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Abstract: In this study, polyacrylonitrile (PAN)-based activated nanofiber composites, which were em-
bedded inside zeolitic imidazolate framework-8 (ZIF-8) crystals or ZIF-8-derived carbons (ZDC-850),
were fabricated using an electrospinning process, to serve as CO2 adsorbents. The adsorbents were
characterized using various techniques. The degree of crystallinity of ZDC-850 totally changed
compared to that of ZIF-8. For nanofiber composites, the timing of the ligand decomposition of ZIF-8
significantly affected the material properties. The Zn metals in the ZIF-8/PAN or ZDC-850/PAN
could be embedded and protected by the PAN fibers from excess volatilization in the following
treatments: ZIF-8 had significant pore volumes in the range of 0.9–1.3 nm, but ZDC-850 and ZIF-
8/PAN exhibited a distinct peak at approximately 0.5 nm. The CO2 adsorption capacities at 25 ◦C
and 1 atm followed the order: ZIF-8/PAN (4.20 mmol/g) > ZDC-850 (3.50 mmol/g) > ZDC-850/PAN
(3.38 mmol/g) > PAN (2.91 mmol/g) > ZIF-8 (0.88 mmol/g). The slope in the log–linear plot of
isosteric heat of adsorption was highly associated with CO2 adsorption performance. Under 1 atm
at 25 ◦C, for Zn metal active sites inside the pores, the pores at approximately 0.5 nm and in C-N
(amines) groups could promote CO2 adsorption. At low CO2 pressures, for a good CO2 adsorbent,
the carbon content in the adsorbent should be higher than a threshold value. Under this condition,
the percentage of ultra-micropore and micropore volumes, as well as the functional groups, such
as the quaternary or protonated N (amines), N=C (imines or pyridine-type N), C-OH, and -COOH
groups, should be considered as significant factors for CO2 adsorption.

Keywords: zeolitic imidazolate framework; heat treatment; electrospinning; carbon nanofibers;
carbon dioxide

1. Introduction

Carbon dioxide emission reduction has become the consensus of many countries.
Therefore, the development of effective adsorbents for CO2 capture is a top priority. It is
known that good CO2 adsorbents are dependent on pore volumes of sizes less than 0.7 nm
and the presence of surface functional groups [1–5]. Various porous materials have been
intensively studied, such as carbon nanofibers, zeolitic imidazolate frameworks (ZIFs),
metal organic frameworks, carbon nanotubes, silica, activated carbon fibers, zeolites, and
activated carbons.

ZIFs are a subgroup of MOFs, with perpetual porosity consisting of metals bridg-
ing to imidazolate-like ligands, with the tetrahedral arrangement as molecular struc-
tural blocks [6,7]. The bond angles are 145◦ [6], similar to the Si–O–Si bond angle in
zeolites [8–11]. These building units are congregated and assemble in large molecular con-
figurations. They have emerged as novel crystalline porous materials. Due to possessing
features of both MOFs and zeolites, ZIFs have several unique characteristics, including
unimodal micropores, high surface areas, abundant functionalities, high thermal stability,
and remarkable chemical robustness. [12]. Therefore, ZIFs have gained a large amount of
attention for many potential applications, such as gas separation/adsorption [13,14], water
treatment [15], catalysis [16], chemical sensing [17], and biomedicine [18].
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Among the various ZIFs, ZIF-8 is one of the most widely investigated, having a so-
dalite (SOD) topology and displaying a three-dimensional structure composed of zinc ions
and 2-methylimidazole (2-MeIM) linkers. ZIF-8 has large pores, with diameters of 1.16 nm,
which are accessible through small apertures with diameters of 0.34 nm, and they have a
cubic space group with unit cell dimensions of 1.632 nm [19]. ZIF-8 possesses high thermal
stability to 550 ◦C in N2, a large surface area (1630–1700 m2/g), and exceptional chemical
resistance to various solvents [20]. The crystal sizes of ZIF-8 depend on several synthesis
conditions. ZIF-8 can be prepared using several different synthesis routines in water or
organic solvents, such as conventional solvothermal [21] or hydrothermal [22], colloidal
precipitation [23,24], microwave-assisted [25], mechanochemical [25], sonochemical [25],
dry-gel [25], electrochemical [26], microfluidic [25], or template [27] methods. The hy-
drothermal or solvothermal processes are generally conducted with a reaction temperature
from room temperature up to 200 ◦C and a reaction duration from hours to days. Banerjee
et al. [21] found that a metal precursor concentration of 0.20 M, a temperature of 85 or
100 ◦C, and a reaction time of 72 h were optimal conditions for preparing ZIF nanoparticles.
The colloidal precipitation method is a facile route [23] for the mass production of nano- to
micro-meter scale ZIF-8 crystals with controlled particle sizes, and has been widely used in
the literature.

Mphuthi et al. [16] reported that the average powder size of ZIF-8 was 65 nm (syn-
thesized in water) and 52 nm (prepared in methanol). Zheng et al. [28] found that ZIF-8
crystals with sizes of 40~ 110 nm could be obtained in microemulsions, by controlling the
ratio of Zn2+ to 2-MeIM at 1:16~1:2. Venna et al. [19] found that the structural evolution
of ZIF-8 is a function of synthesis time, which can be divided into three stages: (I) the
nucleation stage (t < 10 min); (II) the growth stage (a maximum in crystallinity is achieved
at ~60 min); and (III) the stationary phase (t > 60 min). The relative crystallinity of ZIF-8
increased slowly in the initial stage of synthesis. Next, a rapid increase was reported
in the 30–40 min range. The relative crystallinity of ZIF-8 was almost unchanged after
50 min (above 90%), and the relative crystallinity of ZIF-8 reached a maximum at 24 h [19].
Different zinc salts with a methanol-based recipe have been reported to have different
effects on the crystal sizes of ZIF-8. It has been observed that greater nucleation rates led to
smaller crystal sizes for zinc nitrate, while the reverse was true for ZIF-8 crystals from zinc
acetate [23,29]. Ramu et al. [30] found that zinc nitrate was a more effective zinc source,
probably due to the fast nucleation of zinc nitrate compared to other zinc salts.

