (VBM)
and an antibonding conduction band minimum (CBM) system, rendering this crystal with
high defect tolerance. Applying DFT calculations, the VBM of perovskites is composed
of an antibonding hybrid state between the 6s orbital of B and the np orbital of X (n = 3,
4, and 5 for Cl, Br, and I, respectively), with the np orbital of X as the major contributor,
whereas the CBM is formed from an antibonding hybrid state between 6p orbitals of B
and np orbitals of X, with 6p orbitals of B as the significant contributor [72,73]. Taking
cubic CsPbBr3 QDs as an example, its CB and VB positions are determined based on the
6p orbital of Pb and the 4p orbital of Br, respectively, whereas Cs has negligible effect
on the energy band edge [74]. Since the A-site cations exhibit no significant effect on the
VBM or CBM [75], the bandgap tuning can be easily realized by mixing or exchanging the
halogen anions. For example, by altering the ratio of different halide ions, Sargent and his
co-workers successfully tuned the bandgap of MAPbI3 [76]. When the iodide concentration
was increased, the absorption and emission spectra of the CsPbBr3−xIx perovskite film
red-shifted to longer wavelength, and its bandgap became narrower [77]. The tunable
bandgap affords a good platform to modulate the energy band edge of halide perovskites
toward highly efficient photocatalytic performance for various applications. For instance,
Guo et al. reported that the band edge positions of CsPb(Brx/Cl1−x)3 could be tuned by
regulating the ratio of Br and Cl [78], and the photocatalytic activity toward CO2 reduction
is significantly enhanced.

Generally, halide perovskites are considered as direct bandgap semiconductors. For
MAPbI3, the spin–orbit coupling leads to Rashba splitting of the conduction band, resulting
in a weak indirect bandgap of 60 meV during the direct bandgap transition [79]. Halide
perovskites exhibit photo-absorption in almost the entire visible region, indicating that
charge carriers can be effectively produced upon low energy excitation, which is favourable
to photocatalytic applications [80,81]. A practical strategy to realize spectral absorption
diversity and bandgap tuning with perovskites is adopting mixed halides. For example, by
only altering the halogen element at the X-site from Cl to Br to I, Protesescu et al. found a
redshift of the emission wavelength of CsPbX3 (X = Cl, Br, or I) from 410 nm to 512 nm and
700 nm, and to any other intermediate wavelengths within the visible spectral range using
mixed halide ions (Figure 1b,c) [70]. However, as the halogen composition changes, the
valence band edge moves by a relatively wide margin within the energy levels, while the
conduction band edge exhibits little change. For the MAPbX3 perovskite, when X was Cl to
I, the emission wavelength shifted from 403 to 740 nm [82].
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In addition, the B-site cation also has a significant effect on the optical properties
of halide perovskites. Inevitably, the Pb element in perovskites need to be partially or
completely replaced due to environmental issues. Compared to those of CsPbX3, strong
red shifts of the absorption and emission spectra were observed for CsSnX3, from 443 nm
(X = Cl) to 953 (X = I) (Figure 1d) [71]. By compositional modulation, the bandgaps of
halide perovskites can be designed and tuned within a certain range, achieving targeted
energy levels. In addition, optical properties of halide perovskites can be enhanced by a
metal ion doping strategy. For example, by doping Cu2+ and Sb3+ into the three octahedral
layers, the layered double perovskite Cs4CuSb2Cl12 was obtained. It has a direct band
gap of 1.0 eV, and an electrical conductivity one order of magnitude higher than that of
MAPbI3 [83]. In addition, the partial replacement of Pb by Mn may cause a strong Stokes
shift in the emission, which can increase the utilization rate of sunlight [84]. However,
the incorporation of cations (Cd2+, Al2+, and Zn2+) into the halide perovskite can cause
shrinkage of the original lattice, resulting in a wider bandgap, blueshift of the absorption
peak, and weaker absorption ability [85–87].

