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Abstract: To improve the salt resistance of superabsorbent materials and the gel strength of super-
absorbent materials after water absorption, a bagasse cellulose-based network structure composite
superabsorbent (CAAMC) was prepared via graft copolymerization of acrylamide/acrylic acid
(AM/AA) onto bagasse cellulose using silane coupling agent modified nano-CaCO3 (MNC) and
N,N′-methylene bisacrylamide (MBA) as a double crosslinker. The acrylamide/acrylic acid was
chemically crosslinked with modified nano-CaCO3 by C-N, and a stable double crosslinked (DC)
network CAAMC was formed under the joint crosslinking of N,N′-methylene bisacrylamide and
modified nano-CaCO3. Modified nano-CaCO3 plays a dual role of crosslinking agent and the filler,
and the gel strength of composite superabsorbent is two times higher than that of N,N′-methylene
bisacrylamide single crosslinking. The maximum absorbency of CAAMC reached 712 g/g for deion-
ized water and 72 g/g for 0.9 wt% NaCl solution. The adsorption process of CAAMC was simulated
by materials studio, and the maximum adsorption energy of amino and carboxyl groups for water
molecules is −2.413 kJ/mol and −2.240 kJ/mol, respectively. According to the results of CAAMC
soil water retention, a small amount of CAAMC can greatly improve the soil water retention effect.

Keywords: bagasse cellulose; nano-CaCO3; double crosslinked network structure; composite
superabsorbent

1. Introduction

Superabsorbent resin (SAR) is a kind of polymer with a crosslinked three-dimensional
network structure; it can absorb hundreds or even thousands of times its weight in water,
and it can hold water under specific pressures without separation [1,2], which makes it
widely used in many fields [3–6]. However, in the past, the raw materials of SAR for
commercial applications mainly come from poorly degradable petrochemical products
such as polyacrylamide and polyacrylic acid [7,8] and would cause severe environmental
pollution. In addition, some SAR show poor salt absorption of only 40–50 g/g and lower gel
strength after water absorption [9–11], and it is difficult to increase water absorbency and gel
strength after absorption simultaneously [12]. The application of SAR in personal hygiene
products and soil water-holding agents was limited. Therefore, degradable biomass-based
composite superabsorbent resin with different functional groups has attracted the attraction
of researchers.
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Cellulose is the most abundant natural polymer and contains a large number of
hydroxyl groups that can be used to alter its properties chemically. Because of its excellent
properties, such as biodegradability, biocompatibility, and environmental friendliness,
cellulose has become an ideal backbone for synthesizing biodegradable superabsorbent
polymers [13,14]. Bagasse, a by-product of the sugar cane industry containing 40–50 wt%
cellulose, 25–35 wt% hemicellulose, and 18–24 wt% lignin, contains many substances
of hydroxyl and phenolic groups [15–21]. According to a survey, global production of
sugarcane in recent years was about 260 million tons/year [22], which would produce a
huge amount of bagasse. A small part of this bagasse was used to make paper, and the rest
was burnt as a means of solid waste disposal [23], which wasted resources and seriously
polluted the environment [24]. The application of bagasse cellulose-based SAR enriched the
raw materials of SAR, and bagasse-based biodegradable SAR increases the added value of
bagasse and reduces environmental pollution [25–28]. According to literature reports, the
current superabsorbent resin based on bagasse cellulose can be naturally degraded and has
a good absorbency in deionized water. However, weak gel strength after water absorption
and low salt tolerance are still the problems faced by bagasse cellulose-based SARs.

At present, the superabsorbent resin modified by natural polymers has partial biodegrad-
ability, but its salt resistance and gel strength after water absorption are relatively poor.
To improve the salt tolerance and gel strength after water absorption of bagasse-based
SAR, inorganic nanoparticles are added into bagasse-based SAR [29]. CaCO3 is cheap and
less sensitive to salt ions natural mineral, which is considered an ideal modifier of SAR.
However, the small size effect of CaCO3 nanoparticles easily unites and disperses unevenly
when they are directly dispersed into the natural polymer components, which leads to
obvious interface defects in the organic–inorganic components and brittle fracture after
water absorption [30,31]. To solve this problem, some researchers have modified the surface
of CaCO3 so that it can combine with organic matter through chemical bonds [32].

The swelling kinetics and mechanism of simulating the swelling process play an im-
portant guide in the construction of superabsorbent resins. However, most of the literature
is based on water adsorption kinetic models, i.e., Fickian water diffusion mechanism and
pseudo-first/second-order swelling kinetic model were used to illustrate the macro water
absorption process of SAR, and it can be difficult to clearly visualize the structural changes
during the water absorption process [33,34]. Additionally, the specific roles of the functional
groups contained in the different SAR are not described.

With the above consideration, the bagasse cellulose was used as the raw material,
nano-CaCO3 modified with 3-aminopropyltriethoxysilane, and then combined with MBA
as a double crosslinking. After the chemical crosslinking reaction, a DC network structure
bagasse cellulose-based composites superabsorbent resin (CAAMC) via graft copolymer-
ization was prepared in an aqueous solution. CAAMC was characterized by Fourier
transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning elec-
tron microscopy (SEM), Energy Dispersive Spectrometer (EDS), contact angle measuring
instrument (Sdc-350), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis
(TG-DTG), and Solid state NMR (13C NMR). The effects of the modified nano-CaCO3
amount on the water absorbency, water retention, and reswelling performance of the
composites were investigated. Our results indicate that the structure of CAAMC can be
changed by adjusting the content of modified nano-CaCO3, thus significantly improving
the mechanical properties and salt tolerance of CAAMC. In addition, Materials Studio was
used to calculate the adsorption energy of different functional groups on water molecules
and simulate the structural changes of SAR throughout the water absorption process.