In order to improve the chemical stability of ZIF-8, nitrogen-functionalized and Zn-
decorated microporous carbon materials can be obtained via the carbonization of ZIF-8
with imidazolate framework ligands and Zn metal centers (melting point of 419.53 ◦C
and boiling point of 907 ◦C) [31]. Torad et al. [23] synthesized nanoporous carbon by
the direct carbonization of ZIF-8 crystals, and observed that the products showed a large
adsorption uptake and a faster sensor response for toluene vapors. A systematic study
was conducted by Gadipelli and Guo [31], where the carbonization process of ZIF-8 was
reported. The results showed that the ligand decomposition and metal evaporation were
highly associated with the carbonization temperature, reaction time, and heating rate. As
the temperature was above 800 ◦C, this would result in the development of porosity at the
expense of Zn and N atoms, as well as the yield of the products. The mass loss could be
attributed to the dissociation of -CH3 groups (commencing at approximately 600 ◦C), the
ligand decomposition and liberation of –C-N-H groups (between 600 and 900 ◦C), and the
evaporation of Zn metal (above 900 ◦C). Nevertheless, the actual framework decomposition
and subsequent carbonization were relatively slow compared with the rapid decomposition
of other MOF structures with carboxylate ligands. When ZIF-8 was heat treated at a
temperature of 1000 ◦C, nitrogen-doped carbon nanopolyhedra were obtained with a
highly graphitic carbon skeleton, during which Zn ions in ZIF-8 were reduced to Zn metal
and vaporized. The abundant nitrogen in ZIF-8 was directly incorporated into an aromatic
methyl-imidazole ligand, which could promote the combination of enriched nitrogen-
containing active sites into carbon structures. The resultant carbons had a hierarchical
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porous structure and uniform distribution of active sites [32]. Therefore, the carbonization
of ZIF-8 at different temperatures (from 600 to 1100 ◦C) yielded different carbon structures.

MOF-derived nanoporous carbons have been used for electrochemical double-layered
capacitors; though they had a high specific surface area, their many micropores led to poor
conductivity and resulted in a weak capacitance [33,34]. Two Zr-based MOFs were doped
into the polyimide-based nanofibers to form nanocomposites, and these nanocomposites
could remove non-polar and polar volatile organic compounds from the air. The results
showed that the introduction of MOFs powders significantly improved the adsorption
performance of the nanofibers [35]. MOFs can be synthesized in situ on electrospun PAN-
based nanofibers using two processes: electrospinning and aqueous synthesis, where
MOFs/PAN composites served as the SO2 gas sensing layer. The sensors comprised
MOFs/PAN composites, and carbon nanotubes possessed remarkable sensitivity and long-
term stability to SO2 gas [36]. Wang et al. [37] reported that when ZIF-67 was cast on carbon
cloth and then polyaniline was electrodeposited on composites, they exhibited a good
capacitance. A ZIF-based carbon fiber for supercapacitors was prepared via the pyrolysis of
ZIF-8-based polyacrylonitrile (ZIF-8/PAN) nanofibers, where ZIF-8: PAN precursor = 3:4
(w/w). In this study, after ZIF-8 was carbonized at 800 ◦C for 3 h, the Zn totally disappeared
in the ZIF-8/PAN fibers [38].

Wang et al. [39] utilized an in situ growth method, composed of electrospinning and
a hydrothermal treatment, to prepare a ZIF-8/PAN fibrous filter, and reported that U(VI)
chelated with the N atoms of 2-MeIM was the major adsorption mechanism, while in
situ ZIF-8/PAN fibers exhibited a high adsorption capacity for applications to nuclear
wastewater. The in situ growth method was used to prepare ZIF-8/cellulose nanofiber
composites [40]. Due to the electrostatic forces between Zn metal in ZIF-8 and –COO-
groups on nanofibers, ZIF-8 crystals could be homogenously deposited on nanofibers.
The composites showed good CO2/N2 selectivity. A novel structure of PAN nanofibers
was fabricated using an electrospinning technique, decorated with ZIF-8 using a phase
conversion growth method, and investigated for CO2 capture [41]. The results indicated
that electrostatic interaction and hydrogen bonds existed between the PAN matrix and
the ZIF-8 nanocrystals confined to the PAN nanofiber surface. However, the CO2 uptakes
were only 7.0 cm3/g at 25 ◦C, 1 bar. Recently, a methodology was proposed to predict the
purity, yield, and crystallinity of ZIF-8 crystals prepared via electrochemical routes, and
which used the application of artificial intelligence, involving the design of experiments
with a machine learning module [42]. This could be a feasible route towards the sustainable
design and development of advanced materials and chemicals. Before it is practically
applied, the collection of baseline information is important.