3. Applications of Halide Perovskites in Photocatalytic Hydrogen Evolution
3.1. Basic Principle of Photocatalysis with Halide Perovskites

Photocatalytic redox reactions driven by semiconductor materials usually involve
identically essential steps (Figure 2a) [88]: (1) generation of electron-hole pairs by the light
harvesting of the photocatalyst, (2) transfer of photogenerated electrons and holes to the
surface of the photocatalyst, and (3) photogenerated charge carriers participate in redox
reactions. In order to drive the water-splitting redox reactions, the VB edge of the semicon-
ductor should be more positive than the oxidation potential of H2O to O2 (1.23 V vs. normal
hydrogen electrode [NHE], pH = 0), while the CB edge of the semiconductor should be more
negative than the reduction potential of H+ to H2 (0 V vs. NHE, pH = 0) [89]. So, theoreti-
cally, the minimum bandgap required for water splitting is 1.23 eV. However, considering
the overpotential associated with the water-splitting redox reactions, the bandgap to drive
efficient overall water splitting must be further widened, usually to 1.8–2.0 eV [90–92].
The relative positions of CB and VB potentials for most halide perovskites are shown in
Figure 2b, along with the redox potentials of photocatalytic half-reactions associated with
water splitting, CO2 reduction, etc. Apparently, the CB potentials of most halide perovskites
are more negative than the reduction potential of H+ to H2, meeting the thermodynamic
requirements for reducing water. In other words, the relative CB positions of halide per-
ovskites are usually sufficient for H2 production, exhibiting excellent reduction abilities.
Theoretically, some members of halide perovskites (such as all-inorganic CsPbBr3) can also
oxidize water to produce O2 because their VB potentials are relatively positive.

In addition, factors like the molar extinction coefficient, charge carrier recombination,
and defect state of a halide perovskite should also be taken into account for photocatalytic
applications [93–95]. A high molar extinction coefficient (ε) is essential for efficient absorp-
tion of visible light and generation of excitons [96]. The ε values of colloidal perovskites,
ranging from about 105 to 107 L mol−1 cm−1, are comparable to those of a-Si: H and GaAs,
and an order of magnitude higher than that of c-Si, which are representative photovoltaic
materials [97,98]. This is indicative of better visible light responses for halide perovskites,
thus improving photon-carrier conversion efficiencies [99]. However, the ε value of a halide
perovskite is also dependent on the size of the crystals. This is especially important in the
nanometer size range due to the quantification effect, which needs to be taken into account
for practical applications in optoelectronics [100].
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Carrier diffusion length is also important for the photocatalytic applications of halide
perovskites. Generally, a longer carrier diffusion length indicates a lower recombination
rate. The carrier diffusion lengths of halide perovskites have been increased by various
strategies. For example, Dong et al. used a solution–growth method to obtain MAPbI3
single crystals with a high carrier diffusion length exceeding 175 µm, which could be
attributed to the long lifetime, high carrier mobility, and small trap densities of the single
crystals [101], whereas the polycrystalline MAPbI3 has a charge carrier diffusion of only ca.
100 nm. By incorporating Cl− into MAPbI3−xClx, Zhang et al. obtained a perovskite with
a carrier diffusion length of up to 380 µm [102]. This is because the incorporation of Cl−

can increase the density of trap states, thus creating the medium for carrier transfer and
reducing the VB, which play a dominate role in charge recombination. As a consequence,
maximum values of the carrier diffusion lengths were reached for the MAPbI3−xClx single
crystals with the optimum Cl content (x = 0.005). Owing to the enhanced utilization of
photogenerated charge carriers, it is expected that the long carrier diffusion length of halide
perovskites would significantly contribute to their catalytic activity.

