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Abstract: This work investigates mixed convection in a lid-driven cavity. This cavity is filled with
nanofluid and subjected to a magnetic field. The concentric ovoid cavity orientation (γ), 0–90◦, and
undulation number (N), 1–4, are considered. The Richardson number (Ri) varies between 1 and
100. The nanofluid volume fraction (ϕ) ranges between 0 and 0.08%. The effect of the parameters
on flow, thermal transport, and entropy generation is illustrated by the stream function, isotherms,
and isentropic contours. Heat transfer is augmented and the Nusselt number rises with higher Ri, γ,
N, and ϕ. The simulations show that the heat transfer is responsible for entropy generation, while
frictional and magnetic effects are marginal.

Keywords: mixed convection; nanofluid; entropy generation; lid-driven cavity

1. Introduction

Combined convective flowing and temperature distribution into a wavy frame enclo-
sure imposed by nanofluids have an immeasurable real-life enrollment in diverse industrial
systems, engineering, and domestic processes such as heat exchangers, nuclear reactor
technologies, solar collectors, electric equipment, refrigeration units, and others. Choi [1]
reviewed nanofluid technology for current and future research. Individual sets of geome-
tries, designs, and types of fluid, scrutinized in the recent year, incorporated wavy [2–5],
square [6,7], triangular [8,9], rectangular [10,11], and hexagonal shapes [12], and so on.
Mixed convection passing inside a wavy triangular box, loaded by nanofluid exerting vis-
cosity criteria, was explored by Nasrin et al. [13]. Fares et al. [14] considered magneto-free
convective inside a non-Darcy porous enclosure, using hybrid nanofluid enclosing an adia-
batic rotating cylinder. Srinivas Acharya and Kumar [15] investigated mixed convection
across an oblique wavy surface in a non-Darcy porous media saturated with nanofluids
in the presence of radiation. Fares et al. [16] investigated the effect of a magnetic field
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on combined convection in a vented cavity using nanofluid flow. Ahmed and Aly [17]
studied combined convection in a sloshing porous chamber filled with nanofluid and an
internal heat source. Slimani et al. [18] investigated the spontaneous convection flow of
Al2O3-Cu/water nanofluid in a conical form enclosure regulated by a magnetic field. Nada
and Chamkha [19] studied the convection of a nanofluid in a driven enclosure surrounded
by a wavy frame wall. Misirlioglu et al. [20] investigated natural convection numerically
inside an oblique wavy cage. Mushate [21] studied the computational fluid dynamics
simulation of natural convection in a wavy cavity filled with a porous substance.

Additionally, the results indicated that the rate of heat evacuation increases as the
Rayleigh number increases and decreases as the amplitude increases. Sheremet and Pop [22]
explored natural convection in a wavy hollow filled with a nanofluid and surrounded by
sinusoidal heat distributions on both level sidewalls. Shenoy et al. [23] investigated convec-
tive flow and heat removal from wavy coverings. The writers of this book have extensive
experience in basic convection, heat transmission in wavy frames, saturated viscous fluids,
and nanofluids porous media. Cheong et al. [24] investigated natural convective heating
and heat production in a wavy enclosure. Recently, Asad et al. [25] investigated the heat
transport properties of an internal chamber with unrestricted convection flow and vertical
wavy frame walls. Zahan et al. [26] investigated the effect of (magneto hydro-dynamics)
MHD on conjugate heat variation in a rectangular nanofluid container. Recent research on
a nanofluid and wavy cavity, and the impact of a magnetic field, is accessible [27–31].

Additionally, because of the inquiry of flow construction and heat replacement within
the enclosure with a fin-like radiator in cars, computer CPU heat sinks, power plant heat
exchangers, and heat shifting devices have various technical applications. Sun et al. [32]
investigated numerically mixed convection using conductive triangular fins in lid-driven
enclosures. They reported that the triangular fin is an appropriate control parameter for
the flow structure and heat transfer rate. Elatar et al. [33] used natural laminar convection
to generate heat within a square frame with an adiabatic horizontal wall with a unique
horizontal fin at various places and lengths connected to the heated wall. They examined the
effect of fin placement and frame length on flow construction and heat removal components.
Palaniappan et al. [34] investigated the impact of parallel insulated baffles inside open
enclosures. By examining the literature records, it was discovered that further actions
pertinent to the current research might be located in [35–49].

This study investigates the influence of various factors on the heat transfer characteris-
tics of stable mixed convection in a lid-driven inclined square cavity, including the effect of
varying volume fractions of the nanofluid, MHD, boundary annulations, and obstruction
direction. The governing equations are solved using the Galerkin finite element method
(GFEM) [7]. The acquired data are shown graphically using isotherms, streamlines, Bejan,
and Nusselt values.