2. Materials and Methods
2.1. Materials

Bagasse was purchased from Guangxi, China (bagasse cellulose content of 80.62 wt%;
water content of 10 wt% after pre-treatment). CaCl2 and (NH4)2CO3 purchased from
Chengdu Kelong Chemical Co., Ltd. (Chengdu, Sichuan Province, China), both of which
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are of analytical grade, were utilized as received with no further purification. Ethanolamine
and triethanolamine were purchased from Xilong Science Co., Ltd. (Shantou, Guangdong
Province, China), both of which are of analytical grade. 3-aminopropyltriethoxysilane,
potassium persulfate (APS), acrylamide (AM), and N,N′-methylene bisacrylamide (MBA)
were purchased from Macklin (Shanghai, China), and all chemical reagents utilized in this
study were of analytical grade and were utilized as received with no further purification.

2.1.1. Preparation Method of CAAMC Graft Copolymer

The preparation process of composite SAR CAAMC is shown in Figure 1. The bagasse
recovered from the sugar mill was crushed by a grinder and passed through a 60-mesh
sieve, which is further extracted based on the procedures in published work [35] to obtain
the bagasse cellulose (BC) with abundant hydroxyl groups as the base material, and the
morphology (as shown in Figure S4) and chemical structure (as shown in Figure S6) of BC
have been characterized.
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Figure 1. Preparation process of composite SAR CAAMC.

Nano-CaCO3 was prepared by a solid-state reaction. CaCl2 (1 g), (NH4)2CO3 (1 g),
ethanolamine (0.02 g), and triethanolamine (0.01g) were put into a planetary ball mill tank,
milled for 50 min, thoroughly washed, and dried at 60 ◦C, and nanometer-sized CaCO3
could be obtained. Then, 2.0 g of nano-CaCO3 and 2.0 g of 3-aminopropyltriethoxysilane
(KH550) were weighed into a flask, and 100 mL 95% ethanol was added. After full stirring
for 6.5 h, the precipitate was washed with ethanol and dried in an oven at 100 ◦C for 5 h
to obtain modified nano-CaCO3 (MNC) (The N2 adsorption isotherms (nano-CaCO3 (A)
and MNC (B)) and pore size distributions (nano-CaCO3 (C) and MNC (D) are shown in
Figure S7) [36].

Bagasse cellulose (0.75 g) and MNC (0.15 g) were added to 40 mL of deionized
water and gelatinized at 90 ◦C for 40 min in a nitrogen atmosphere. Potassium persulfate
(0.12 g) was added after cooling to form hydroxyl radicals. Then, the mixed solution,
with a neutralization degree of AA (5 g) 60%, acrylamide (2.5 g), and N,N′-methylene
bisacrylamide (0.025 g), was slowly added to a three-neck flask and then reacted at 60 ◦C
for 1.5 h. After the reaction, the samples were dried in an oven at 60 ◦C. The dried samples
were extracted in a Soxhlet extractor with acetone and ethanol for 12 h and then dried in
an oven at 60 ◦C. Finally, the dried samples were ground, crushed, and passed through a
60-mesh sieve for further analysis [37].

2.1.2. Characterization Method

Morphologies of the CAAMC, nano-CaCO3, and MNC were examined using a scan-
ning electron microscope (SU8220, Hitachi, Tokyo, Japan) at a voltage of 10 kV. The dried
specimens were treated by gold-sputtering to supply the right surface conduction. Energy
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Dispersive Spectrometer (EDS, SU8220, Hitachi, Tokyo, Japan) analysis was used to detect
the elemental composition at a voltage of 15 kV. With potassium bromide as the background,
the surface groups of cellulose, CaCO3, modified CaCO3, and CAAMC were analyzed
using Fourier transform infrared spectra (FT-IR, Nicolet FTIRIS10, Thermo Fisher Scientific,
Waltham, MA, USA). The surface element composition and valence of cellulose, MNC,
and CAAMC were analyzed by X-ray photoelectron spectroscopy (XPS, ESCALAB250,
Thermo Fisher Scientific, Waltham, MA, USA) and C1s (284.6 eV) calibration [38]. The
contact angles between water droplets with bagasse, BC, and CAAMC were tested using
a contact angle measuring instrument (Sdc-350, Dongguan, Guangdong Province, China,
3 µ/d). The particle size and particle size distribution of unmodified nano-CaCO3 and
MNC were analyzed by a nanoparticle size analyzer (Zetasizer Nano ZS90, Malvern Instru-
ments Co., Ltd., Malvern, UK); thermogravimetric (TG-DTG) analysis was performed on a
STA449F3 synchronous thermal analyzer (Netzsch-Geratebau GmbH, Selb, Germany) at a
heating rate of 20 ◦C min−1 under N2 atmosphere. [39]. X-ray diffraction (XRD) patterns
of nano-CaCO3, MNC, Cellulose, and CAAMC superabsorbent were also obtained using
a diffractometer (SMARTLAB3KW, Rigaku Corporation, Tokyo, Japan) equipped with a
Cu Kα radiation source in a scattering angle range from 10◦ to 80◦ [29]. The compressive
strength of CAAMC saturated with water absorption was tested using a universal electronic
material testing machine (Instron Company, Boston, MA, USA); at least 3 measurements
were carried out for each sample and the mean value was obtained [40]. Solid-state-13C
CP/MAS NMR spectra were taken on a Brucker 400M spectrometer with a time domain
size of 2048 and 1000 scans.