In addition, the photogenerated charge transfer kinetics in halide perovskites are
also vital for the design of highly efficient photocatalysts. Excitons and free carriers are
produced rapidly under light excitation, with free carriers as the main light-excited species.
In most cases, excitons are also rapidly decomposed into free carriers. For instance, the
excitons in CsPbBr3 NCs are quickly converted into free carriers after 4–5 ps [103]. These hot
carriers relax to the energy band edge via carrier–phonon and carrier–carrier interactions
within fs. The larger the size of halide perovskite nanocrystals is, the faster the cooling
kinetics of hot carriers is [104]. As the lifetime of a hot carrier in perovskites increases, the
carrier becomes relatively easy to extract. Radiative recombination of cooled carriers takes
place within ns at the band edge. For example, the capture time of non-radiative carriers in
CsPbBr3 NCs is about 40–50 ps [105]. On account of the defect tolerance features of halide
perovskites, the energies of carriers in the defects are similar to those of edge carriers, which
implies that more high-energy carriers will make potential contributions to photocatalytic
reactions. For CsPbBr3, the carriers can be extracted by electron-hole acceptors within
ps, indicating that the extracted carriers can be potentially applied in photocatalysis [106].
Therefore, the ideal energy levels, along with the unique charge transfer kinetics, make
halide perovskites good candidates for photocatalytic applications [107]. To sum up, halide
perovskites provide distinct advantages for photocatalysis: (1) targeted electronic structures
can be designed by altering the A, B, and X-site elements in the crystal structure, so that
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other physical properties can be tailored, such as stability, light absorption, and charge
migration [108]; (2) the unique energy band structures endow halide perovskites with
suitable band edge positions to drive a broad range of photocatalytic reactions [109]; (3) the
long carrier diffusion lengths and high charge mobility also render halide perovskites as
promising candidates for the design of high-performance photocatalysts.

3.2. Halide Perovskites for Hydrogen Evolution
3.2.1. Pristine Halide Perovskites or Solid Solutions

As discussed above, the unique optoelectronic properties of halide perovskites are
favourable to their application in photocatalytic reactions, including hydrogen evolution.
The first milestone for photocatalytic hydrogen evolution using halide perovskites was
reported by Park et al. [44]. As is known, most halide perovskites are unstable in polar
solvents, especially water [87]. In order to conquer this, Park and his coworkers employed
the dynamically balanced HI solution as the reaction medium, which can maintain the
stability of MAPbI3 (Figure 3a). MAPbI3 is regarded as an ionic crystal consisting of
MA+ and PbI3

−, which can be precipitated in saturated solutions. Hence, when MAPbI3
precipitates are dissolved in saturated solution, they can be decomposed into MA+ and
PbI3

− ions. Simultaneously, MA+ and PbI3
− ions were reprecipitated into crystals at

the same rate. In this way, the MAPbI3 powder could maintain stability in aqueous
HI solution ((Figure 3b). They also found out that different phases of MAPbI3 can exist,
depending on the concentrations of H+ and I−. However, only under the specific conditions
of [I−] ≤ [H+], pH < −0.5, and −log [I−] < −0.4 can MAPbI3 remain stable (Figure 3c).
This pioneering work has opened up a way for using halide perovskites in photocatalytic
fields. Afterward, Wang and his group elucidated the reaction mechanism of photocatalytic
hydrogen evolution using MAPbI3 [45]. In this reaction, MAPbI3 played dual roles as a
visible light photoabsorber and as a catalyst reductant. Meanwhile, both the Pb atoms
and surface organic molecules participated in the reaction. First, an intermediate state of
Pb—H was formed by the interaction between one H atom dissociated from an MA+ ion
and Pb. Subsequently, H2 was produced by the reaction of the Pb—H intermediate state
with another H atom from an adjacent MA+ ion. The lost H would be replaced by protons
from the solution to produce new MA+ ions through the Grotthuss mechanism.
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(c) Constructed phase map as a function of [I−] and [H+]. Each symbol represents the stable precipitate
phases in saturated solutions at each [I−] and [H+] concentration. Main peaks of precipitated
powder are not indexed under some conditions, expressed as empty boxes. (d) Promoted charge
separation and enhanced photocatalytic H2 evolution by formation of a bandgap funnel structure
of MAPbBr3−xIx near the surface. (e) Schematic band diagram of MAPbI3 and MAPb(I1−xBrx)3

(x = 0.10) crystal for photocatalytic HI splitting reaction. (a–c) Reproduced with permission [44].
Copyright: 2016, Nature Publishing Group. (d) Reproduced with permission [110]. Copyright: 2018,
American Chemical Society. (e) Reproduced with permission [111]. Copyright: 2019, Elsevier.

