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Abstract: Based on a home-built Sm-Co-based alloys database, this work proposes a support vector
machine model to study the concurrent effects of element doping and microstructure scale on the
phase constitution of SmCo7-based alloys. The results indicated that the doping element’s melting
point and electronegativity difference with Co are the key features that affect the stability of the 1:7 H
phase. High-throughput predictions on the phase constitution of SmCo7-based alloys with various
characteristics were achieved. It was found that doping elements with electronegativity differences
with Co that are smaller than 0.05 can significantly enhance 1:7 H phase stability in a broad range of
grain sizes. When the electronegativity difference increases to 0.4, the phase stability becomes more
dependent on the melting point of the doping element, the doping concentration, and the mean grain
size of the alloy. The present data-driven method and the proposed rule for 1:7 H phase stabilization
were confirmed by experiments. This work provides a quantitative strategy for composition design
and tailoring grain size to achieve high stability of the 1:7 H phase in Sm-Co-based permanent
magnets. The present method is applicable for evaluating the phase stability of a wide range of
metastable alloys.

Keywords: permanent magnets; machine learning; phase stability; composition design; grain size

1. Introduction

Sm-Co-based permanent magnet alloys are the most promising permanent magnet ma-
terials that work at high temperatures, especially in an environment hotter than 500 ◦C. In
traditional Sm-Co binary alloy systems, the SmCo7 compound possesses intermediate mag-
netic properties between those of the SmCo5 and Sm2Co17 compounds at room temperature.
However, the SmCo7 compound has a much smaller temperature coefficient of coercivity
(about−0.13%/◦C) than that of the Sm2Co17-based magnets (approximately−0.3%/◦C) [1].
As such, SmCo7-based magnets are recognized as promising candidates for high-temperature
applications [2,3]. One of the big challenges in the development of SmCo7-based magnets is
the stability of the single SmCo7 phase with a TbCu7-type (noted as 1:7 H; “H” represents
“hexagonal”) structure. The 1:7 H structure is unstable at room temperature and is easily
decomposed into Sm2Co17(R) and SmCo5(H) phases [4], which restricts the applications
of SmCo7-based alloys. Therefore, the stabilization of the 1:7 H structure is crucial for the
development of SmCo7-based alloys for high-performance applications.

At present, there are two main methods for stabilizing the TbCu7-type structure and
obtaining the SmCo7-based alloys with a single metastable phase at room temperature. One
is utilizing the nano-effect through the spark plasma sintering (SPS) technique. The grain
size can be reduced to below the critical value predicted by the model calculations for the
phase transition threshold [5,6]. The other approach that researchers employ to stabilize the
metastable phase is element doping, and nearly 20 doping elements have been reported in
SmCo7-based alloys [7–25]. Some of the doping elements, at an appropriate concentration,
can cause the alloys to include the 1:7 H single phase. This doping method technique can
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enable the TbCu7-type phase at room temperature and improve the SmCo7-based alloy’s
magnetocrystalline anisotropy.

In the past decade, many elements have been investigated as dopants to be used in the
Sm-Co system in order to study their effects on the phase stability of the alloys; however,
both computations and experiments have mostly been based on the conventional trial-
and-error method. Moreover, most studies have focused on the rule that single variables
affect the 1:7 H phase stability, whereas the cooperative effects of a doping element and
grain size on the phase stability of Sm-Co-based alloys have rarely been studied. Therefore,
it is difficult to identify the common law of phase stability from previous research or to
obtain a guiding rule for the design of Sm-Co systems. First-principles and thermodynamic
calculations for Sm-Co-based alloys are limited only to some specific systems and are
difficult to carry out in large-scale calculations with high computational efficiency [26].
In contrast, with the rapid development of machine learning (ML) approaches and their
applications in the field of materials design in recent years [27–30], data-driven methods
exhibit an irreplaceable advantage for investigating the effects of multiple factors on
material properties. However, attempts to apply machine learning methods to study and
optimize the phase constitution of Sm-Co-based alloys have been limited in the literature.