Several synthesis techniques or novel structures have been reported for the growing
applications of ZIF-8. ZIF-8-based nanomaterials were selected because they are one of
the most investigated MOFs and as they have various applications, especially based on
adsorption. The interactions between CO2 and ZIF-8 can enhance the storage of CO2
in the framework, and the storage performance of CO2 on ZIF-8 was strongly pressure
dependent [43]. At present, the CO2 adsorption capacities of pristine ZIFs crystals were
not distinct enough at, or under, atmospheric pressure [6,41,44]. Thus, several studies were
focused on applications with high pressure [14,43]. Most studies on ZIFs have focused on
the selectivity of CO2 from various gas mixtures [6,8,45]. However, currently, studies on the
high-temperature activation of ZIF/PAN nanocomposites have not been published in the lit-
erature. Here, for the first time, PAN-based activated nanofiber composites embedded with
ZIF-8 crystals or ZIF-8-derived carbons (ZDC) were fabricated using successive processes,
comprising electrospinning, stabilization, carbonization, and activation. The properties
of the adsorbents were characterized thoroughly, and the CO2 adsorption performance of
the adsorbents was investigated. It was intended to incorporate the advantages of carbon
nanofibers with the benefits of ZIF-8 based nanoparticles, to develop high-performance
CO2 adsorbents. A schematic diagram of this study is shown in Scheme 1.
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Scheme 1. Schematic illustration of this study.

2. Materials and Methods
2.1. Chemicals

Zinc nitrate hexahydrate (≥99%) was purchased from J.T. Baker (Radnor, PA, USA);
2-methylimidazole (2-MeIM, 99%) and polyacrylonitrile (PAN) (Mw = 150 kDa) were
obtained from Sigma-Aldrich (St. Louis, MO, USA); cetyltrimethylammonium bromide
(CTAB, 98%) and N, N-dimethylacetamide (DMAc, 99%) were purchased from Alfa Aesar
(Sisli-Istanbul, Turkey); methanol (≥99.8%) was purchased from Mallinckrodt Chemicals
(Phillipsburg, NJ, USA). All the chemicals were used without further purification.

2.2. Preparation of ZIF-8

A rapid colloidal chemistry route was used to produce ZIF-8 nanocrystals at room
temperature [24,46]. The sizes of nanocrystals were highly related to the molar ratio of
2-MeIM to zinc salt [28]. In a typical process, 0.74 g of zinc nitrate hexahydrate and 19 mg
CTAB were dissolved in 25 mL methanol, and 0.82 g of 2-MeIM was dissolved in 25 mL
methanol, respectively. CTAB was used as a surfactant. Additionally, the methanol solution
of zinc nitrate hexahydrate was quickly poured into the methanol solution of 2-MeIM
under stirring, at room temperature. After rigorous and continuous stirring for 30 min, the
mixture solution was placed at room temperature to settle for 24 h [19]. Finally, the white
precipitate was collected and thoroughly washed with methanol using centrifugation to
remove the excess 2-MeIM. The ZIF-8 powders were obtained after drying at 80 ◦C for 24 h
in an oven.

2.3. Heat Treatment of ZIF-8

In order to improve the chemical stability of ZIF-8, carbonization of ZIF-8 powders
was conducted. In a typical carbonization process, 0.5 g of ZIF-8 was placed in a porcelain
combustion boat and then transferred into a tubular furnace. The samples were heated in
a nitrogen atmosphere with a heating rate of 5 ◦C/min, and carbonized at 850 ◦C for 6 h.
The sample was named ZDC-850.

2.4. Fabrication of Electrospun Nanofiber Composites

Nanofiber composites were prepared using an electrospinning process. Initially, PAN
was dissolved in DMAc to form a polymer solution with 10 wt.% PAN. The resulting
solutions were subjected to continuous magnetic stirring at 60 ◦C for 24 h in order to obtain
a homogeneous polymer solution. Next, ZIF-8 (or ZDC-850) with a ratio of 10 wt.% of
ZIF-8 (or ZDC-800) to PAN was added into the polymer solution and continuously stirred
for 24 h at room temperature. Electrospinning equipment (FES-COE, Falco Tech Enterprise
Co., Ltd., Taiwan) was used for fiber electrospinning. The electrospinning was carried out
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under an applied electrical voltage of 15 kV onto a metal drum collector (∅ 15 cm) rotated
at 300 rpm and covered with aluminum foil, and a tip-to-collector distance of 15 cm was
used. The mixture solution was pumped at a flow rate of 1.0 mL/h, pushed by a syringe
pump (NE-1000, New Era Pump Systems, Inc., Farmingdale, NY, USA). A 21-gauge needle
(inner diameter: 0.52 mm) was selected.

The electrospun fibers were subjected to the following post-treatments. First, the fibers
were stabilized in air, from room temperature to 280 ◦C at a heating rate of 1 ◦C/min; then,
the temperature was held at 280 ◦C for 2 h to complete the cyclization and dehydrogenation
reactions for converting PAN from a thermoplastic to a non-plastic compound [47–49].
The stabilized nanofibers were cooled down to room temperature and then carbonized at
800 ◦C with a heating rate of 5 ◦C/min, and maintained for 1 h, before the sample was
cooled down to room temperature, in a nitrogen atmosphere with a flow of 100 sccm in
a tubular furnace. After carbonization, an activation process was conducted by raising
the temperature to 850 ◦C at a rate of 10 ◦C/min under flowing nitrogen. Then, CO2 was
switched in and held for 1 h, which was used as the activation agent with a flow rate of
100 sccm. The product was denoted as ZIF-8/PAN (or ZDC-850/PAN). For comparison,
the pure PAN carbon nanofibers were prepared and labeled as PAN.