As mentioned above, the CBM and VBM potentials of halide perovskites can be
modified by modulating their compositions, which makes them suitable for gradient
photocatalysis. By tuning the iodide concentration gradient, Huang et al. synthesized a
mixed halide perovskite material (MAPbBr3−xIx) with a funnel-like bandgap structure [110].
The CBM becomes more positive with the increase of I concentration from the interior to
the surface, whereas the VBM becomes more negative (Figure 3d). In this way, a smooth
funnel is constructed, which promoted the charge transfer from the inside to the surface.
As a consequence, this specially designed photocatalyst exhibited a H2 generation rate
of 255.3 µmol h−1. When Pt was further loaded on the surface of the perovskite, the
photogenerated electrons on the perovskite surface transferred rapidly to the Pt particles,
which further increased the H2 generation rate to 651.2 µmol h−1. In a similar fashion,
Huang’s group also constructed a bandgap funnel-structured CsPbBr3−xIx mixed halide
perovskite via the graded distribution of iodide [112]. The obtained CsPbBr3−xIx/Pt
photocatalysts exhibited a H2 evolution rate of 1120 µmol g−1 h−1 under visible light
irradiation, along with a high stability during the 50 h of the photocatalytic experiment.

Considering the stability issues of halide perovskites, photocatalytic hydrogen genera-
tion using these materials are often conducted in HX (X = Cl, Br, or I) solution instead of
direct water splitting [113]. Water splitting is a four-electron reaction, while the reduction
of HI involves two electrons. When electrons drive the H2 production reaction, I3

− is gen-
erated during the photocatalytic process, which will darken the reaction medium gradually.
As a consequence, the light absorption of the photocatalyst will be interfered. This can
be overcome by the addition of hypophosphorus acid (H3PO2) as a chemical stabilizer,
which can maintain the concentration of I− and reduce the I3

− ions [110]. Doping Br ions
have also proved an effective way to enhance the photocatalytic HI splitting activity of
MAPbI3 [111]. The resultant MAPb(I1−xBrx)3 perovskite exhibited a high H2 evolution of
1471 µmol h−1 g−1 even without a Pt cocatalyst. This is because the addition of Br ions
can tune the band structure of perovskite, with a negative shift of the CB potential, thus
enhancing the reduction capability of electrons for efficient H2 production (Figure 3e). In
addition, the Br-incorporated perovskite has a lower H-Pb absorption energy, which makes
it easier for H to transfer from MA+ to the Pb atom at the defect site, thus increasing the H2
evolution rate.

3.2.2. Halide Perovskite Composites

Wu et al. reported a MAPbI3/rGO composite with outstanding photocatalytic per-
formance in aqueous HI solution (Figure 4a) [41]. It has a high H2 evolution rate of
93.9 µmol h−1 under visible light irradiation, which is 67 times and 23 times higher than
that of pristine MAPbI3 and Pt-loaded MAPbI3, respectively (Figure 4b). The remarkable
performance could be attributed to the introduction of rGO, which possesses good charge
transport ability and facilitates charge transfer. The electrons that transfer from MAPbI3
to rGO then reduce protons to H2, resulting in excellent photocatalytic activity of the
MAPbI3/rGO composite. Moreover, the composite is extremely stable, with no significant
decrease of the H2 evolution activity after 200 h of cyclic experiments (Figure 4c). As
confirmed by XRD, the recycled photocatalyst showed no change or failure in structure.
That was because the MAPbI3 powders and the saturated HI solution were in dynamic
equilibrium. When the reaction occurred, the exposed MAPbI3 surface was restored all the
time, ensuring the continuous oxidation of I− to I3

