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Abstract: The magnetic interactions of iron-rich manganese-based ThMn12 type rare earth metal
intermetallic compounds are extremely complex. The antiferromagnetic structure sublattice and the
ferromagnetic structure sublattice had coexisted and competed with each other. Previous works
are focus on studying magnetic properties of RFexMn12−x (x = 0–9.0, ∆x = 0.2). In this work,
we obtained a detailed magnetic phase diagram for iron-rich ErFexMn12−x series alloy samples
with a fine composition increment (∆x = 0.2), and studied the exchange bias effect and magneto-
caloric effect of samples. ErFexMn12−x series (x = 7.0–9.0, ∆x = 0.2) alloy samples were synthesized
by arc melting, and the pure ThMn12-type phase structure was confirmed by X-ray diffraction
(XRD). The neutron diffraction test was used to confirm the Mn atom preferentially occupying the
8i position and to quantify the Mn. The magnetic properties of the materials were characterized
by a comprehensive physical property measurement system (PPMS). Accurate magnetic phase
diagrams of the samples in the composition range 7.0–9.0 were obtained. Along with temperature
decrease, the samples experienced paramagnetic, ferromagnetic changes for samples with x < 7.4
and x > 8.4, and paramagnetic, antiferromagnetic and ferromagnetic or paramagnetic, ferromagnetic
and antiferromagnetic changes for samples with 7.4 ≤ x ≤ 8.2. The tunable exchange bias effect
was observed for sample with 7.4 ≤ x ≤ 8.2, which resulting from competing magnetic interacting
among ferromagnetic and antiferromagnetic sublattices. The maximum magnetic entropy change in
an ErFe9.0Mn3.0 specimen reached 1.92 J/kg/K around room temperature when the magnetic field
change was 5 T. This study increases our understanding of exchange bias effects and allows us to
better control them.

Keywords: neutron diffraction; exchange-bias; magnetocaloric effect

1. Introduction

Manganese (Mn) is the only 3d-series element that forms a stable ThMn12-type struc-
ture with rare earth elements [1,2], and it is mainly ferromagnetic and antiferromagnetic [3].
However, the pure ThMn12-type rare earth iron compound RFe12 does not exist. In the early
1980s, Yang et al. [4] found that a stable ternary rare earth iron intermetallic compound
R(FexMn1−x)12 could be formed by substitution, thus setting off a surge of research into
iron-rich ThMn12-type compounds [5]. Subsequent studies have found that a number of
tertiary elements can stabilize the ThMn12 phase; their molecular formulas can be written
as RFexM12−x or R(Fe,M)12, where R is a rare earth element and M = Mn, V, Cr, Mo, W, Ti,
Si, Al, Nb or Ga [6–9].

In the RMn12 alloy, the strong antiferromagnetic interaction between manganese atoms
prohibits interaction between rare earth atoms and manganese atoms, so the RMn12 alloy
has two magnetic ordering temperatures: R-R ferromagnetic ordering temperature, and
Mn-Mn antiferromagnetic ordering temperature [10]. Iron (Fe) can replace Mn in large
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quantities (up to 75%) without changing the crystal structure [11]. Researchers [12–22]
have investigated the structure and magnetic transitions of RFexMn12−x-series materi-
als (x = 0–9.0, ∆x = 1) using neutron diffraction, magnetic measurements and electrical
measurements and have found that magnetic interaction in the alloy is extremely com-
plex. As the proportion of Fe increases, the material undergoes an antiferromagnetic
→ antiferromagnetic + ferromagnetic→ ferromagnetic transition. Among the iron-rich
RFexMn12−x-series (x = 6.0–9.0) samples, only materials with integer values of x have
been studied. This composition range includes the magnetic transition stage in which
antiferromagnetism and ferromagnetism coexist in the material and plane anisotropy and
axis anisotropy compete with each other. Therefore, it is necessary to prepare iron-rich
RFexMn12−x-series (x = 6.0–9.0) alloy samples with a finer composition change to obtain
more detailed and complete magnetic phase diagrams, and thus be able to develop new
aspects of applications for the material. We first studied YFexMn12−x-series (x = 6.0–9.0)
samples to obtain more complete magnetic phase diagrams for the materials and observed
very large exchange bias effects and zero field cooling (ZFC) exchange bias effects in the
samples [23]. After the discovery of exchange bias effect in Co/CoO nanoparticles, investi-
gations have been mainly focused on a large number of heterogeneous structures such as
magnetic bilayers, core-shell nanoparticles, and ferromagnetic nanoparticles embedded in
antiferromagnetic matrix compounds [24–26]. So, it is necessary to further study exchange
bias for the bulk metallic materials with exchange interactions occurring among the bulk
sublattice. Firstly, we study how the magnetic atoms affect the EB effect in ThMn12-type
compounds. The second-order Stevens factor αJ for Er atoms is >0, but the second-order
crystal field coefficient (A20) of the rare earth sublattice in the ThMn12 structure is negative,
so magnetocrystalline anisotropy tends to the easy axis. We prepared ErFexMn12−x-series
(7.0 ≤ x ≤ 9.0, ∆x = 0.2) alloy specimens have been prepared by arc melting to enable us to
investigate the structure and magnetism of the alloy.