2.2. Measurement of Water Absorbency

The swelling properties of CAAMC in deionized water and 0.9 wt% NaCl solution
were tested by the gravimetric method. The dry sample (0.01 g) before weighing was
immersed in excess deionized water (250 mL), soaked at room temperature, allowed to
reach swelling equilibrium, passed through a 60-mesh sieve, and filtered out the saturated
resin. The weight was determined after water absorption again, and the above steps were
repeated in other solutions. Three measurements were repeated for each sample [41]. The
water absorbency was calculated by Equation (1).

Qeq =
m2 −m1

m1
(1)

where the water absorbency is Qeq per gram, g/g, m1 is the weight of the dried resin, g, and
m2 is the weight of the resin when it reaches swelling equilibrium, g.

2.3. Measurement of Water Retention in Soil

In this work, CAAMC of a different quality was added into soil to investigate the water
retention ability in soil. The properties were measured at different treatments: control, 50 g
of dry soil without CAAMC; 50 g of dry soil mixed well with 0.25 g of CAAMC; 50 g of dry
soil mixed well with 0.5 g of CAAMC; 50 g of dry soil mixed well with 0.75 g of samples;
50 g of dry soil mixed well with 1.0 g of CAAMC. Each sample was placed in a plastic cup
and weighed (W0). Then, the mixtures were slowly drenched with tap water and the tube
was weighed again (W1). The beakers were kept at 25 ◦C and weighed every day (Wi). The
water retention (WR, (%)) of soil was calculated by Equation (2) [42].

WR(%) =
Wi −W0

W1 −W0
× 100% (2)

2.4. Computation Details

For geometric optimization using the Dmol3 module in Materials Studio, the exchange-
dependent energy functional was based on the generalized gradient approximation (m-
GGA-M06-L) of Perdew-Burke-Ernzerho’s kinetic energy, and the polarization function



Nanomaterials 2022, 12, 1459 5 of 21

(DNF) basis set adopted a double numerical mass basis [43]. The M-GGA-M06-L function
can describe the binding energy of hydrogen bonds [44]. Materials Studio was used to
simulate the water absorption process, and the adsorption energy (∆E) of functional group
amines and carboxyl groups for water molecules in the absorbent resin was calculated
using Equation (3).

∆E = Esystem− (ECAAMC + EWater) (3)

where Esystem is the total energy of functional groups after absorbing water, kJ/mol; ECAAMC
is the total energy of unabsorbed water, kJ/mol; and EWater is the energy of free water
molecules, kJ/mol.

3. Results
3.1. Characterization of CAAMC

Figure 2A shows the FT-IR spectra of bagasse cellulose, nano-CaCO3, MNC, and
CAAMC. Compared with unmodified nano-CaCO3, modified nano-CaCO3 exhibits a
characteristic Si-O-CaCO3 absorption peak at 1164 and 1051 cm−1 [45], and the peak
width of the high absorption peak of C-O at 1460 cm−1 covers the N-H absorption of
the silane coupling agent KH-550 (1584 and 1383 cm−1). Moreover, at 2928 cm−1 and
2878 cm−1, the weak characteristic peak of -CH2- appears, and more significantly, the
intensity of MNC’s OH- stretching vibration peak noticeably decreases, indicating that KH-
550 was hydrolyzed in an aqueous alcohol solution, ethoxy was converted into hydroxyl,
and hydroxyl adsorbed on the surface of nano-CaCO3 was dehydrated in the solvent to
form a chemical connection, a long chain of -Si-O-CaCO3, allowing KH-550 to form a
flexible organic structure on the nano-CaCO3 surface, which also confirmed the chemical
bond between KH-550 and nano-CaCO3 [46]. The FT-IR spectra of CAAMC shows that
what originally belonged to the cellulose -OH peak was weakened, and the peaks at
1401 and 1458 cm−1 were the characteristic absorption peaks of -COOH, indicating that
acrylic acid has been successfully grafted onto cellulose, and -COOH becomes the main
functional group of the superabsorbent polymer. The absorption peak at 1330 cm−1 was
the absorption peak of C-N, and a peak at 1667 cm−1 attributed to C=O stretching vibration.
The appearance of these two peaks indicates that acrylamide was successfully grafted
onto cellulose skeleton [37,47,48]. The characteristic peak of Si-O appeared at 1169 cm−1,
indicating that the bagasse/AM/AA copolymer was chemically crosslinked with MNC by
C-N, and MNC was involved in the grafting reaction [47,49].