2. Physical Model

Depicted in Figure 1 is a lid-driven square cavity (LDSC) that is isothermal (TH),
heated from below, with the top surface maintained at a uniform cold (Tc) temperature.
In contrast, the lateral surfaces and the concentric oval-shaped cavity are adiabatic. The
LDSC contains a nanofluid Al2O3, dispersed uniformly. The wavy boundary is sketched
according to Equation (1), where A = 0.04, and the undulation, N, varies from 1 to 4.

The Governing Equations

The governing equations (Equations (2)–(4)) are the continuity, momentum, and energy
equations [50] for laminar mixed convection and are as follows:

∂u
∂ x

+
∂v
∂ y

= 0 (1)

ρn f

(
u

∂ u
∂ x

+ v
∂u
∂ y

)
= −∂ P

∂ x
+ µn f

(
∂2u
∂ x2 +

∂2u
∂ y2

)
(2)
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ρn f

(
u

∂ v
∂ x

+ v
∂v
∂ y

)
= −∂ P

∂ y
+ µn f

(
∂2v
∂ x2 +

∂2v
∂ y2

)
+ρn f βn f g(T − Tc) − σn f B2v (3)

(
ρCp

)
n f

(
u

∂ T
∂ x

+ v
∂T
∂ y

)
= kn f

(
∂2T
∂ x2 +

∂2T
∂ y2

)
(4)
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The thermophysical properties used in this study are the following Equations (5)–(10) [51]
that use the tabulated values provided in Table 1:

Density ρn f = (1 − ϕ)ρ f + ϕρP (5)

Heat capacity
(
ρCp

)
n f = (1 − ϕ)

(
ρCp

)
b f + ϕ

(
ρCp

)
P (6)

Thermal expansion coefficient (ρβ)n f = (1 − ϕ)(ρβ) f + ϕ(ρβ)P (7)

Electrical conductivity (σ)n f = (1 − ϕ)(σ) f + ϕ(σ)P (8)

Thermal conductivity kn f = kb f
(
4.97 ϕ2 + 2.72 ϕ + 1

)
(9)

Dynamic viscosity µn f = µb f
(
123 ϕ2 + 7.3 ϕ + 1

)
(10)

Table 1. Material properties at a temperature of 293 K. Reprinted/adapted with permission from
Ref. [52]. Elsevier, 2017.

Material ρ[kg/m3] Cp[J/kg·k] µ×106[Pa·s] β×105[1/k]
k

[W/m·k]
σ

[S/m]

Alumina
(Al2O3) 3970 765 - 0.85 25 10−10

Water 997.1 4179 695 21 0.613 0.05

Dimensionalization of the governing equation is carried out by scaling the equations
using the characteristic length scale of the square cavity, L, and the velocity of the driven
Lid, U0, as follows:

X = x
L , Y = y

L , U = u
U0

, V = v
U0

θ = T−TC
Th−TC

, θs =
Ts−TC
Th−TC

P = p
ρn f U2

0
, Pr =

v f
a f

(11)
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This then yields the dimensionless governing equations in [53–56]: where Ri = Gr/Re2

shows the Richardson number.
The dimensionless boundary conditions regarding Equations (12)–(15) are:
On the bottom wavy heated surface:

U = V = 0, θ = 1, 0 ≤ X ≤ 1, Y = 0 (12)

On the top moving cold surface:

U = 1, V = 0, θ = 0, 0 ≤ X ≤ 1, Y = 1 (13)

On the left and the right surfaces:

U = V = 0,
∂θ

∂X
= 0 (14)

At the concentric surface,

U = V = 0,
∂θ

∂n
= 0 (15)

The local Nusselt number evaluated at the heated bottom surface is defined by:

Nus = −
kn f

k f

(
∂θ

∂Y

)
Y=0

(16)

The average Nusselt number evaluated at the heated part is:

Nun f =
∫ 1

0
NusdY (17)

The entropy generation relation is given by [29]:

S =
kn f

T2
0

[(
∂T
∂x

)2
+

(
∂T
∂y

)2
]
+

µn f

T0

 2
((

∂u
∂x

)2
+
(

∂v
∂y

)2
)

+
(

∂u
∂x + ∂v

∂x

)2
+

σn f B2V2

To
(18)

In dimensionless form, local entropy generation can be expressed as:

SGEN =
kn f

k f

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
]
+

µn f

µ f
Nµ

[
2

((
∂U
∂X

)2
+

(
∂V
∂Y

)2
)
+

(
∂2U
∂Y2 +

∂2V
∂X2

)2]
+ Nµ

σn f

σf
Ha2V2 (19)

where

Nµ =
µ f T0

k f

(
α f

L(∆T)

)2

is the irreversibility distribution ratio and SGEN = Sgen
T2

0 L2

k f (∆T)2 . The terms of Equation (19)

can be separated into the following form:

SGEN = Sθ + Sψ + SB (20)

where Sθ , Sψ, and SB are the entropy generation due to heat transfer irreversibility (HTI), fluid
friction irreversibility (FFI), and entropy generation due to magnetic field effect, respectively:

Sθ =
kn f

k f

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
]

(21)
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Sψ =
µn f

µ f
Nµ

[
2

((
∂U
∂X

)2
+

(
∂V
∂Y

)2
)
+

(
∂2U
∂Y2 +

∂2V
∂X2

)2]
(22)

SB = Nµ

σn f

σf
Ha2V2 (23)

It is appropriate to mention the Bejan number to determine the dominant, heat transfer,
or fluid friction irreversibility. The Bejan number is defined as:

Be =

∫
SθdXdY∫

SGENdXdY
(24)

3. Numerical Method and Validation

The dimensionless controlling Equations (12)–(15) are augmented by the boundary
conditions. The numerical solutions to Equations (18)–(22) are obtained using the Galerkin
weighted residual finite element technique [53–55]. The issuing domain is discretized using
non-uniform triangular components. The finite element equations are constructed using
triangular elements with six nodes. The Galerkin weighted residual approach converts
the non-linear partial differential equations to a system of integral equations. Each term is
then solved using Gauss’s quadrature method. The objective is to obtain a set of non-linear
algebraic equations that satisfy the boundary conditions. Grid-independent solutions
are discovered by experimenting with a few grids. To conduct all simulations, a grid of
695,244 elements was used. To guarantee the numerical approach converted approved code
is accurate, the velocity profile within the cavity with obstacles is compared with Iwatsu
et al.’s work [56]. In Figure 2, a perfect agreement between the two results is obtained.

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Validation of code velocity profile [56] Reproduced with permission from [56]. Elsevier, 
1993. 

4. Results and Discussion 
To understand the salient features of this problem, the fluid motion streamlines, the 

temperature field isotherm contours, and entropy distribution depicted by the isentropic 
contours are utilized. The controlling geometric parameters are the orientation of the con-
centric ovoid cavity and the undulation number on the heated boundary. Heating from 
below gives rise to a buoyancy force in conjunction with the sliding top lid, which assists 
the fluid motion. Here, mixed convection and free convection regimes are investigated. 
The characterizing parameter is the Richardson number. The Hartmann number charac-
terizes the intensity of the applied magnetic field. The thermo-physical controlling param-
eter is the nanoparticle volume fraction. The numerical experiments are conducted for 
Richardson number values (Ri: 1, 10, 50, 100), Hartman number values (Ha: 1, 25, 50, 100), 
orientation (γ: 0°, 30°, 50°, 90°), undulation (N: 1, 2, 3, 4), and nanoparticle volume fraction 
(𝜑𝜑: 0, 0.02, 0.04, 0.08). Figure 3a shows the effect of the Richardson number. 

 Ri = 1 Ri = 10 Ri = 50 Ri = 100 

(a) 

 

 

 

 

 𝜓𝜓(0.0027, 0.061) 𝜓𝜓(0.0029, 0.0660) 𝜓𝜓(0.0044, 0.10) 𝜓𝜓(0.0054, 0.13) 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

U

Y

Iwatsu 1993

Present model

Figure 2. Validation of code velocity profile [56] Reproduced with permission from [56].
Elsevier, 1993.