− on the surface in contact with HI.
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Li et al. anchored a 2D few-layer black phosphorus (BP) on MAPbI3 via electro-
static coupling and fabricated a BP/MAPbI3 composite for photocatalytic hydrogen evolu-
tion [114]. The resultant BP/MAPbI3 exhibited a superb photocatalytic hydrogen evolution
rate of 3742 µmol h−1 g−1 under visible light, which was far higher than that of both
pure MAPbI3 and MAPbI3/Pt (Figure 4d). Moreover, the BP/MAPbI3 showed superior
durability without no obvious decrease in the activity after 20 cycles. The outstanding
photocatalytic activity and stability of the BP/MAPbI3 could be attributed to the broad-
ened light harvesting, enhanced charge separation, and high chemical/optical stability of
BP/MAPbI3 composite in HI solution (Figure 4e).

Wang et al. adopted a novel simultaneous dual-charge transportation modulation ap-
proach to improve the photocatalytic H2 evolution activity of organic–inorganic MAPbBr3
NCs [115]. They hybridized the MAPbBr3 perovskite with Pt/Ta2O5 and poly(3,-4-ethylene
dioxythiophene):polystyrenesulfonate (PEDOT:PSS) nanoparticles, which acted as electron-
and hole-transporting motifs, respectively. By providing new dual-charge transporting
pathways, the charge separation and transportation efficiency of MAPbBr3 was significantly
improved. Tantalum pentoxide (Ta2O5) was selected for its ideal conduction band edge
position, which can provide an electron transport pathway to accelerate the electron trans-
portation from MAPbBr3 (Figure 5a). Thus, Pt/Ta2O5-MAPbBr3 contributed to the increase
of H2 evolution rate. PEDOT:PSS was used as an efficient hole-transporting material in
the hybrid system for its more positive VBM than that of MAPbBr3, which facilitated the
Br-oxidation reaction (Figure 5b). Therefore, Pt/Ta2O5-MAPbBr3-PEDOT:PSS was the most
effective photocatalyst for H2 evolution (Figure 5c). The photocatalytic hydrogen evolution
rate on the hybridized system was increased by ca. 52 times than that of pristine MAPbBr3,
with an apparent quantum efficiency up to 16.4% at 420 nm.
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Through hybridization of MAPbI3 with Pt/TiO2, Wang et al. greatly enhanced the
photocatalytic hydrogen evolution rate of MAPbI3 from HI splitting [42]. Due to the
suitable band alignment (Figure 5d), the TiO2 nanoparticles can act as nanoscale electron-
transporting channels, which allow efficient extraction of the photogenerated electrons from
MAPbI3. As illustrated in Figure 5e, the introduction of Pt/TiO2 could create dynamically
existing electron-transporting channels between the MAPbI3 and Pt/TiO2, which drastically
enhanced the charge transportation efficiency of MAPbI3 nanoparticles. As a consequence,
the photocatalytic hydrogen evolution rate of Pt/TiO2-MAPbI3 was enhanced by ca. 89
times than that of Pt/MAPbI3 (Figure 5f).

Wang et al. employed MoS2 nanosheets as a cocatalyst to couple with MAPbI3 and
fabricated a MAPbI3/MoS2 composite for photocatalytic H2 evolution [116]. Since the
conduction band potential of MAPbI3 is more negative than that of MoS2, the photogener-
ated electrons can efficiently transfer from MAPbI3 to MoS2, which hindered the carrier
recombination rates. As a result, the MAPbI3/MoS2 composite exhibited a H2 evolution
rate 121 times higher than pristine MAPbI3.