In this study, we applied machine learning and feature screening methods to study
the effects of doping elements on the phase constitution of SmCo7−xMx alloys, based on
the SmCo7−xMx alloy phase constitution data set from our home-built Materials Genome
Initiative (MGI) database of Sm-Co materials. The intrinsic features of doping elements
determined the phase constitution of SmCo7−xMx alloys. High-throughput predictions
of SmCo7−xMx alloy phase constitution with different grain sizes, doping elements, and
doping amounts were achieved, and we proposed a universal rule of SmCo7-based alloy
phase constitution under the concurrent effects of element doping and microstructure
scale. This work provides a quantitative strategy for composition design and tailoring
grain size to achieve high stability of the 1:7 H phase in Sm-Co-based permanent magnets.
The present method is applicable for evaluating the phase stability of a wide range of
metastable alloys.

2. Materials and Methods
2.1. Data Set Used in the Analysis

The data set used in this work was extracted from our home-built Materials Genome
Initiative (MGI) database of Sm-Co materials, which contained more than 1300 Sm-Co-
based alloys. This database is a highly structured Sm-Co-based materials database with the
most abundant data content compared with other Sm-Co-based materials databases. Each
data item includes the process, performance, composition, phase constitution, etc., of the
material in question.

A total of 508 binary SmCo7 and ternary SmCo7−xMx data items [7,9–11,13,14,18–22,31–49]
with integrated alloy composition and phase constitution were screened to construct a
“SmCo7−xMx alloy phase constitution data set”, abbreviated herein as “data set”. The data
set used for ML analysis contains 263 cases with the 1:7 H single phase and 245 cases with
multiphases.

2.2. Feature Construction and Data Pre-Analysis

According to the literature, the potential factors affecting the phase constitution mainly
include the following. The meaning of each symbol representing the potential factors is
indicated in Table S1.

Firstly, the alloy composition features include the kind of doping element (M) and
its proportion (xc). xc represents the percentage of the doping element substituting Co
(xc = 100x/7).

Secondly, the form features (X f orm) include ribbon, bulk, and powder.
Thirdly, the process features consist of the final step in commonly used Sm-Co-based

alloy preparation processes (Xproc), including spark plasma sintering (SPS), melting, spin-
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ning, and annealing. Although there is a lack of detailed process parameters in the literature
generally, processing can be distinguished by the preparation technique combined with
other features (such as the average grain size) [12]. Due to an imbalance in the data volume
regarding different preparation processes, the processes can be further divided into two
categories (X∗proc): as-prepared processes and heat treatment:

X∗proc =

{
Preparation, Xproc = SPS, Spinning, Melting

Heat treatment, Xproc = Annealing
(1)

The further classification of processes does not result in a loss of alloy information. The
combination of form features and process features can define the course of Sm-Co-based
alloy preparation. For example, the alloys in bulk forms can be prepared by SPS, melting,
or annealing, and these bulk alloys are distinguished by their process features.

Finally, the average grain size of Sm-Co-based alloys (d) is also an important feature.
Due to the different processes, the grain size of the material varies from 10 nm to 5000 nm.
This large grain size range can cause the ML model to be less sensitive to grain size, resulting
in the model not being able to accurately predict the phase stability of the alloys with small
grain sizes. To avoid the adverse effects of a large grain size range on the machine learning
model, we took the logarithm of the grain size, which is denoted as lgd.

Phase constitution (G(1:7 H)) is the target variable of this study. According to the
commonly used description for phase constitution investigations, the phase constitution
can be semi-quantitatively expressed as five categories of ‘All’, ‘Main’, ‘Part’, ‘Minor’,
and ‘None’.

Due to the small volume of data collected, we further considered whether the SmCo7−xMx
alloy is composed of a single 1:7 H phase as the target variable, and converted the multi-
classification problem into a binary classification problem, which is denoted as F(1:7 H):

F(1 : 7 H) =

{
All, G(1 : 7 H) = All

Other, G(1 : 7 H) = Main, Part, Minor, None
(2)

In other words, whether the SmCo7−xMx alloy is a 1:7 H single phase can be expressed
as the following:

F(1 : 7 H) ∼
(

M, xc, X∗proc, X f orm, lgd
)

(3)