Figure 2B shows the XRD patterns of bagasse cellulose, nano-CaCO3, MNC, and
CAAMC (The XRD of a single CAAMC is shown in Figure S8). The peak shapes of
nano-CaCO3 were the same before and after modification, and they all had a triangular
structure (space Group R-3c) (JCPDS card number 81–2027). Their primary characteristic
peaks are 2θ = 23.1◦, 29.5◦, 36◦, 39.5◦, 43.1◦, 47.6◦, 48.6◦, 56.4◦, and 57.5◦, corresponding
to (012), (104), (110), (113), (202), (018), (116), (211), and (122), respectively, which is
a typical calcite structure. Furthermore, MNC has a stronger reflection peak than the
unmodified nano-CaCO3 at the strongest crystal reflector position, 2θ = 29.5◦, because
of the direct coupling of the coupling agent itself after successful modification of the
coupling agent, leading to the growth of the nano-CaCO3 crystal surface [45,50]. After
treatment, bagasse cellulose belonged to cellulose type I, and the lower crystal reflection of
CAAMC disappeared at 2θ = 18.16◦ and broadened at 22.36◦, indicating the destruction
of the ordered cellulose structure during polymerization. Acrylamide and acrylic acid
were successfully grafted into the primary cellulose chain, consistent with the FT-IR results.
Furthermore, the characteristic peak of MNC disappeared because MNC was coated with
organic components, indicating that it was involved in graft polymerization and resin
network crosslinking processes [51].
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Figure 2C,D show the TG-DTG curves of nano-CaCO3. As shown in (A) in Figures 2–6, the
weight loss of unmodified nano-CaCO3 mainly occurred at around 700 ◦C, and the weight
loss rate reached a maximum at 727 ◦C, which was attributed to the thermal decomposition
of nano-CaCO3 itself. As shown in (B) in Figures 2–6, the weight loss of the modified
nano-CaCO3 (MNC) obtained by silane coupling agent modification mainly occurs at about
700 ◦C, but the weight loss rate reaches the maximum value at 770 ◦C, which is obviously
higher than that of unmodified nano-CaCO3, which indicates the stronger stability of MNC.
In addition, comparing the total weight loss of nano-CaCO3 and MNC, we found that the
weight loss of MNC is 1.49% higher than that of nano-CaCO3, which indicates that the
modified nano-CaCO3 surface has the composition of silane coupling agent, nano-CaCO3
having been successfully modified.
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For the thermal decomposition of bagasse cellulose (BC), it can be roughly divided into
two stages (as shown in (E) in Figures 2–6), the first stage weight loss at around 109 ◦C was
attributed to the evaporation of water; the weight of this loss is about 10 wt%. The second
stage was the main stage of pyrolysis; the main temperature range is around 200–500 ◦C,
which was mainly produced by the thermal decomposition of bagasse cellulose. The weight
loss in this period is 70 wt%, and the remaining mass of about 20 wt% was residual ash [52].

(F) in Figures 2–6 shows the TG and DTG curves of CAAMC. The weight loss of
CAAMC at 100–300 ◦C was due to the evaporation of water in the sample [53], the weight
loss in the range of 300–550 ◦C was mainly due to the decomposition of CAAMC, and the
weight loss above 700 ◦C was due to the decomposition of modified calcium carbonate
(MNC) [54]. The DTG curve of CAAMC shows that the first weight loss of the sample
peaks at 240 ◦C is due to the evaporation of water. During CAAMC decomposition, DTG
exhibited two peaks in weight loss rate, which were caused by the decomposition of
carboxyl and amido groups of acrylic acid and acrylamide grafted on cellulose, reaching
peaks at 334 ◦C and 445 ◦C, respectively [55]. From the TG-DTG results of CAAMC, it can
be seen that CAAMC has good thermal stability.

Figure 3A shows that there is a Si-O peak at 531 eV from the O1s peak in MNC,
indicating the formation of new Ca-O-Si bonds on the surface of nano-CaCO3. In addi-
tion, new C-O and C-C bonds can be seen in Figure 3B, and Si 2p peaks can be seen in
Figure 3C, indicating that the nano-CaCO3 surface is coated with silane coupling agent. FT-
IR characterization also confirmed this result, thus confirming the successful modification
of nano-CaCO3 [56].

Figure 4 shows the XPS of CAAMC. The XPS spectrum shows that the O1s peak is
divided into four peaks, C=O, C-O, O-C=O, and CO3

2− (as shown in Figure 4A), with
different binding energies. CO3

2− is the emerging peak compared with the XPS spectrum
of the superabsorbent resin without MNC, indicating that the SAR was successfully com-
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pounded with MNC, and the peak position of CO3
2− contained in CAAMC is shifted from

that of CO3
2− contained in MNC, indicating that MNC is involved in the grafting reaction.

Moreover, Figure 4B shows a Si 2p peak, indicating the successful grafting of MNC and the
resin. Figure 4C indicates that the C 1s peak is divided into five peaks, which were assigned
to O-C=O, C-N, C=O, C-O, and C-C bonds, having different binding energies. Both C=O
and C-N bonds were obtained from the carbonyl and amino groups, respectively. Figure 4D
shows an N 1s peak, and the peak is attributed to N-H, which indicates the successful
grafting of acrylamide on the CAAMC backbone. The above data show that cellulose
was successfully grafted with acrylamide and acrylic acid, and MNC was successfully
combined with the superabsorbent resin network via a chemical bond.