3.2.3. Pb-Free Halide Perovskites

In order to overcome the toxicity of lead, Guo et al. developed an eco-friendly lead-free
perovskite MA3Bi2I9 and applied it for photocatalytic H2 evolution [117]. Owing to the
precipitation–solubility equilibrium reached in the system, the obtained MA3Bi2I9 exhibited
excellent phase stability in HI solution. After 70 h of repeated H2 evolution, it showed no
degradation or oxidization with satisfactory cycle stability. When using Pt as a cocatalyst,
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the H2 production rate was enhanced by 14 times compared with the pristine one, reaching
169.21 µmol g−1 h−1.

For the first time, Zhao et al. applied the Cs2AgBiBr6 (CABB) double perovskite
for HBr splitting under visible light irradiation, in which RGO was introduced to extract
the photogenerated electrons from CABB [118]. The resultant CABB/RGO composite
exhibited a H2 evolution of 489 µmol g−1 within 10 h under visible light irradiation, which
was 80 times higher than that of bare CABB. Moreover, the CABB/RGO composite with
optimal RGO demonstrated ideal stability, with no significant decline in H2 evolution
after 120 h continuous photocatalytic reaction. As confirmed by the photoluminescence
(PL) (Figure 6a) and photoelectrochemical measurements (Figure 6b), the CABB/RGO
composite exhibited suppressed charge recombination and better charge transfer ability
than bare CABB. This could be attributed to the introduction of conductive RGO, which
could accelerate the electron transfer from CABB through the M-O-C bonds. Subsequently,
the transfered electrons reduce H+ to generate H2 at the active sites of RGO, while the holes
on CABB particles oxidized Br- to produce Br3

− (Figure 6c).
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3.2.4. Water Stable Halide Perovskites

In order to overcome the stability issues of most halide perovskites, Ju et al. devel-
oped a lead-free hybrid perovskite single-crystal DMASnI3 (DMA = CH3NH2CH+) with
excellent water phase stability [119]. No decomposition was observed when DMASnI3
was immersed in deionized water for 16 h. Inspired by this, they applied DMASnI3 as a
photocatalyst for H2 evolution in deionized water. A H2 evolution rate of 0.64 µmol h−1

was observed on the DMASnI3 crystals, accompanied by good recycling properties. In-
terestingly, the DMASnI3 crystals exhibited a reversible band gap narrowing behavior
without phase transformation. When exposed to deionized water, the transformed samples
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in black can self-heal into yellow ones rapidly (Figure 6d). The narrow band gap, high
stability, as well as outstanding electrical properties render DMASnI3 as a promising op-
toelectronic material. By the encapsulation of colloidal CsPbBr3 NCs into the TiO2 shell,
Li et al. obtained nearly monodispersed CsPbBr3/TiO2 core/shell NCs with excellent
water stability [120]. The size, structure, morphology, and optical properties remained
identical after the CsPbBr3/TiO2 core/shell NCs were immersed in water for three months
(Figure 6e), representing one of the most water-stable inorganic shell passivated perovskite
NCs. Moreover, owing to the electrical conductivity of the TiO2 shell, the CsPbBr3/TiO2
core/shell NCs exhibited increased charge separation efficiency (Figure 6f), making it a
potential material for optoelectronic and photocatalytic applications in aqueous phase. The
photocatalytic performance of halide perovskite-based systems for hydrogen generation is
summarized in Table 1.

Table 1. Summary of photocatalytic hydrogen evolution activity of halide perovskite-based systems.

Photocatalyst Solution Light Source Activity
(µmol g−1 h−1) Stability (h) Ref.