After categorizing the target variables and features, we made a preliminary analysis of
the available data, as shown in Figure 1. The volume of data from different doping elements
is not balanced. The doping elements that researchers focus on are mainly transition metals
and IIIA and IVA group elements. Two continuous numerical variables, i.e., lgd and xc,
are used for multi-dimensional visualization, as shown in Figure 1. Under the synergistic
effects of grain size and doping amount, the 1:7 H single phase appears in different regions
on the map. The ternary alloy exhibits nano-effects similar to the binary SmCo7 to some
extent, and the 1:7 H phase tends to be stable in the alloys with small grain sizes, such as
the alloys with Ga and C doping. At the same time, the doping of Si shows a good ability
to stabilize the 1:7 H phase, as shown by the experimental data in Figure 1a.
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Figure 1. Analyses of the data regarding phase stability reported in the literature for Sm-Co-
based alloys with various doping elements. (a) Data visualization and classification for the phase
constitution of SmCo7−xMx alloys under the comprehensive influence of the doping element, doping
amount, and grain size. Different shapes represent different material forms. The x-axis is the doping
amount of the elements, and the y-axis is the logarithmic of the grain size. (b) Number of samples
with different doping elements in the data set. The red area indicates the number of samples with a
single 1:7 H phase, and the blue area indicates the number of samples with multiphases.

2.3. Machine Learning (ML) Algorithms

A machine learning approach was adopted to study phase stability. Before model
training, the categorical features (X∗proc, X f orm, F(1 : 7 H)) were numerically transformed
into dummy features, and the numerical features were normalized. The features with
high correlations were filtered and removed. A support vector machine with a radial basis
function kernel (SVM_rbf) [50] machine learning model was used for model training and
feature selection [51]. In the feature selection process, Area Under Curve (AUC) values [52]
on the validation set were used as an indicator to evaluate the influence of the feature
subsets on phase stability, and the accuracy rate was chosen to evaluate the prediction
error on two cross-validation methods. The Random Cross-Validation (RCV) and Leave
Two Elements Cross-Validation (LTECV) methods were used in the model training for the
hyperparameters [53].

2.4. Feature Engineering
2.4.1. Feature Correlation Analysis

Elements can be distinguished by their intrinsic characteristics, such as atomic number,
electronegativity, conductivity, etc. The difference between elements can essentially be
expressed as the difference between these intrinsic properties. The common intrinsic
properties of elements were used to numericalize the elements in this study, and a total
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of 14 candidate features, as shown in Table 1, were selected. The intrinsic properties of
elements are denoted as XM.

Table 1. Intrinsic properties of elements and symbolic representation.

Name Symbol Feature Selection

Atomic number Z
Atomic radius ra

√

The first ionization energy Ei,1st
√

Standard atomic weight Ar
√

Melting point Tm
√

Boiling point Tb
Electronegativity χ

√

Electrical conductivity κ
√

Heat of fusion ∆H f
√

Heat of vaporization ∆Hv
Thermal conductivity λ

Work function ϕ

Electron density NWS
Electron volume Va

It should be noted that elemental intrinsic properties may be interdependent, which
has a negative impact on ML predictions. Therefore, it is necessary to reduce the dimen-
sionality of the highly correlated variables and remove the features with strong linear
correlations. The Pearson correlation coefficient analysis was used for these intrinsic
properties to screen the representative features with weak collinearity, which is defined as:

ρ(x1, x2) =
cov(x1, x2)

σx1σx2
(4)

where ρ is the Pearson’s coefficient, x1 and x2 are two elemental intrinsic properties, cov is
the covariance function, and σ represents the standard deviation of the elemental intrinsic
properties. It is generally agreed that there is multicollinearity between features when the
correlation coefficient is greater than 0.8, and only one of these two features is needed for
further analysis in ML. Figure 2 shows a comprehensive information map of the 14 intrinsic
properties of elements. Atomic number (Z) with standard atomic weight (Ar); melting point
(Tm) with boiling point (Tb) and heat of vaporization (∆Hvap); and electrical conductivity (κ)
with thermal conductivity (λ) have significant multicollinearity. Among these properties,
standard atomic weight (Ar) is a more objective intrinsic property than atomic number
(Z), and melting point (Tm) and electrical conductivity (κ) are more commonly used in ML
studies. In addition, electron volume (Va) yields a cubic relationship with the atomic radius
(ra), and work function (ϕ) and electron density (NWS) also show a strong correlation
with atomic radius (ra). Therefore, seven intrinsic properties, including atomic radius
(ra), standard atomic weight (Ar), heat of fusion (∆H f ), melting point (Tm), electrical
conductivity (κ), the first ionization energy (Ei, 1st), and electronegativity (χ) were chosen
to express the element characteristics, namely as:

XM ∼
(

ra, Ar, ∆H f , Tm, κ, Ei,1st, χ
)

(5)
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Figure 2. Correlation analysis for different intrinsic properties of elements. The diagonal squares
in the matrix represent the distribution histogram of each feature. The bottom left shows the
linear relationship between the two features, and the upper right numbers represent the Pearson
correlation coefficients.