2.5. Characterizations

Field emission scanning electron microscopy (FESEM) with a microscope (S-4700,
Hitachi, Krefeld, Germany) was utilized to probe the morphology of the samples. High-
resolution transmission electron microscopy (HRTEM) images were obtained using a
Philips/FEI Tecnai 20 G2 S-Twin Transmission Electron* Microscope (Hillsboro, OR, USA),
to observe the morphology of the distribution of Zn metals deposited in the nanofiber
composites. X-ray diffraction (XRD) was performed using a powder diffractometer (Rigaku
TTRAX III, Tokyo, Japan) equipped with Cu-Kα radiation (λ = 0.15418 nm) at 30 kV and
20 mA. The XRD patterns were collected over 5–90◦ in 2θ mode at a rate speed of 4◦/min.
Thermogravimetric analysis (TGA) was used to determine the thermal stability of the
samples in flowing nitrogen (60 cm3/min) with a heating rate of 10 ◦C/min. A thermo-
gravimetric analyzer (Dynamic TGA Q500 in TA Instrument 5100) (TA Instrument, New
Castle, DE, USA) was employed to measure any changes in the weight of the sample, as a
function of temperature.

The surface properties of the samples were estimated from N2 adsorption–desorption
isotherms measured at −196 ◦C, using an ASAP 2020 accelerated surface area and porosime-
try system (Micromeritics, Norcross, GA, USA). Prior to the adsorption measurements,
the samples were outgassed at 350 ◦C for 24 h. One exception was ZIF-8, which was
degassed at 90 ◦C for 24 h, to prevent changes in the structure. The specific surface areas
(SSAs) of the samples were measured in P/Po = 0.05~0.3 using the Brunauer–Emmett–
Teller (BET) method. The micropore (<2.0 nm) surface area (Smi) was determined using the
t-plot method. The single point total pore volume (Vt) was obtained at P/Po ≈ 0.99. The
mesopore volume (Vme), micropore volume (Vmi), and ultra-micropore (<0.7 nm) volume
(V<0.7nm) were obtained by applying a non-local density functional theory (NLDFT) model,
where V<0.7nm is part of Vmi. Pore size distribution curves were also acquired with an
NLDFT model. Elemental analysis (EA) was used to analyze the elemental compositions in
the samples, where the weight percent (wt.%) of the C, H, and N elements was measured
using an elemental analyzer (Elementar vario EL cube, Langenselbold, Germany). The
chemical states on the surface of the samples were determined by X-ray photoelectron
spectroscopy (XPS). The XPS spectra were collected using a spectrophotometer (PHI 5000
VersaProbe II, ULVAC-PHI, Kanagawa, Japan), in which a scanning X-ray monochromator
(Al Anode, hν = 1401 eV) was used, and information on the elements within a few nanome-
ters of the sample surface could be acquired. For calibration purposes, the C 1s electron
binding energy (B.E.) that corresponds to graphitic carbon was set at 285 eV. The decon-
volution of the XPS spectra was carried out using a nonlinear least squares curve-fitting
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program (XPSPEAK software, version 4.1, The Chinese University of Hong Kong, Hong
Kong, China).

2.6. CO2 Adsorption Experiments

The CO2 adsorption isotherms on the samples were measured using the Micromeritics
ASAP 2020 system. The samples were degassed at 350 ◦C for 24 h for removal of adsorbed
contaminants prior to the measurement. For ZIF-8, the degas process was conducted at
90 ◦C for 24 h. The equilibration time for each pressure point was 45 s. An ISO Controller
(Micromeritics), a thermoelectric cooled dewar, was utilized for temperature control during
the CO2 adsorption process.

Based on our previous studies [50,51], the Freundlich equation [52] was used for
adsorption data fitting. The Freundlich adsorption isotherm (Equation (1)), an empirical
model, assumes heterogeneous adsorption, due to the diversity of adsorption active sites:

qe = KFP1/n, (1)

where qe (mmol/g) is the equilibrium adsorption capacity, KF [(mmol/g)(1/kPa)1/n] is the
Freundlich adsorption coefficient, P (kPa) is the gas pressure, and n is a constant indicating
the isotherm curvature.

When adsorbate molecules are adsorbed from the bulk gas phase to the adsorbed
phase, the change in enthalpy can be measured by the isosteric heat of adsorption (Qst) [52].
Qst denotes the interactions between the gas molecules and the adsorbent lattice atoms
and provides a measure of energetic heterogeneity to the gas–solid interfaces [53]. The
Clausius–Clapeyron equation (Equation (2)) was used to determine the values of Qst:

− Qst

R
=

(
d ln P
d 1

T

)
, (2)

where Qst (kJ/mol) is the isosteric heat of adsorption, R (= 8.314 J/mol/K) is the gas
constant, P (kPa) is the CO2 pressure, and T (K) is the adsorption temperature.