MAPbI3/Pt Aqueous HI visible light (λ ≥ 475 nm) 57 160 [44]

MAPbI3−xBrx/Pt Aqueous HBr/HI visible light (λ ≥ 420 nm) 2604 >30 [110]

Pt/TiO2-MAPbI3 Aqueous HI visible light (λ ≥ 420 nm) 77.9 >12 [42]

MAPbI3/rGO Aqueous HI visible light (λ ≥ 420 nm) 939 200 [41]

BP/MAPbI3 Aqueous HI visible light (λ ≥ 420 nm) 3472 200 [114]

PEDOT:PSS/MAPbBr3/Ta2O5 Aqueous HBr visible light (λ ≥ 420 nm) 1050 >4 [115]

MAPbI3/MoS2 Aqueous HI white LED lamp (450 nm) 1963 >24 [116]

MA3Bi2I9/Pt Aqueous HI visible light (λ ≥ 400 nm) 170 70 [117]

CsPbBr3−xIx/Pt Aqueous HBr/HI visible light (λ ≥ 420 nm) 1120 >50 [113]

Cs2AgBiBr6/rGO Aqueous HBr visible light (λ ≥ 420 nm) 48.9 120 [118]

DMASnI3 DI water 300 W Xe lamp (full spectrum) 3.2 >5 [119]

Ni3C/MAPbI3 Aqueous HI visible light (λ ≥ 420 nm) 2362 >100 [121]

MAPbI3/CoP Aqueous HI visible light (λ ≥ 420 nm) 2087.5 27 [122]

Pt-DA3BiI6 Aqueous HI 100 W white LED lamp 91 >16 [123]

MA3Bi2I9/DMA3BiI6 Aqueous HI visible light (λ ≥ 420 nm) 198.4 >90 [124]

MA+-crafted MAPbI3 Aqueous HI visible light (λ ≥ 420 nm) 313 _ [125]

ML-MoS2/MAPbI3-MC Aqueous HI visible light (λ ≥ 420 nm) 13,600 208 [126]

MoS2/M0.6F0.4PbI3 Aqueous HI visible light (λ ≥ 420 nm) 2131 >90 [127]

PtIx/[(CH3)2NH2]3[BiI6] Aqueous HI Commercial LED lamp, λ = 425 nm 94 100 [128]

4. Conclusions and Prospects

In this review, we have introduced the recent advances made in the field of halide
perovskite-based hydrogen evolution, focusing on the strategies to enhance the photocat-
alytic activity of these materials. Although halide perovskites have intriguing properties,
their poor stabilities arising from the soft ionic crystal structures restrict their application
in photocatalysis. However, via intrinsically improving the crystal stabilities of halide
perovskites, several “stable” photocatalytic systems based on these kind of materials have
been designed [119,120]. Moreover, by altering the external reaction conditions, such as
using saturated halo acid solutions as the solvent, halide perovskites have been successfully
used in photocatalytic hydrogen evolution [41,42,44,114–119,121–128]. In spite of this, there
are still big challenges when applying halide perovskites in photocatalytic reactions under
more common environments. On the basis of the current level of knowledge and the
limitations of halide perovskites, some promising approaches to enhance the activity and
stability of halide perovskite-based photocatalysis are proposed.
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4.1. Improving the Long-Term Catalytic Stability of Halide Perovskites

Although conducting photocatalytic reactions in halo acid solutions have been proven
effective for hydrogen evolution, such methods are not universal in nature. To limit
contact between halide perovskites and the polar solvent, it is essential to explore excellent
sealing technology to secure the stability of halide perovskites. There are two essential
criteria to be considered when establishing this technology: one is the transparency of
the sealing materials which can ensure sufficient light absorption of halide perovskites.
The second criterion is the good conductivity of the sealing material that can allow the
effective extraction of photo-generated carriers. At present, transparent resin (epoxy) is the
most commonly used sealing material. Conductive carbon paste is also employed as the
sealing agent in some studies, considering its conductive property and higher resistance
towards degradation. Alternatively, some researchers encapsulate halide perovskites with
electron- and hole-transport materials together to fabricate corresponding photoelectrodes
for photocatalysis. In addition, halide perovskites can be separated from the polar solvent
by encapsulating the perovskite layer in a solar cell structure to develop a PV–PEC reaction
system. This system has the advantage of increased redox capacity of the PEC cell owing to
the photovoltaic device, which allows larger voltage in series and thus supporting a wide
range of applications.