2. Experimental Methods

ErFexMn12−x-series (7.0 ≤ x ≤ 9.0, ∆x = 0.2) alloys were prepared by arc melting.
The raw material was melted 4–5 times in an argon gas atmosphere according to the
stoichiometric ratio to produce the alloy ingot; 5% more rare earth and 13% more Mn were
added to compensate for volatilization in the melting process. A smaller current of 150 A
was applied twice for melting, followed by a 200 A current once or twice to control the
against excessive Mn volatilization. Specimens from the master alloy ingots were placed
in sealed quartz tubes filled with argon and cooled down to room temperature after heat
treatment at 1173 K for 2 days.

Phase purity was confirmed by a Cu target X-ray powder diffractometer (PANalytical,
Almelo, The Netherlands) at room temperature. The high-resolution neutron diffraction
spectrometer (λ = 0.18846 nm) of Mianyang Research Reactor (CMRR, Mianyang, China)
was used to analyze the crystal structure, in particularly for the positions of Mn atoms.
Powdered alloy was bonded into a small cylinder with epoxy resin or the alloy ingot was
shattered, so that we could select a small piece of regular shape for magnetic measurement.
The ZFC and field cooling (FC) thermomagnetic curves (M−T curves) of the samples were
recorded, and the magnetic hysteresis loops (M−H loops) of the samples under different
FC and temperature conditions were measured by the comprehensive physical property
measurement system (PPMS, Quantum Design (San Diego, CA, USA)).

3. Experimental Results and Analysis

A phase of the ThMn12-type structure was formed in the ErFexMn12−x-series (7.0≤ x≤ 9.0)
ingots, and some samples contained a small quantity of the Er(Fe, Mn)2 phase. Heterogeneous
Er2(Fe, Mn)17 and Er(Fe, Mn)2 phases are formed in ErFexMn12−x-series (7.0 ≤ x ≤ 9.0) al-
loys after heat treatment above 1273 K, which differentiates them from YFexMn12−x-series
(7.0≤ x≤9.0) alloys. Long duration high-temperature heat treatment is therefore not suitable
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for this series of materials; 1173 K heat treatment for 48 h will produce homogeneous alloy
samples with good crystal shapes.

The X-ray diffraction (XRD) spectra of the samples were examined before and after
heat treatment. FullProf software [27] was used to refine the structure of the samples after
heat treatment, and the relationship between the lattice constant and the composition of
the samples was determined, as shown in Figure 1. With the increasing proportion of Fe,
the lattice constant a decreased linearly and c remained unchanged.
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 Figure 1. Variation of lattice constants a and c with Fe content of ErFexMn12−x (7.0 ≤ x ≤ 9.0) series
alloys after heat treatment.

The complete neutron diffraction spectra of some heat-treated samples were examined
at room temperature, and the structure was refined using FullProf. The fitting spectrum is
shown in Figure 2, and the crystal structure parameters are shown in Table 1. The samples
formed a pure ThMn12-type phase of space group I4/mmm (139), with rare earth Er atoms
occupying the 2a position and Fe and Mn occupying three other unequal positions (8i, 8j,
and 8f). Since the coherent neutron scattering lengths of Mn atoms (bMn = −0.39) and Fe
atoms (bFe = 0.95) are significantly different, the relative proportions of Fe and Mn in the
alloy samples can be obtained by fitting neutron diffraction data; the results are shown in
Table 1. The Mn atom occupies the 8i position preferentially. The trend of change in the
proportion of Mn in the materials was similar to that of the initial materials, although the
proportion of Mn was slightly higher, which indicated that the proportion of compensated
Mn in the initial materials was relatively high. The lattice constant a decreased as the
proportion of Fe decreased, while the lattice constant c remained basically unchanged. This
is because the Mn atom preferentially occupies the 8i position, and 8i–8i lies in the plane ab.
Changes in the proportion of Mn therefore greatly influences the lattice constants a and b
but has little effect on the lattice constant c.
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Figure 2. Refined neutron diffraction pattern of ErFexMn12−x (7.0 ≤ x ≤ 9.0) series alloys (where
red dots are experimental data, black curves are theoretical simulations, blue vertical bars are Bragg
diffraction peak positions and the bottom green solid line is the difference curve).