2.4.2. Evaluation for the Effect of Intrinsic Features on the Stability of the 1:7 H Phase

Further, new intrinsic features were constructed to expand the feature candidate
space. Considering the amount of doping and the interactions between doping elements in
SmCo7−xMx alloys with Sm and Co, new functions were constructed, as shown in Table 2.
Based on the functions in Table 2, 7 × 3 = 21 candidate intrinsic features were created. To
attain a reliable ML model for phase constitution prediction, it was necessary to further
optimize its intrinsic feature space subsets.

Table 2. New intrinsic feature constructor.

Function Implication

xsub·XM The product of doping amount and element features
xsub· |XCo − XM| Interaction between doping element and Co
xsub·|XSm − XM | Interaction between doping element and Sm

xsub represents the proportion of doping element substituting Co (xsub = x/7).

A partial exhaustion method was applied to create subsets of the intrinsic feature space.
Because the three new features constructed in Table 2 belong to one intrinsic elemental
property, these three intrinsic features cannot be in the same subset of features. Therefore,
the subset construction was divided into two steps to avoid features from the same intrinsic
elemental property being placed into one subset: the first step was selecting n features
from the 7 features in Equation (5); the second step was choosing any one of the three
constructors for each feature. Therefore, the total number of all the possible subsets of
features is:

7

∑
n=0

Cn
7 × 3n (6)

lgd, X f orm, and X∗proc were used as the bottom features (BF), which are involved in every
ML training with the possible subsets of features. The feature selection process used 80%
of the data set as the training set and 20% as the validation set. SVM.rbf was used to
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train all feature subsets, and the combinations of σ = 0.1, 0.4, and C = 1, 4 were applied as
hyperparameters in order to reduce the error caused by a single hyperparameter. All feature
subsets were trained under the four hyperparameter combinations to obtain an average
AUC value. The closer AUC was to 1, the higher the model accuracy was. Figure 3 shows
the mean AUC values of all feature subsets. According to Equation (6), 16,384 feature
subsets were involved in the ML training. Due to the huge number of subsets, it was
unnecessary to count the mean AUC corresponding to each feature subset. Therefore, the
mean values of AUC of the optimal feature subsets with different numbers of intrinsic
features were analyzed to select the most important intrinsic features affecting the 1:7 H
phase stability. When n = 0, only the bottom features were involved in the subset, and
the mean AUC obtained by the training was 0.65. After introducing one intrinsic feature
(n = 1), the mean AUC of all feature subsets increased significantly, and the highest mean
AUC of 0.75 was obtained from the subset of BF and xsub·|TmCo − Tm M|. After introducing
two intrinsic features (n = 2), a total of C2

7 × 32 = 189 feature subsets were involved
in the training, and the best performing subset was the combination of BF, xsub·Tm and
xsub·|χCo − χM|, improving the mean AUC to 0.78. When n = 3,4,5, the best mean AUC
were 0.79, 0.80, and 0.80, and the AUC decreased after n > 5. The mean AUC with different
numbers of features and the optimal features are shown in Table S2. It can be seen from
Figure 3 that the AUC of the model can be improved by increasing the number of intrinsic
features when n < 5; however, the growth rate in the AUC is very limited after n > 2.
Considering the finite amount of data, and to prevent overfitting, it is believed that the
inclusion of a third intrinsic feature is not necessary in the present study. Using ML
and feature engineering, we found that xsub·Tm and xsub·|χCo − χM| were the two most
important intrinsic features that affect the phase constitution of SmCo7−xMx alloys.
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Figure 3. The mean AUC values of all feature subsets. The dots of different colors indicate the
mean AUC corresponding to the subset with various numbers of features. The scattered points
overlap with each other due to the large number of subsets with high numbers of features. The red
points indicate the mean AUC of optimal feature subsets for different numbers, and the diamond
represents the intrinsic features that we finally chose for machine learning.