3. Results and Discussion
3.1. Field Emission Scanning Electron Microscopy (FESEM) Images

Figure 1a shows the FESEM images of ZIF-8 crystals prepared in this study, which
were uniform in size, with an average of approximately 63 nm. An excess of 2-MeIM ligands
and CTAB (surfactants) shielded the particles from further growth, leading to the formation
of nanoparticles [16]. The carbonization of ZIF-8 at 850 ◦C for 6 h resulted in particles
with a mean size reduced to 46 nm (Figure 1b). Moreover, the degree of crystallinity
was also deteriorated after carbonization. Figure 1c–e show the FESEM images of PAN,
ZIF-8/PAN, and ZDC850-PAN, in which the insets are the images of a single fiber. It
could be observed that the average diameter of PAN nanofibers was approximately 350 nm
(Figure 1f). When introducing ZIF-8 in PAN precursor solution, the fiber diameter of the
fabricated composites became smaller (~220 nm) (Figure 1g), but some nodes appeared in
the fibers. If incorporated with ZDC-850, the generated fibers almost remained smooth and
straight, with a diameter of approximately 430 nm (Figure 1h). It is supposed that the ZIF-8
crystals in the PAN fibers would act as active sites. The ligand decomposition of ZIF-8
in the fibers in the subsequent carbonization and activation processes could promote the
volatilization of low-molecular-weight segments in the PAN fibers. On the other hand, the
incorporation of ZDC-850 into the PAN fibers did not show this phenomenon; thus, leading
to larger fiber diameters. Figure 1i,j shows HRTEM-EDX mapping of ZIF-8/PAN and
ZDC-850/PAN, where the Zn element was equally spread on the surface of the nanofibers.
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Figure 1. FESEM images, fiber size distributions, and the HRTEM-EDX mapping of the samples:
(a) ZIF-8; (b) ZDC-850; (c,f) PAN; (d,g,i) ZIF-8/PAN; (e,h,j) ZDC-850/PAN.

3.2. X-ray Diffraction (XRD) Patterns

The XRD patterns of ZIF-8 and ZDC-850 are shown in Figure 2. The typical character-
istic peaks at 2θ of 7.3, 10.4, 12.7, 14.6, 16.4, 18.0, 19.5, 22.1, 24.5, 25.6, 26.6, and 29.6◦ are
ascribed to the (011), (002), (112), (022), (013), (222), (123), (114), (233), (224), (134), and (044)
planes of ZIF-8 (CCDC 602542, [41]), respectively. However, the framework decomposition
was observed in the XRD pattern of ZDC-850, where only one detectable peak was observed
at approximately 2θ = 26◦, belonging to a typical (002) interlayer peak of graphite-type
carbons. The XRD results were consistent with the FESEM images.
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Figure 2. The XRD patterns of ZIF-8 and ZDC-850.

3.3. Thermogravimetric Analysis (TGA) Profiles

Figure 3 displays the TGA profiles of PAN, ZIF-8/PAN, and ZDC-850/PAN samples
in a nitrogen atmosphere. Approximately 60% of PAN and 70% of ZDC-850/PAN remained
when the samples were heated to 800 ◦C under a nitrogen atmosphere. On the other hand,
the ZIF-8/PAN composites had a rapid weight loss before 100 ◦C, but the weight was
stable up to approximately 500 ◦C under flowing nitrogen, and approximately 20% of the
ZIF-8/PAN remained after it was heat treated at 800 ◦C under a nitrogen atmosphere. The
TGA profiles illustrate that the embedding of ZDC-850 into PAN-based carbon nanofibers
could enhance the thermal stability of the carbon nanofibers. However, the introduction of
ZIF-8 in nanofibers decreased the stability.
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3.4. ASAP Data

The N2 adsorption–desorption isotherms of most samples at −196 ◦C (Figure 4a)
belonged to type I according to the Brunauer–Emmett–Teller (BET) classification. There
were no hysteresis loops on these isotherms, indicating that the samples were microporous.
One exception was ZDC-850. It exhibited a type IV adsorption isotherm with a distinct
hysteresis loop at a relative pressure higher than 0.8. This hysteresis loop was identified
as H1, according to the International Union of Pure and Applied Chemistry (IUPAC)
classification, implying that the samples were agglomerates of spheroidal particles, of
fairly uniform size. Figure 4b shows the pore size distributions in the range of 0.4–2 nm,
which were derived from the heterogeneous surface, two-dimensional non-local density
functional theory (HS-2D-NLDFT) model. ZIF-8 had significant pore volumes in the range
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of 0.9–1.3 nm, while ZDC-850 and ZIF-8/PAN exhibited a distinct peak at approximately
0.5 nm. The pores with sizes less than 0.7 nm are labeled as ultra-micropores, which are
considered as an important feature affecting CO2 uptake [1–5]. Figure 4c displays the pore
volumes in different size ranges, including the volumes with pore sizes less than 0.7 nm,
0.7–2 nm, 2–50 nm (Vme), and greater than or equal to 50 nm (Vma). Figure 4d presents the
percent of pore volumes classified as macropores, mesopores, and micropores. The pore
volume distributions indicated that the mesopores were predominant on ZDC-850, but
micropores were primarily found on the other materials. These results verified the fact that
the hysteresis loop in the isotherm of ZDC-850 was ascribed to the capillary condensation
occurring in mesopores.
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The SSAs of ZIF-8 and ZDC-850 were 1579 and 1873 m2/g, respectively. The SSAs of
the composites, i.e., the nanofibers containing 10 wt.% ZIF-8 or ZDC-850, were increased
compared with the pure PAN, where the SSAs of PAN, ZIF-8/PAN, and ZDC-850/PAN
were 840, 1178, and 1046 m2/g, respectively. The ligand decomposition of the individual
ZIF-8 crystals or in the PAN nanofibers at high temperatures facilitated the increase in
specific surface areas and pore volumes. The micropore area (Smi) were 1525 (ZIF-8),
1191 (ZDC-850), 716 (PAN), 904 (ZIF-8/PAN), 842 (ZDC-850/PAN) m2/g, respectively. As
seen from the data, ZIF-8 and PAN had higher Smi/SSA and Vmi/Vt ratios, while PAN and
ZDC-850/PAN exhibited higher V<0.7nm/Vt ratios.
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3.5. Elemental Analysis (EA)