Figure 5A shows the SEM observation of the surface morphology of the nano-CaCO3;
from the figure, we can see that the nano-CaCO3 particles obtained by solid-phase reaction
are relatively uniform and spherical. In the literature, nano-CaCO3 was prepared by
other mechanical processes, and the particle size was not uniform [57]. This is mainly
due to the addition of triethanolamine and ethanolamine, which prevents the continued
growth of calcium carbonate crystals and makes spherical particles easier during the
ball milling process. This shows that nano-CaCO3 with uniform morphology is easier
to prepare by the solid-phase reaction of ball milling, and the reaction process is mild
and easy for industrial production. Figure 5B shows the SEM observation of the surface
morphology of the modified nano-CaCO3; after nano-CaCO3 was modified by KH550,
nano-CaCO3 has a little bonding phenomenon, which was similar to the previous research
results [45], mainly because the molecular chains of KH-550 that connect with the surface of
nano-CaCO3 particles produced mutual exclusion and a steric hindrance effect, and, thus,
the surface free energy is reduced correspondingly and the agglomeration is controlled
effectively [56]. From the particle size distribution results (as shown in Figure S3), the
particle size distribution of unmodified nano-CaCO3 is uniform (basically around 25 nm),
the particle size of MNC is about 70 nm, and the distribution range of particle size is
between 50 and 90 nm, which is basically consistent with the SEM results. Figure 5C,D
show the suspension of nono-CaCO3 and MNC in water. MNC maintains a better dispersed
state in water; after being dispersed in the aqueous solution for 50 min, it still maintained a
good dispersion. The unmodified nano-CaCO3 showed obvious sedimentation after 50 min,
and the literature also reported a similar situation [58,59]. This is because the surface of the
MNC is rich in organic groups, which makes it have good dispersibility in aqueous solution.
On the other hand, it shows that nano-CaCO3 was successfully modified by KH550.

Figure 6 shows the SEM observation of the surface morphology of the CAAMC.
Figure 6A shows that the surface of freeze-dried CAAMC had multiple pores and an
obvious reticular structure. As shown in Figure 6B,C, the crosslinking between networks in
multiple directions can be observed by magnifying the network structure, thus forming
a 3D network structure. The cross-sectional view (Figure 6D) of the CAAMC shows the
existence of a network formed by crosslinking inside the resin. These well-developed
network structures allow water molecules to enter the superabsorbent resin easily and
increase the water storage space of resin. Figure 6E shows that the surface of normal drying
CAAMC was coarse and irregular, which gives CAAMC a larger specific surface area,
increases the contact area between CAAMC and water molecules, and speeds up the rate
of water absorption. Figure 6F shows the EDS Ca element mapping of the CAAMC, which
clearly shows the uniform distribution of MNC in CAAMC.

Figure S5A–C shows photos of a drop of water on bagasse, BC, and CAAMC when
placed. From this, we obtain the instantaneous contact angles of water droplets with
different material surfaces. The contact angle between the water droplet and the bagasse
retrieved from the sugar mill is approximately 63◦. When sugarcane bagasse is pre-treated,
the contact angle between the BC and water droplets is about 54◦, and the contact angle
between the CAAMC and the water droplets was the smallest, which was about 47◦. This
is an indication that the superabsorbent resin prepared by modifying bagasse cellulose
has much higher hydrophilicity than bagasse itself, which is very favorable for water
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absorption. In addition, according to Young-Laplace [60], the smaller the contact angle, the
lower the surface tension, making it easier for water droplets to spread out on the surface
of the superabsorbent resin, which makes the water absorption speed faster.

3.2. Polymerization Mechanism of CAAMC

Figure 7 shows the graft polymerization mechanism of MNC, AM, and AA with
bagasse cellulose. First, APS was decomposed to form sulfate anion radicals under heat-
ing conditions. The radicals extracted hydrogen from the hydroxyl groups in cellulose,
resulting in the formation of more active groups [61]. These active groups became reaction
sites, where the monomers became acceptors; then, the monomer molecules themselves
became free radical donors to the nearby molecules, resulting in the growth of polymeric
chains [48]. At the same time, sulfate anion radicals attack the amino group on MNC
and extract hydrogen from the amino groups, resulting in the formation of more active
groups [62]. Then, the position where modified MNC loses hydrogen recurs and reacts with
the monomers acrylic acid and acrylamide. Finally, under the action of the crosslinking
agent MBA, MNC grafted with acrylic acid and acrylamide and cellulose grafted with
acrylic acid are crosslinked to form superabsorbent CAAMC with a 3D network structure.
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3.3. Effect of MNC Content on the Properties of CAAMC
3.3.1. Effect of MNC Content on the Water Absorbency

The addition of inorganic materials impacts the structure and properties of SAR
materials [34,63]. Hence, the water absorbency, salt absorption rate, reswelling performance,
water retention effect, and mechanical strength of the composite SAR were studied after
the addition of different modified MNC contents of 0–0.45 g (relative to 0–6 wt% of the
total mass of the monomer) to understand the effect of MNC on the properties of the
superabsorbent resin.

A comparison of the maximum water absorbency on different biopolymer-based SARs
is summarized in Table 1. A maximum water absorbency in deionized water of 712 g/g
and a maximum water absorbency in 0.9 wt% NaCl solution of 72 g/g for CAAMC were
obtained in this study, which were higher than those in previous works (as shown in
Table 1), indicating CAAMC exhibited a good water absorbency in 0.9 wt% NaCl solution
compared with those of other SARs, which was probably because the addition of modified
calcium carbonate effectively improves the salt resistance of CAAMC and forms a good
network structure, so that CAAMC has a better water absorbency in 0.9 wt% NaCl solution.

Table 1. Comparison of water absorbency of CAAMC with that of other SARs.

Raw Materials
Ratio of Monomers
(Monomer:Natural
Polymer Material)

Water Absorbency in
Deionized Water (g/g)

Water Absorbency in
0.9 wt% NaCl (g/g) Ref.