3. Results and Discussion

The six features that most strongly affect the phase constitution of SmCo7−xMx al-
loys were selected by feature engineering, and the relationship for ML training can be
expressed as:

F(1 : 7H) ∼
(

Tm, |χCo − χM|, xsub, X∗proc, X f orm, lgd
)

(7)
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According to the selected features and the machine learning algorithms, a high-
throughput prediction for the phase constitution of SmCo7−xMx with a doping element of
M can be achieved. Virtual samples were constructed according to the characteristics of the
descriptors, and the design rules are shown in Table S3. The selection of doping elements
was based on the fact that transition metal and IIIA and IVA elements are often used in
experiments. It resulted in 1,543,500 alloys in total, with 35 kinds of doping elements.

3.1. A More Suitable Cross-Validation Method Developed for Predicting “Unknown Elements”

Traditional machine learning strategies usually use random cross-validation (RCV)
methods to avoid over-fitting in the model, and this method reflects the predictive ability
of randomly generated samples in the explored space. However, it cannot well predict
the “new elements”. Liu [54] used Leave One Doping Element Out Cross-Validation
(LEOCV) to predict the effects of doping elements on the saturation magnetization of Sm-Co-
based ternary alloys and achieved good prediction ability. However, for the classification
problem of the phase constitution investigation, the LEOCV method cannot perform well
enough. That is because the data volumes for various doping elements in the data set
differ significantly, which may cause an individual element with a small amount of data
to be overweighted in the accuracy calculations. Moreover, the phase constitutions of
ternary compounds with some specific elements are all 1:7 H single phase (Si, Al, and Fe)
or multiphases (Cr), which would result in a serious imbalance in the grouping of target
variables and hence the inaccuracy of the LEOCV method.

Therefore, we developed a Leave Two Elements Cross-Validation (LTECV) method to
further process the data. The doping elements were first sorted by the volume of data in
the data set, and then we considered the ratio of single-phase and multiphase data for each
element to group two elements together to balance the amount and ratio of the data. The
grouping results are shown in Table S4, and a total of 10 groups of elements were generated.
Nine groups of elements were selected as the training set, and one group was chosen as the
validation set for cross-validation. Correspondingly, the RCV method used ten-fold cross-
validation for comparison. The “data set” was randomly divided into 10 groups, of which
9 groups were the training set, and 1 group was the validation set for cross-validation. It
should be noted that the number of samples used may be different for these two CV methods.
The RCV method tries to equalize the 10 groups of the “data set”. However, the LTECV
method divides the “data set” into groups by elements, and the amount of data in each group
is not the same (as shown in Table S4). Thus, it was difficult to ensure that the sample size
in each data group for the two CV methods was exactly the same. The effect of different
sample sizes on model accuracy is discussed later. SVM.rbf was used for training, and the
accuracy rate was chosen to evaluate the prediction error. We recorded the mean accuracy
of the model on the test set under a specific hyperparameter and the confusion matrix of the
optimal prediction results from the two cross-validation methods, as shown in Figure 4. The
optimal hyperparameter combination was C = 221.5, σ = 2−3.5 in the RCV method, and the
combination in the LTECV method was C = 219.5 and σ = 2−5.8, which is similar to that of the
RCV method.

From the confusion matrix of the two CV methods with optimal hyperparameter
combinations (Figure 4a,c), it can be seen that the difference in sample size between the two
methods was not large (LTECV:RCV = 43:50). Additionally, the ratio of single-phase and
multiphase cases was also similar for these two CV methods (23:20 for LTECV and 26:24
for RCV). For a data set with balanced data distribution, it is believed that the accuracy rate
can be used to evaluate the model. The best mean accuracy rates were 0.88 and 0.77 in the
two CV methods, respectively, and the accuracy for RCV was higher than for LTECV.