Figure 5 presents the elemental compositions of C, H, and N atoms in the bulk phase
of the samples. An abundant nitrogen content was measured in ZIF-8 (24.9 wt.%), which
could be attributed to the fact that ZIFs are made up of nitrogen-rich ligands. The PAN
nanofibers contained a certain amount of nitrogen, remaining from the PAN precursor.
It is thought that the ZIF-8 crystals introduced into PAN nanofibers were reactive at the
carbonization and activation temperatures; hence, the subsequent processes could lead
to the loss of some nitrogen. Since ZDC-850 was relatively more stable than ZIF-8, the
incorporation of ZDC-850 into PAN fibers could instead increase the nitrogen content.
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3.6. X-ray Photoelectron Spectroscopy (XPS)

An XPS analysis was performed to reveal the chemical compositions, oxidation states,
and atomic ratios of the elements on the surface of the samples. The XPS spectra indicated
the existence of C 1s, N 1s, O 1s, and Zn 2p on the surface of the samples. Their atomic ratios
are comparatively summarized in Table 1. Abundant amounts of N 1s (26.62 at.%) and Zn
2p (13.91 at.%) were measured on ZIF-8, which signified the feature of imidazolate-like
ligands and Zn metals. Nevertheless, the contents of N 1s and Zn 2p decreased obviously
when the samples were subjected to heat treatment. The peaks of Zn 2p even disappeared
on ZDC-850/PAN. The XPS regions of N 1s and Zn 2p are shown in Figure 6. The N 1s peak
of ZIF-8 showed a unimodal symmetrical spectrum, while bimodal spectra were observed
on ZDC-850 or the nanofiber composites, implying different functional group distributions.
The Zn 2p3/2 photoelectron line had binding energies of approximately 1021 eV, with a
spin-orbit splitting of 23 eV between the Zn 2p3/2 and Zn 2p1/2. The atomic ratios of
Zn 2p in ZIF-8, ZDC-850, and ZIF-8/PAN were 13.91, 0.84, and 1.29, respectively. When
ZIF-8 crystals were incorporated into the PAN fibers, the Zn metal could be embedded
and protected by the PAN fibers from excess volatilization in the following treatments,
although sometimes they might be exposed, as shown in the inset of Figure 1d. For
ZDC-850/PAN, although Zn was not detected by XPS, trace Zn was observed using EDX.
The weight percentage of Zn was 35.33 (ZIF-8), 2.90 (ZDC-850), 13.82 (ZIF-8/PAN), and
3.86 (ZDC-850/PAN). This demonstrated that ZDC-850 was embedded inside, not on
the surface.
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Table 1. The atomic ratios (at.%) of surface elements from the X-ray photoelectron spectroscopy
(XPS) profiles.

Sample C 1s N 1s O 1s Zn 2p

ZIF-8 56.25 26.62 3.21 13.91
ZDC-850 90.73 4.06 4.37 0.84

PAN 86.58 4.52 8.90 0.00
ZIF-8/PAN 87.78 4.52 6.42 1.29

ZDC-850/PAN 87.55 4.96 7.50 0.00
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High-resolution XPS N1s spectra can be deconvoluted into four functional groups
at 398.4, 400.5, 401.2, and 404.6 eV [54–57]; these can be assigned to N=C, O=C-NH,
quaternary or protonated N, and oxidized species, respectively. The calculated atomic
ratios and relative percentages of the functional nitrogen atoms are displayed in Table 2.
ZIF-8 had only two N-containing groups, i.e., N=C and O=C-NH, which were ascribed
to the imidazolate-like ligands of the ZIF-8 building blocks. After ZIF-8 was carbonized
at 850 ◦C, certain amounts of oxidized N species would be generated. On ZIF-8/PAN,
the introduced ZIF-8 could contribute N=C groups. For ZDC-850/PAN, the doping of
ZDC-850 primarily increased the quaternary or protonated N groups. The atomic ratios of
N 1s on all samples are also shown in Table 2, which are in agreement with the results of
the EA analysis; implying that the samples were homogeneous for N-distribution.

Table 2. Results of the fit of the XPS N 1s region; values given in at.% (percentage of total intensity).

Binding Energy (eV) Functional Group ZIF-8 ZDC-850 PAN ZIF-8/PAN ZDC-850/PAN

398.4 N=C 25.96 1.85 2.50 2.62 2.24
(97.50%) (45.69%) (55.22%) (58.07%) (45.21%)

400.5 O=C-NH 0.66 0.19 0.64 0.26 0.56
(2.50%) (4.59%) (14.08%) (5.73%) (11.31%)

401.2 Quaternary or protonated N — 0.85 1.39 1.39 1.94
(0.00%) (20.96%) (30.70%) (30.67%) (39.18%)

404.6 Oxidized species — 1.17 — 0.25 0.21
(0.00%) (28.76%) (0.00%) (5.53%) (4.30%)

N1s (at.%) 26.62 4.06 4.52 4.52 4.96

Table 3 summarizes the deconvolution results of the XPS O 1s spectra. The curve fitting
disclosed the presence of three oxygen-containing functional groups [58–60], namely, the
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C=O/O=C-N (531.5 eV), C-OH (532.7 eV), and COOH (533.7 eV) groups. The C=O/O=C-N
groups were the only type of surface oxides on ZIF-8, implying that ZIF-8 was almost
oxygen-free. One extra surface oxide, -COOH, was measured on ZDC-850. In addition, the
introduction of ZIF-8 or ZDC-850 into PAN nanofibers could decrease the oxygen content.
For all of them, the C=O/O=C-N groups were primarily oxygen functional groups.