Cellulose, AA, AM 10:1 240 - [64]
Carboxymethyl cellulose, PAA,

Graphene oxide 25:3 750 85 [65]

Cellulose,
1,2,3,4-butanetetracarboxylic

dianhydride
3:1 987 - [66]

cotton stalk, bentonite,
polyvinylpyrrolidone 9:1 1018 71 [67]

Corn straw cellulose, ammonium
polyphosphate, AA 3:1 303 - [68]

Starch, AA, AM, polyvinyl alcohol,
cellulose nanocrystals 17.5:1 922 52 [12]

(2-pyridyl) acetyl chitosan chloride,
AA, AM 10:1 615 44 [48]

Lignin, PVA 20:1 456 - [69]
Bagasse cellulose, AA, AM, CaCO3 8:1 712 72 This work

Figure 8A shows that the water absorbency of CAAMC increased with the weight
of MNC until 0.2 g (3.33 wt%), where the water absorbency gradually decreased. This is
because when more MNC is added, the amino group on the surface will participate in the
polymerization as a crosslinking component, which is crosslinked with organic components
to produce a 3D network structure that can retain more water. When the MNC content
becomes too high, the crosslinking density increases and the network becomes difficult to
expand after absorbing much water, making it difficult to absorb more water. Moreover, the
MNC content has a positive effect on the absorption of 0.9 wt% NaCl solution by the resin.

Figure 8B shows that the addition of MNC increased the absorption capacity of the
resin 0.9 wt% NaCl solution and significantly increased the absorption rate. This is because
MNC, as the crosslinking component, makes the interior of the superabsorbent resin form
a certain spatial result when it starts to absorb water. It not only relies on the COO- group
in the superabsorbent resin to repel each other but also increases the network space to
accommodate more water, thus reducing the effect of ions on water absorption [37,70].
However, the crosslinking density becomes extremely high when the MNC content is
excessive, decreasing the water absorbency.
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3.3.2. Effect of MNC Content on the Reswelling Water Absorbency of CAAMC

To evaluate effect of MNC content on the reswelling capability of CAAMC, reswelling
capability studies were performed on CAAMC containing different MNC contents through
measuring their swelling capacity loss during sequential swelling/drying cycles. Figure 9A
shows that the addition of MNC improves the reswelling capability of the superabsorbent
resin. After twice reswelling the superabsorbent resin without MNC, the resin disperses in
the water when it reabsorbs water and can no longer be used; moreover, after the second
swelling/drying cycle, the water absorbency rate is only 60% of the first water absorbency.
The reswelling capability of the superabsorbent resin significantly improves by adding MNC,
and the water absorbency can be >90% of the initial water absorbency when it undergoes a
swelling/drying cycle three times. This behavior is observed because the superabsorbent
resin forms a 3D network structure after adding MNC, and there is a close relationship
between the polymer chain and the chain, thus improving the stability of the resin.
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3.3.3. Effect of MNC Content on Water Retention of CAAMC at Different Temperatures

The water retention capacity of the superabsorbent resin after water absorption and
saturation is a vital property of the superabsorbent resin because this property affects
the superabsorbent service life and application prospects of resin. Figure 9B–F show the
water retention capacity of the superabsorbent resin at different temperatures after adding
different amounts of MNC. Figure 9B shows the water retention effect of CAAMC at 20 ◦C.
CAAMC has a good water retention effect near room temperature, and the highest water
retention rate of CAAMC reached more than 80% after 5 h, which is 20% higher than that of
the SAR without MNC addition. The water retention rate of CAAMC gradually decreased
with increasing temperature. When the SAR was left at 30 ◦C for 5 h (as shown in Figure 9C),
the SAR without MNC lost almost all water, but CAAMC retained approximately 40% of
the water. When the temperature continued to increase, the SAR without MNC lost water
completely after 5 h, and CAAMC still retained a small portion of water molecules (as
shown in Figure 9D–F).

In summary, MNC significantly improved the water retention capacity of CAAMC.
The best water retention was achieved when the MNC was 3.33 wt% (compared to the total
monomer mass). The water retention effect of the SAR varies with the amount of MNC
added, because the addition of MNC affects the entire superabsorbent resin structure, thus
affecting its water retention performance, and SEM images of different MNC added to
superabsorbent resin confirmed this explanation.

3.3.4. Effect of MNC Content on the Gel Strength of CAAMC after Water Absorption and
Saturation

Figure 10 shows the compressive stress-strain curves of CAAMC with different MNC
contents after water absorption and saturation. We observed that the gel strength after
water absorption improves after the addition of MNC, the water absorbency of CAAMC
prepared by adding 2.00 wt% MNC was 200 g/g higher than that of superabsorbent resin
prepared without MNC, and the gel strength of CAAMC after water saturation was twice
that of superabsorbent resin without MNC. Therefore, we believe that the addition of MNC
can effectively improve the gel strength of the superabsorbent resin, and the mechanical
strength increases with MNC content because the addition of MNC, as a crosslinking compo-
nent, participates in polymer formation, increasing the number of intersection points in the
crosslinking network and resulting in a denser network with an increase in the hydrogel’s
stress support point. Furthermore, MNC, as an inorganic component, has better compression
resistance, which considerably improves the mechanical properties of the hydrogel.
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3.3.5. Effect of MNC Content on the CAAMC Morphology