To evaluate the generalization ability of the model, the two cross-validation methods
were used to train the model and predict the virtual samples doped with Mn. The experi-
mental data for the prepared bulk SmCo7−xMnx (x = 0.1, 0.3, 0.5, 0.7, 1) alloys [25], which
did not participate in the training process, were used as the test set. The prediction and
the experimental results were compared to evaluate the generalization ability of different
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methods. The results are shown in Figure 5. It can be seen that, although RCV performs
better on the validation set, it is more prone to overfit in a large virtual sample space.
However, our proposed LTECV method shows a stronger generalization ability, and the
predicted phase constitution on the test set is highly consistent with the experimental
results. This method is more applicable to predict “new elements” compared with the
traditional RCV method.
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3.2. High-Throughput Prediction for the Phase Constitution of Sm-Co-Based Alloys

The trained model was used to predict the phase constitution of a large number of
SmCo7−xMx alloys. More than 1.5 million virtual samples were predicted. The model can
analyze the influence of the preparation process, material form, doping elements, doping
amount, and grain size on the alloy phase constitution. It found that prepared powdery
alloys were difficult to crystallize, so the prediction results had little theoretical importance



Nanomaterials 2022, 12, 1452 10 of 15

in the analysis. The number of data items with a single phase in the bulk and ribbon
samples after heat treatment was significantly reduced, which is consistent with reports
in the literature. Therefore, the prediction results for prepared (SPSed and melted) bulk
alloys were plotted on the periodic table to analyze the phase constitution law under the
comprehensive effect of doping elements, doping amount, and grain size, to guide the
design of SmCo7-based alloys with a single 1:7 H phase.

According to the predicted results in Figure 6, it can be seen that the doping elements
can be clearly classified into three categories based on their effect on phase stability. The
first category is elements that can stabilize the 1:7 H phase in a large grain size range, such
as Fe, Ni, Cu, Ag, Si, and Tc. The second includes elements that have a non-monotonic
trend in the regulation of 1:7 H phase stability by the grain size and doping amount, such
as Ti, V, Nb, Mo, and Ta. The largest critical grain size for phase decomposition in alloys
occurs when the doping amount is between 0.5–0.7. The stabilizing effect of doping on the
1:7 H single phase gradually weakens if the amount of doping continuously increases, and
the critical grain size that can maintain phase stability gradually decreases. If the doping
amount is too large, the stable 1:7 H phase cannot exist, no matter how small the grain size
is. Additionally, the last category includes those elements that can only maintain the stable
existence of the 1:7 H single phase in a narrow doping amount and grain size range, such
as In and Hf.
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Figure 6. High-throughput prediction for the phase constitution of prepared SmCo7−xMx bulk
alloys under the cooperative effect of composition and grain size. The illustration above the peri-
odic table is a guide bar to show the details. Color bar indicates the probability of generating the
1:7 H single phase, and red means it is easier to obtain the stable 1:7 H phase. The yellow boxes
represent the “preferred elements” for stabilizing the 1:7 H phase.

Such differences arise from the intrinsic features of the doping elements. In order to
quantitatively analyze the effect of dopant elements on phase stability, the doped elements
were plotted on the plane of the two features selected in Section 2.4.2, as shown in Figure 7. It
shows that if |χCo − χM| < 0.05, the doping elements can significantly promote the formation
of the 1:7 H single phase. With the increase in |χCo − χM|, the melting point of doping
elements plays a significant role in the phase stability. When 0.05 < |χCo − χM| < 0.40, doping
with high melting point elements results in the maximum critical grain size for the phase
decomposition of SmCo7-based alloys at a doping amount between 0.5 and 0.7. However, if
low melting point elements such as In and Cd are doped, they can only stabilize the 1:7 H
phase in a small range of grain size and doping amount. Once |χCo − χM| > 0.40, these
elements, such as Zr, can only maintain the stable existence of the 1:7 H single phase in a
narrow doping amount and grain size range.
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Figure 7. Classification of the doping elements based on their Tm and |χCo−χM|. The elements in
red can promote the formation of the 1:7 H single phase, and the elements in blue can only stabilize
the 1:7 H phase in a narrow doping amount and grain size range. The doping elements in green have
the largest critical grain size for phase decomposition at doping amounts between 0.5 and 0.7.