Table 3. Results of the fit of the XPS O 1s region; values given in at.% (percentage total intensity).

Binding Energy (eV) Functional Group ZIF-8 ZDC-850 PAN ZIF-8/PAN ZDC-850/PAN

531.5 C=O/O=C-N 3.21 3.13 5.51 3.47 5.05
(100.00%) (71.66%) (61.94%) (54.00%) (67.32%)

532.7 C-OH — — 1.00 1.49 0.79
(0.00%) (0.01%) (11.19%) (23.27%) (10.48%)

533.7 COOH — 1.24 2.39 1.46 1.66
(0.00%) (28.33%) (26.88%) (22.73%) (22.19%)

O1s (at.%) 3.21 4.37 8.90 6.42 7.50

High-resolution XPS C1s regions can be deconvoluted into five functional groups: due
to aliphatic and aromatic backbones (C-C/C=C) at 285 eV and carbon atoms present in
C-N (286.1 eV), C=N/C-OH (286.6 eV), C=O (287.6 eV), and COOH (290.5 eV) [54,58,59,61].
Table 4 displays the atomic ratios and relative percentages of non-functional and functional
carbon atoms. For all samples, the predominant groups were the C-C and C=C groups. In
particular, ZDC-850/PAN had a large amount of non-functional carbon groups. It should
be noted that ZIF-8/PAN possessed a significant amount of C-N groups, and ZDC-850 was
in second place.

Table 4. Results of the fit of the XPS C 1s region; values given in at% (percentage of total intensity).

Binding Energy (eV) Functional Group ZIF-8 ZDC-850 PAN ZIF-8/PAN ZDC-850/PAN

285 C-C/C=C 44.96 42.57 47.67 39.66 61.35
(79.92%) (46.92%) (55.06%) (45.18%) (70.07%)

286.1 C-N 10.20 22.86 13.22 38.04 1.00
(18.13%) (25.19%) (15.27%) (43.33%) (1.14%)

286.6 C=N/C-OH 0.03 7.06 17.53 1.05 8.14
(0.06%) (7.78%) (20.24%) (1.19%) (9.29%)

287.6 C=O 1.06 2.76 0.39 0.01 9.08
(1.89%) (3.04%) (0.46%) (0.01%) (10.37%)

290.5 -COOH — 15.49 7.77 9.03 7.99
(0.00%) (17.07%) (8.97%) (10.29%) (9.12%)

C1s (at.%) 56.25 90.73 86.58 87.78 87.55

3.7. CO2 Adsorption Performance

The CO2 adsorption isotherms for all samples under a pressure of less than 123
kPa at 25, 40, or 55 ◦C are shown in Figure 7. An equilibrium duration of 45 s was
maintained for each measurement point, after achieving the set pressure value. The CO2
uptake increased with increasing CO2 pressure, but decreased with increasing adsorption
temperature, manifesting the characters of the exothermic reactions. As seen from Figure 7a,
the CO2 uptakes of the as-prepared ZIF-8 seemed not to behave well under atmospheric
pressure. The CO2 adsorption capacities at 25 ◦C and 1 atm followed the order: ZIF-
8/PAN (4.20 mmol/g) > ZDC-850 (3.50 mmol/g) > ZDC-850/PAN (3.38 mmol/g) > PAN
(2.91 mmol/g) > ZIF-8 (0.88 mmol/g). At 25 ◦C and 0.15 atm (a typical untreated flue
gas composition), the CO2 uptakes had a different order: i.e., ZIF-8/PAN (1.12 mmol/g)
> ZDC-850/PAN (1.05 mmol/g) > PAN (0.94 mmol/g) > ZDC-850 (0.92 mmol/g) > ZIF-8
(0.09 mmol/g).
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At 25 ◦C and 1 atm, ZIF-derived carbons and ZIF-related nanofiber composites ex-
hibited a far superior CO2 adsorption performance than the as-prepared ZIF-8 or pure
PAN nanofibers. However, in the lower pressure (0.15 atm), the nanofibers, namely, PAN,
ZIF-8/PAN, and ZDC-850/PAN, displayed better CO2 adsorption capacities than ZIF-8 or
ZDC-850. These findings indicate that the specific surface areas and total pore volumes
of the adsorbents may not be crucial parameters for CO2 capture. The comprehensive
interactions between hierarchical porous structures, surface functional groups, and the
Zn metal active sites dominated the CO2 adsorption performance. Under 1 atm at 25 ◦C,
the Zn metal active sites inside the pores, the pores at approximately 0.5 nm, and C-N
(amines) groups could promote CO2 adsorption. At low pressures, the carbon content
in the adsorbents should be higher than a threshold. Under this condition, the percent-
age of ultra-micropore and micropore volumes, as well as the functional groups, such as



Nanomaterials 2022, 12, 1492 14 of 18

the quaternary or protonated N (amines), N=C (imines or pyridine-type N), C-OH, and
-COOH groups, should be considered highly important. The imines and amines groups
are usually regarded as the Lewis base and expected to generate distinct interactions with
CO2 molecules (as a weak Lewis acidic gas) [4,62–64]. Figure 8 shows FESEM images of
PAN, ZIF-8/PAN, and ZDC-850/PAN, which underwent the CO2 adsorption processes.
Compared with the images in Figure 1, this demonstrates that the samples could maintain
their robustness after CO2 adsorption.
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Figure 8. FESEM images of (a) PAN, (b) ZIF-8/PAN, and (c) ZDC-850/PAN after CO2 adsorption.