Figure 11A–E show the surface morphology of CAAMC after the addition of different
contents of MNC. We observed that changes in MNC content significantly influenced the
morphology of CAAMC. The surface of the superabsorbent resin was relatively smooth in
the absence of MNC; however, when it was added, the morphology of CAAMC exhibited
a more obvious network structure. Nevertheless, excessive amounts of MNC increased
the density of CAAMC morphology, indicating the involvement of MNC addition in the
polymerization process as a crosslinking component. Therefore, the CAAMC structure can
be adjusted by varying the MNC content, affecting the properties of CAAMC. For example,
the water absorbency of the SAR in deionization was 490 g/g when MNC was not added,
and the water absorbency of CAAMC reached approximately 710 g/g when an appropriate
amount of MNC was added.
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4.67 wt% MNC (D), and 6 wt% MNC (E); effects of solution pH on the water absorbency of CAAMC
with different modified calcium carbonate contents (F), the water absorbency of CAAMC with
different MNC contents in NaCl (G), CaCl2 (H), and FeCl3 (I) aqueous solutions; appearance of
CAAMC after swelling equilibrium in deionized water (J) and the FeCl3 solution (K); structural
models of CAAMC at salt solutions FeCl3 (L) and CaCl2 (M).
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3.3.6. Water Absorbency of CAAMC in Different pH Solutions and Different Salt Solutions

CAAMC has carboxylic acids, carboxylic amides, and hydroxyl groups, which exist
in most anionic superabsorbent materials. The ionic SAR demonstrated different water
absorbency over a wide pH range. The maximum water absorbency of the SAR in the pH
range of 1.0–13.0 was investigated to examine the sensitivity of CAAMC to pH. Different
pH solutions were obtained by diluting 0.1 mol/L HCl and 0.1 mol/L NaOH with distilled
water [39]. The results (Figure 11F) showed that the water absorbency of CAAMC increased
with pH from 1.0 to 6.0 and remained almost unchanged in the pH range of 6.0 to 9.0,
because most of the carboxyl groups in CAAMC are protonated in an acidic solution
(pH < 5), and the hydrogen bond interaction between carboxylates is enhanced, increasing
the physical crosslinking density and reducing the equilibrium swelling ability of CAAMC.
Furthermore, the electrostatic repulsion between carboxylate ions is weakened because
of the protonation of carboxylates; thus, the water absorbency of superabsorbent resin is
reduced. At higher pH values (5 < pH < 10), the electrostatic repulsion between carboxylate
anions is enhanced because of the dissociation of carboxylic acid groups (-COOH →
-COO-+H+). This phenomenon leads to additional expansion of the hydrogel network, thus
improving the swelling capacity. The decrease in water absorbency in a highly alkaline
solution (pH > 9) is attributed to the “charge shielding effect” of excess Na+ in the swelling
medium, which shields carboxylates and prevents anion–anion repulsion [71].

Figure 11G–I show the influence of NaCl, CaCl2, and FeCl3 salt solutions on the
water absorbency of CAAMC. The water absorbency decreased with an increase in the
concentration of the three salt solutions and the ionic strength of the solution, which is
attributed to the shielding of anionic hydrophilic groups by the counterions Na+, Ca2+,
and Fe3+ and weakens the repulsive force between these anionic groups. Furthermore, we
observed that the hydrogel adsorbed a large number of Fe3+ ions when CAAMC absorbed
water and swelled in the FeCl3 solution (Figure 11K). Note that CAAMC exhibited a
transparent gel-like appearance after absorbing water and saturating in deionized water
(as shown in Figure 11J), whereas it exhibited a reddish-brown color in FeCl3 solution,
indicating that a large amount of Fe3+ was adsorbed on CAAMC. The difficulty of the
superabsorbent resin absorbing a large amount of water in the high salt solution is because
the super-absorbing group on the surface of the superabsorbent resin complexes has a high
salt ion content, which leads to the weakening of the mutual repulsive force between anions
and the inability to open the internal network structure, thus resulting in a significant
decrease in water absorbency [72,73].

Furthermore, the superabsorbent resin synthesized by adding a small amount of
modified CaCO3 has a higher liquid absorption capacity in high-pH and low-pH solutions
than the absorbent without modified calcium carbonate. Moreover, the swelling ability of
the superabsorbent resin synthesized by adding a small amount of MNC in different salt
solutions was higher than that of the superabsorbent resin without MNC. This is because
the small amount of MNC added forms a 3D network structure with organic substances,
such as cellulose, acrylic acid, and acrylamide, such that the resin itself has a large number
of pore structures when the superabsorbent resin cannot expand to absorb more water
molecules.

3.4. Water Retention in Soil

Figure 12 shows the water retention capacity of soils with different contents of CAAMC.
As shown in Figure 12, with the increase of CAAMC content, the water retention effect
of soil was significantly improved, and the water content of soil without CAAMC after
complete wetting was also significantly lower than that of soil with CAAMC. With the
extension of storage time, the water content of all soils decreased significantly. After 6 days
of storage, the soil water content without CAAMC was only 13 wt%, while the soil water
content with 2 wt% CAAMC still reached 120 wt%. This indicated that CAAMC could
effectively improve soil water retention capacity.
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3.5. Simulation Calculation

Figure 13A,B show the simulation of the adsorption process of water molecules by
individual chains of SAR with different functional groups. We observed that the single
chain of SAR containing the carboxyl group slacked when adsorbing water molecules, and
the branched chains formed after the grafting of acrylic acid changed from a curved state to
a straight chain. Moreover, the carboxyl group was distant from the SAR skeleton (as shown
in Figure 13A), increasing the volume of the superabsorbent resin and absorbing additional
water molecules. However, when the single chain of SAR containing an amine group
adsorbs water molecules, the entire structure does not slack and maintains the original
shape (as shown in Figure 13B). At the same time, we found that CAAMC has different
water absorption processes in deionized water and 0.9 wt% NaCl solution (as shown in
Figures S1 and S2). This is mainly because, in the salt solution, the water absorption rate
of CAAMC is not only affected by the volume swelling rate but also by salt ions, which
reduce the adsorption capacity of the functional groups contained in CAAMC to water
molecules.