According to the predictions shown in Figure 6, three representative elements that
are suitable for stabilizing the 1:7 H phase were selected to experimentally verify the
prediction accuracy of the ML model. As shown in Figure 8, the experimentally as-prepared
SmCo7−xSix (x = 0, 0.4, 0.6, 0.9), SmCo7−xNix (x = 0.1, 0.5), and SmCo6.5Fe0.5 bulk alloys
from SPS can maintain the 1:7 H phase stable in the grain size range of 25–44 nm. These
experimental results are highly consistent with the prediction from the ML model, as shown
in Figure 8c. In addition, all the as-cast SmCo7−xSix (x = 0, 0.4, 0.6, 0.9) ingots with large
grain sizes and doped with Si crystallize in a hexagonal TbCu7-type structure [21]. This
indicates that the addition of Si can stabilize the 1:7 H phase in a large grain size range, and
Si, Fe, and Ni can promote the formation of the 1:7 H single phase. As for the elements that
can only maintain the stable existence of the 1:7 H single phase in a narrow doping amount
and grain size range, the predictions for these elements can be verified by the data in the
literature. For instance, the Hf element can only stabilize the 1:7 H phase with a doping
amount of less than 0.25 and with a grain size range of 20–30 nm [24]. The ML strategy
proposed in this study can realize high-throughput and high-precision predictions for the
phase constitution of as-prepared SmCo7−xMx bulk alloys.

In previous reports, most researchers only studied the effect of doping amounts on
the phase stability of alloys with one or a few kinds of doping elements. In addition, some
other studies investigated the role of grain size on the stabilization of the 1:7 H phase in
Sm-Co-based alloys. In our study, the cooperative effects of grain size and doping amount
on the phase stability were quantitatively investigated for the first time, scanning the
periodic table of elements. The effect of elemental intrinsic features on the phase stability
of the 1:7 H phase in Sm-Co-based alloys was determined based on feature engineering in
the machine learning approach.

Since this paper makes high-throughput predictions for the effects of doping elements
and grain size on the phase stability of the 1:7 H phase over the entire periodic table of
elements, it is not possible to experimentally verify all the predictions in one study. Our
predictions provide guidance for subsequent experiments and need further verification.
In addition, machine-learning-based methods and feature engineering usually lack deep
physical foundations; thus, further studies combined with theoretical models may be
required in the future.
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obtained by ML. The asterisk represents the peak of the 1:7 H phase measured by XRD: (a) Phase
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for SmCo6.5Ni0.5, SmCo6.9Ni0.1, SmCo6.5Fe0.5, and SmCo6.1Si0.9, and the mean grain size is 25–30 nm;
(c) Comparison of experimental results and ML predictions of SmCo7−xMx (M = Si, Ni, Fe) alloys.

4. Conclusions

In the present work, the phase constitutions of Sm-Co-based alloys with doping
elements were predicted by an ML method. It revealed that the stability of the 1:7 H
metastable phase in the doped alloys was determined by the comprehensive effect of
the grain size, doping amount, and the intrinsic properties of the doping elements. The
elements that can promote the formation of the 1:7 H single phase in Sm-Co-based alloys
were provided, and a regulating approach for 1:7 H phase stability was proposed. The
main conclusions drawn are as follows.

(1) A support vector machine learning model was established to predict the phase con-
stitution of SmCo7−xMx alloys. Based on the home-built MGI database of Sm-Co materials,
a data set containing 508 Sm-Co binary and ternary alloy samples was constructed. Com-
bined with feature engineering and machine learning, an exhaustive method was applied to
find that the melting point of the doping elements and the electronegativity difference with
Co were the two key features that affected the phase constitution of SmCo7−xMx alloys.

(2) The LTECV method was proposed to enhance the generalization ability of the
model. Compared with RCV, the optimized machine learning model has a better general-
ization ability and can effectively avoid overfitting. This method can predict “unknown
elements” using existing data.

(3) High-throughput prediction for the phase constitution of as-prepared SmCo7−xMx
nanocrystalline bulk alloys was achieved using the doping elements, the doping amount,
and the mean grain size as key variables. It was revealed that Fe, Ni, Cu, Si, Ag, and Tc have
a small electronegativity difference with Co and can significantly promote the formation of
the 1:7 H single phase. By regulating the doping amount, these elements can maintain the
stable existence of the 1:7 H single phase in a large grain size range.

(4) The predictions from the ML strategy were verified by the experimentally pre-
pared SmCo7-based alloys doped with Ni, Fe, and Si. The theoretical model and method
established in this paper provide quantitative guidance and a scientific basis for using
composition design and grain size tailoring to achieve high 1:7 H phase stability in the
SmCo7−xMx alloy system.
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