The Freundlich equation was used for the curve-fitting of the CO2 measurement
data. The consequences are summarized in Table 5 and also displayed in Figure 7a–e. As
seen from the data, the values of KF varied inversely, proportionally to the adsorption
temperature. The values of n ranged from 0.69 to 1.65 and were indicative of a feasible
adsorption, except for ZIF-8. The Qst values varied with the CO2 uptakes, as shown in
Figure 7f, in which the Qst values log-linearly decreased with the CO2 loading, from 0.6
to 2 mmol/g, indicating that the adsorption active sites on the surface of the adsorbents
were energetically heterogeneous for CO2 capture [65]. The data of ZIF-8 are shown in
the inset of Figure 7f, due to its low adsorption capacities. Based on the Qst values, which
were lower than 40 kJ/mol, we concluded that the CO2 adsorption on the adsorbents
belonged to a typical physical adsorption process. The Qst values had a lower CO2 loading
response to the CO2 adsorption performance at low CO2 partial pressures, indicating the
interactions between CO2 molecules and the surface functional groups or the enhanced
micropore confinement [66]. The slope in the log–linear plot was highly related to their
CO2 adsorption capacities. Table 6 summarizes the CO2 uptakes of the adsorbents used in
this study and various ZIF-8-related adsorbents in the literature, which implied that the
CO2 adsorption on the ZIF-8/PAN, ZDC-850, and ZDC850-PAN prepared in this study
performed well for CO uptake.
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Table 5. Fitted results of the Freundlich equation for the CO2 adsorption data collected on the samples
at different temperatures.

Sample Temperature (◦C) KF (mmol/g/kPa1/n) n R2

ZIF-8
25 0.0035 0.84 0.99997
40 0.0020 0.80 0.99992
55 0.0006 0.69 0.99723

ZDC-850
25 0.1389 1.43 0.99998
40 0.1180 1.44 0.99995
55 0.0577 1.30 0.99972

PAN 25 0.1782 1.65 0.99952
40 0.0886 1.43 0.99960
55 0.0567 1.32 0.99991

ZIF-8/PAN 25 0.1512 1.39 0.99865
40 0.0546 1.18 0.99785
55 0.0469 1.18 0.99661

ZDC-850/PAN
25 0.1955 1.62 0.99990
40 0.1174 1.49 0.99995
55 0.0667 1.35 0.99985

Table 6. Comparison of the CO2 uptakes of the adsorbents in this study with various ZIF-8-related
adsorbents in the literature.

Adsorbent SBET (m2/g) Conc. of CO2 Temp. (◦C) CO2 Uptake (mmol/g) Reference

ZIF-8 1579 1 atm 25 0.88 This study
ZDC-850 1873 1 atm 25 3.50 This study

ZIF-8/PAN 1178 1 atm 25 4.20 This study
ZDC-850/PAN 1046 1 atm 25 3.38 This study

ZIF-8 1016 1 bar 25 0.60 [41]
ZIF-PAN 888 1 bar 25 0.28 [41]
ZIF-7-8s 283 1 bar 20 1.44 [45]

ZIF-8 1169 1 bar
0 1.41

[44]25 1.06

NH2-ZIF-8 886 1 bar
0 2.12

[44]25 1.94
NH2-ZIF-8/bacterial

cellulose foams
455 1 bar

0 1.71
[44]25 1.63

ZIF-100 595 1 atm
0 1.3

[8]25 0.6

4. Conclusions

This study successfully fabricated ZIF-8, ZIF-8-derived carbon (ZDC-850), and their
activated PAN-based nanofiber composites. Due to the ligand decomposition, and partly
due to the evaporation of Zn metal in ZDC-850, the particle sizes of ZDC-850 were smaller
than those of the as-prepared ZIF-8. The degree of crystallinity of the ZDC-850 totally
changed compared to that of ZIF-8. The properties of nanofiber composites depend on the
dopants (ZIF-8 or ZDC-850); nevertheless, both could increase in surface area and pore vol-
ume. ZDC-850 was mesoporous, while the others were microporous. ZIF-8 had significant
pore volumes in the range of 0.9–1.3 nm, but ZDC-850 and ZIF-8/PAN exhibited a distinct
peak at approximately 0.5 nm. The Zn metals in the ZIF-8/PAN or ZDC-850/PAN could be
embedded and protected by the PAN fibers from excess volatilization in the following treat-
ments: At 25 ◦C and 1 atm, ZIF-derived carbons (3.50 mmol/g) and ZIF-related nanofiber
composites (4.20 mmol/g for ZIF-8/PAN, 3.38 mmol/g for ZDC-850/PAN) exhibited far
superior CO2 adsorption performance than the as-prepared ZIF-8 (0.88 mmol/g) or pure
PAN nanofibers (2.91 mmol/g). However, at lower pressure (0.15 atm), the nanofibers,
namely, PAN, ZIF-8/PAN and ZDC-850/PAN, displayed better CO2 adsorption capacities
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than ZIF-8 or ZDC-850. These findings demonstrate that the specific surface areas and
total pore volumes of the adsorbents may not be crucial parameters for CO2 capture. The
comprehensive interactions between hierarchical porous structures, surface functional
groups, and the Zn metal active sites dominated the CO2 adsorption performance.
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