The adsorption energies of water molecules on different functional groups were calcu-
lated to examine the contribution of the amino and carboxyl groups to water absorption
for the entire procedure. Water molecules form four types of hydrogen bonds with car-
boxyl and amine groups: the hydrogen atom on the amine group and the oxygen atom
on the water molecule; the nitrogen atom on the amine group and hydrogen atom on the
water molecule; the oxygen atom on the carboxyl group and hydrogen atom on the water
molecule; and the hydrogen atom on the carboxyl group and oxygen atom on the water
molecule. As shown in Figure 13C–P, different adsorption models are established based on
the types of hydrogen bonds and adsorption modes.
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Figure 13. Structural changes in the adsorption of water molecules by carboxyl (A) and amino (B)
groups in CAAMC branched chains and different configurations of adsorbed water molecules (C–P).

When the water molecule is adsorbed on the functional group of the superabsorbent
resin, it forms a hydrogen bond with the functional group, thus improving the adsorp-
tion effect of the superabsorbent resin on water molecules. Table 2 shows the adsorption
energies of different functional groups to water molecules under different configurations.
The maximum energy released by water molecules that adsorb and form a hydrogen bond
with the carboxyl group is −2.240 kJ/mol, whereas the maximum energy released by the
water molecule after adsorbing and forming a hydrogen bond with the amine group is
−2.413 kJ/mol. In different adsorption configurations, the energy released by the water
molecule after forming the hydrogen bond is higher than that of the carboxyl group, indicat-
ing that the amine group contributes more to the adsorption of water molecules in the water
absorption process. The results show the importance of using two monomers to modify
sugarcane cellulose. The SAR grafted with acrylamide exhibited stronger water absorption,
and the SAR grafted with acrylic acid increased the volume of the superabsorbent resin
in the water absorption process, thus absorbing additional water molecules. Therefore,
the superabsorbent resin modified by the two monomers simultaneously showed good
water absorbency.
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Table 2. Energy changes before and after the adsorption of water molecules in different configurations.

Configuration Pre-Adsorption
Energy (kJ/mol)

Post-Adsorption
Energy (kJ/mol)

Adsorption Energy
(kJ/mol)

a 32.613 31.265 −1.348
b 32.613 31.443 −1.170
c 32.613 31.368 −1.245
d 32.613 31.062 −1.551
e 32.613 31.512 −1.101
f 32.613 30.373 −2.240
g 32.613 31.847 −0.766
h 33.010 32.452 −0.558
i 33.010 31.200 −1.81
j 33.010 30.918 −2.092
k 33.010 31.576 −1.434
l 33.010 31.992 −1.018

m 33.010 30.597 −2.413
n 33.010 32.056 −0.954

4. Conclusions

We have fabricated a DC Bagasse cellulose-AA-AM copolymer composite SAR by
double crosslinking. MNC and MBA as a double crosslinker contribute to form a stable net-
work. The CAAMC exhibits a 3D network structure, and the maximum water absorbency
in deionized water is 712 g/g and in 0.9% NaCl solution is up to 72 g/g. The results of
FT-IR and XPS showed that nano-CaCO3 was modified with silane coupling agent, and
the MNC were combined with inorganic components via chemical bonding. The structure
of CAAMC can be changed by adjusting the content of MNC, and the addition of MNC
improves the mechanical properties, reusability, and water retention of CAAMC. Adding a
small amount of CAAMC to the soil can effectively improve the water retention capacity of
the soil, indicating that CAAMC has great application potential in soil water retention. In
addition, the results of MS calculations showed that the amine group in the superabsorbent
resin exhibits a stronger adsorption ability to water molecules, whereas the presence of
the carboxyl group causes the superabsorbent resin to have a larger volume after water
absorption. This study provides a novel procedure for preparing SAR from inorganic
composite organics, and the theoretical simulations of the absorption process provide
theoretical support for the further study of superabsorbent resin.
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and pseudo-second-order kinetic model (B); Figure S2: Fitting of water absorption kinetic model
of CAAMC in 0.9 wt% NaCl solution: pseudo-first-order kinetic model (A) and pseudo-second-
order kinetic model (B); Figure S3: Particle size distribution of unmodified nano-CaCO3 and MNC;
Figure S4: SEM images of the BC; Figure S5: Photos of a water drop on the surface of bagasse (A),
BC (B), and CAAMC (C) at the time of placing; Figure S6: Solid-state 13C NMR of BC; Figure S7: N2
adsorption isotherms (nano-CaCO3 (A) and MNC (B)) and pore size distributions (nano-CaCO3 (C)
and MNC (D)); Figure S8: XRD pattern of CAAMC.
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