4.2. Improving the H2 Generation Activity of Halide Perovskite-Based Photocatalysts

As shown in Table 1, the highest H2 evolution rate so far achieved for halide perovskite-
based photocatalyst is about 13.6 mmol g−1 h−1 [126]. Although great achievements have
been reached, the present H2 evolution rate of this kind of material is far from practical
application. There are several strategies proposed to further improve the H2 evolution
activity of halide perovskites: the first approach is the controllable synthesis of nanostruc-
tures with definite morphologies such as nanosheets, nanoplatelets to afford more exposed
surfaces, and to increase the surface area and provide more active sites. Another option
is the combination of single-atom catalysis with halide perovskites. Owing to the rapid
increase of surface-free energy, quantum confinement effects, unsaturated coordination,
and interactions between the metal with reduced size and substrate, the catalytic activ-
ity and stability of halide perovskites can be improved [43]. The construction of novel
heterojunctions between halide perovskites and a suitable charge-transporting motif with
desirable/well matching band alignment can enhance the charge separation [129]. For
example, by coupling halide perovskites with electron- or hole-transporting materials such
as GO, rGO, MXene, MOF, etc., can effectively promote charge separation and migration,
thereby resulting in efficient catalytic activity. Type-II and Z-scheme are the most widely
reported heterojunctions to achieve rapid charge transfer.

4.3. Enhance the Redox Ability of Halide Perovskites

The relatively narrow bandgaps of halide perovskites, which are especially associated
with the VB edges, will inevitably bring about poor oxidation abilities. The weak oxidation
capacity of halide perovskites will limit their application in some oxidation reactions—for
instance, water oxidation (H2O/O2 at 1.23 eV vs. RHE) and organic compound miner-
alization (OH−/•OH at 1.67 eV vs. RHE). The combination of halide perovskites with
other semiconductors with more positive VB (building a Z-scheme heterojunction) can
achieve strong redox capabilities, broad light absorption, and efficient charge separation.
Alternatively, by encapsulating the perovskite layer in a solar cell architecture to develop a
perovskite-based PEC reaction system, the redox ability of perovskite can be enhanced by
the applied voltage to achieve a broad reaction scope [43].

4.4. Exploring Mechanisms of Perovskite-Based Photocatalysis by Combining Experimental and
Theoretical Research

Despite the great progress made in perovskite-based photocatalysis, there is a lack
of comprehensive understanding of reaction mechanisms, such as the catalytic kinetic
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processes, the photophysical processes, and microscopic mechanisms of the involved
surface chemical reactions. Hence, a complete theoretical model is required to interpret
the roles of perovskite materials in photocatalytic redox reactions. Theoretical studies
can not only help to enhance the understanding of established activities, but also can
provide guidance for developing more efficient photocatalysts for redox reactions. By
combining theoretical calculations and in-situ characterization techniques, mechanisms of
perovskite-based photocatalysis such as reaction pathways and changes of catalysts during
photocatalysis can be probed.

In this review, we introduced up-to-date progress of halide perovskites in photocat-
alytic hydrogen production. Up to this stage, perovskite powder (photocatalysis) and thin
film (PEC and PV-PEC)-based photocatalysis systems have been proved to be effective for
solar fuel production. However, from the viewpoint of commercialization, the factors of
yield, reaction kinetics, stability, scalability, and cost and simplicity of production shall be
reassessed. In addition, the general photocatalytic activity and stability of perovskite-based
materials are currently far from optimal, and their application in photocatalysis is still in its
infancy. The use of perovskites to address energy and environmental concerns still faces
many challenges. These challenges also imply large opportunities for further exploration
of perovskite-based photocatalysts with improved activity and more potential reactions.
We hope that this review can provide some guidance toward finding optimal performance
and stability for perovskite-based photocatalytic applications.
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