Table 1. Information on crystal structure parameters of ErFexMn12−x (7.0 ≤ x ≤ 9.0) series alloys.

ErFexMn12−x a(Å) c(Å) occ, Fe, 8i occ, Fe, 8j occ, Fe, 8f n, Fe n, Mn Rwp

ErFe9.0Mn3.0 8.45469(11) 4.75397(7) 0.476(0) 0.836(4) 0.928(8) 8.96 3.04 5.11
ErFe8.6Mn3.4 8.45777(24) 4.75346(16) 0.412(4) 0.788(12) 0.892(16) 8.368 3.632 4.54
ErFe8.2Mn3.8 8.46289(11) 4.75501(7) 0.344(0) 0.792(4) 0.908(8) 8.176 3.824 4.73
ErFe7.8Mn4.2 8.46758(16) 4.75572(11) 0.300(0) 0.704(8) 0.832(8) 7.344 4.656 3.88
ErFe7.4Mn4.6 8.47191(24) 4.75547(16) 0.284(0) 0.640(8) 0.764(8) 6.752 5.248 3.29
ErFe7.0Mn5.0 8.47767(19) 4.75605(13) 0.232(0) 0.636(4) 0.796(8) 6.656 5.344 7.28

Figure 3 shows the thermomagnetic curves of ErFexMn12−x-series (7.0 ≤ x ≤ 9.0)
alloy samples in an external magnetic field of 50 Oe. TC represents the Curie temperature,
TN is the Néel temperature, TC and TN is obtained by differentiating the M−T curves
under FC. Tf is the temperature corresponding to the bifurcation point in the ZFC and FC
magnetization curves. As can be seen from the figure, the ZFC and FC M−T curves of
the samples both clearly bifurcated as the temperature decreased. Tf was slightly lower
than the paramagnetic–ferromagnetic transition temperature of the samples due to the
coexistence of Er-Er and Fe-Fe ferromagnetic exchanges interactions. Er-Fe, Er-Mn, Fe-Mn
and Mn-Mn antiferromagnetic exchanges interactions, all interactions compete with each
other, leading to spin frustration in the samples at low temperatures. For samples with
x > 7.2, the FC M−T curves initially increased to the maximum value and then decreased
gradually as the temperature decreased. The curve steepened, and both the speed and
amplitude of bending increased as the proportion of Fe decreased; it reached the maximum
for x = 7.8 and then began to decrease and disappeared for x = 7.2. The magnetization
curves for x > 7.2 samples were typical of ferrimagnetism magnetization curves. This
was because light rare earth lattices and metal lattices are ferromagnetically arranged and
heavy rare earth lattices and metal lattices are antiferromagnetically arranged in rare earth
intermetallic compounds with a ThMn12-type structure. Er is a heavy rare earth atom, so the
samples had a ferrimagnetic structure in which the lattice magnetic moments of rare earth
and transition metals were inversely arranged. As the temperature decreased, the magnetic
moments of rare earth in the lattice increased rapidly and magnetic moments of transition
metals increased slowly; the total magnetic moments of the samples initially increased to
the maximum value and then decreased rapidly, and even showed a negative magnetic
susceptibility. The x = 7.2 and x = 7.0 samples behave like pure ferro- or ferrimagnetic
samples where high coercivity has developed already close to TC. This causes the maximum
in the ZFC curves very close to TC.
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In the YFexMn12−x-series (6.0 ≤ x ≤ 8.8) samples, as the proportion of Fe decreased,
the TC of the alloy rapidly decreased and the TN slowly increased; the antiferromagnetic
exchange magnetic ordering temperature of Mn-Mn was observed [23]. After rare earth Er
atoms with magnetic moments replaced Y atoms without magnetic moments, the antiferro-
magnetic order of Mn-Mn was suppressed; the obvious antiferromagnetic order of Mn-Mn
was only observed in the samples with the Fe proportion 7.4 ≤ x ≤ 8.2. The magnetic order-
ing temperature is shown in Table 2. Similar to YFexMn12−x, the ferromagnetic transition
temperature of the alloy materials decreased rapidly as the proportion of Fe decreased.

Table 2. Magnetic ordering temperature, exchange bias field and coercive force field of ErFexMn12−x

(7.0 ≤ x ≤ 9.0) series alloys.

ErFexMn12−x TC (K) Tf (K) TN (K) HE (kOe) HC (kOe)

Cooling Field 50 Oe 50 Oe 50 Oe 1000 Oe 1000 Oe

ErFe9.0Mn3.0 310 306
ErFe8.6Mn3.4 250 248 −0.22 1.28
ErFe8.2Mn3.8 208 203 142 11.73 2.97
ErFe8.0Mn4.0 178 170 163
ErFe7.8Mn4.2 154 160 169 6.615 9.54
ErFe7.4Mn4.6 128 126 176 11.08 4.52
ErFe7.2Mn4.8 22 44
ErFe7.0Mn5.0 22 36 −1.27 28.11

Figure 4 shows the magnetic phase diagram of the ErFexMn12−x-series (7.0 ≤ x ≤ 9.0)
alloys. The samples with x < 7.4 or x > 8.4 were mainly ferromagnetic. The samples with
7.4 ≤ x ≤ 8.2 were ferromagnetic and antiferromagnetic, and only the samples in this
range of composition showed antiferromagnetic orders between different transition metal
lattices. YFexMn12−x-series samples showed a clear exchange bias effect in the region where
ferromagnetic interaction and antiferromagnetic interaction compete most intensely [23].
ErFexMn12−x-series samples may therefore similarly display exchange bias effects for
7.4 ≤ x ≤ 8.2. The FC M−H loops of some samples were measured, and the results are
shown in Figure 5. The FC M−H loops of ErFe8.2Mn3.8, ErFe7.8Mn4.2 and ErFe7.4Mn4.6
samples all clearly had lateral shifts. The x = 7.4 and x = 7.8 samples had high coercivity, and
the M−H loops were not completely closed when the applied field was 5T. The M−H loops
were asymmetric, and lateral and vertical shifts occurred simultaneously. This indicates
that the samples had very strong magnetocrystalline anisotropy at low temperatures, and
that the antiferromagnetic interaction between the rare earth lattice and the transition
metal lattice was the source of the anisotropy. When combined with the YFexMn12−x-series
experimental results, we see that the exchange bias effect can be controlled by doping
different rare earth elements in addition to altering the ratios of Fe and Mn.
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The ErFe9.0Mn3.0 compound had a Curie temperature of 310 K, and which is near
the room temperature. The reverse magnetic moment of Er atom is decrease drastically
as temperature increasing, so the samples may have had a considerable magnetocaloric
effect near the Curie temperature. The isothermal magnetization curves in the temperature
range 270–340 K were created, and are shown in Figure 6. The figure shows that as the
temperature increased, magnetization intensity gradually decreased, and ferromagnetism
was gradually transformed into paramagnetism. The isothermal magnetization curves
were transformed to obtain the Arrott plot, as shown in Figure 7, in order to determine the
type of phase transition occurring. There was no S-shaped curve in the Arrott plot, and
no negative curve slope was observed, so the phase transition of the materials was also a
second-order phase transition.
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The Maxwell relation was used to calculate the isothermal magnetic entropy change in
the samples from the isothermal magnetization curves at different temperatures, as shown
in Figure 8. The calculated maximum value of the magnetic entropy changes when an ap-
plied field change of 50 kOe reaches 1.92 J/kg/K. The peak of−∆SM at 312.5 K corresponds
to the ferromagnetic to paramagnetic phase transition, because the magnetization changes
drastically near the Curie temperature. Although the maximum −∆SM of ErFe9.0Mn3.0
is not as large as that of some other magnetic refrigerant materials [28], the |∆SM| vs.
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T curve of ErFe9.0Mn3.0 is significantly broader compared with other materials, which is
favorable for active magnetic refrigeration. Additionally, the magnetocaloric effect was
caused by the second-order phase transition near the Curie temperature, and the thermal
hysteresis and magnetic hysteresis during phase transition were both very small, which
has benefits in the practical application of the material.
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4. Conclusions

ThMn12-type single phase samples with different Fe/Mn ratios were prepared by
arc melting and heat treatment, and the magnetic phase diagrams of ErFexMn12−x-series
(7.0 ≤ x ≤ 9.0) samples were obtained by magnetic measurement. At low temperatures,
samples with x < 7.4 and x > 8.4 exhibited ferromagnetism, and ferromagnetism and
antiferromagnetism coexisted in samples with 7.4 ≤ x ≤ 8.2, with an FC exchange bias
effect. The magnetic interaction between transition metal lattices in ThMn12-type structural
materials can be changed by substituting non-magnetic Y atoms with rare earth Er atoms
with magnetic moments. In this study, Y atoms were completely replaced; in the following
study, we will partially replace them to finely modulate the exchange bias effect and the
magnetocaloric effect of the materials.
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