4. Results and Discussion

To understand the salient features of this problem, the fluid motion streamlines, the
temperature field isotherm contours, and entropy distribution depicted by the isentropic
contours are utilized. The controlling geometric parameters are the orientation of the
concentric ovoid cavity and the undulation number on the heated boundary. Heating from
below gives rise to a buoyancy force in conjunction with the sliding top lid, which assists
the fluid motion. Here, mixed convection and free convection regimes are investigated. The
characterizing parameter is the Richardson number. The Hartmann number characterizes
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the intensity of the applied magnetic field. The thermo-physical controlling parameter is
the nanoparticle volume fraction. The numerical experiments are conducted for Richardson
number values (Ri: 1, 10, 50, 100), Hartman number values (Ha: 1, 25, 50, 100), orientation
(γ: 0◦, 30◦, 50◦, 90◦), undulation (N: 1, 2, 3, 4), and nanoparticle volume fraction (ϕ: 0, 0.02,
0.04, 0.08). Figure 3a shows the effect of the Richardson number.
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It is interesting to consider ∆ψ, as the difference between the maximum and minimum
value of the stream function, as Ri is varied. We note that ∆ψ increases monotonically with
Ri. There are two vortices at low Ri: a local vortex near the top moving lid and a global
vortex with its sudo-center the oval-shaped cavity. At higher Ri, the local vortex is stretched
vertically, and, eventually, the local vortex is merged into the global vortex. The influence
of natural convection driven by buoyancy forces dominates the inertial forces of forced
convection. Considering Figure 3b, more significant distortion of the isotherms is observed
at a higher Ri number, meaning greater homogenization of the temperature field.

Furthermore, at higher Ri, the thermal boundary layer becomes thinner. The isotherms
become condensed near the heated wavy boundary, implying enhanced heat transfer
dominated by natural convection in contrast to the sparse thermal lines at low Ri, indicating
a thick thermal boundary layer and less efficient thermal transport dominated by mixed
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convection. The merging and increased strength of the re-circulating fluid are reflected in
the increase in frictional irreversibility, as depicted in the entropy generation plots shown
in Figure 3c, near the wavy boundary and the moving boundary.

Shown in Figure 4 are the plots for the fixed Ri of 1 and the varying angles of 0◦, 30◦,
60◦, and 90◦. The effect of rotating the principal axes of the internal oval cavity from 0◦ to
90◦ is illustrated.
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The tip of the major axis squeezes the effective area of the local vortex with an increas-
ing ellipse major axes angle, shown in Figure 4a. The streamlining of the obstruction with
the gravity axes invigorates the mixed convective heat transfer, as evident by the distortion
in the isotherm plots, shown in Figure 4b, which leads to an increase in entropy generation,
as shown in Figure 4c. At low Ri, a horizontally oriented cavity impedes the inertially
driven flow from mixing. This is confirmed by Figure 5a which shows the average Nusselt
number versus Richardson number at various angles.
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Figure 5. (a) Nusselt number : γ : 0◦, 30◦, 60◦, 90◦; N = 4; Ha = 0; Ri = 1, 10, 50, 100; ϕ = 0.02.
(b) Bejan number : γ : 0◦, 30◦, 60◦, 90◦; N = 4; Ha = 0; Ri = 1; ϕ = 0.02.

At low Ri number, we note a monotonic and uniform increase in the average dimen-
sionless heat transfer coefficient associated with incrementing the angle of the ovoid cavity
from 0◦ to 90◦. However, a marginal increase in the heat transfer coefficient is found at
higher Ri numbers. Bejan number which represents the ratio of heat transfer to fluid friction
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irreversibility is illustrated in Figure 5b. Generally, there is a small increase in entropy as
the angle of the ovoid cavity is increased which can be attributed to the distortion of the
local vortex and nudge in the ratio entropy generated due to frictional losses. In all the
investigated cases the generated entropy is clearly dominated by heat transfer irreversibility
and attained a value of [0.94, 0.97]. Furthermore, increasing the Ri results in increasing the
total entropy however, dominated by heat transfer, the increase is about 2%. The entropy
generated peaks out between Ri 50 and 100, as can be seen at higher Ri number a slight
decrease in Bejan number is noted, which is indicative of an increase in frictional entropy
generation relative to entropy generated by heat transfer.

Shown in Figure 6 is the effect of undulations, N, 1–4 at a fixed ovoid angle of 0◦ and
selected Ri of 1.
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It appears that the undulation squeezes the space available for the global vortex
Figure 6a, which enhances the convective heat transfer as shown by the increased perturba-
tion of the isotherm plots in Figure 6b, the latter leads to the generation of a greater amount
of entropy and the thermally driven irreversibility as seen in Figure 6c.
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Shown in Figure 7a is the average heat transfer coefficient, which shows that increasing
the undulation is directly proportional to increase Nusselt number.
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At a low Ri number or in the mixed convection regime, the enhancement in heat
transfer per undulation is nearly 9%, whilst in the free convection regime, at a higher Ri, it
is approximately 10%. The entropy generation is dominated by heat transfer, as explained
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in Figure 7b. We also notice that the Bejan number peaks at between Ri 50 and 100. The
effect of the applied magnetic field on the motion of the fluid and the associated convection
is illustrated in Figure 8, having a Ri of 1 and ovoid cavity angle of 0◦.
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As the Hartman number is increased from 0 to 100, the Lorentz force suppresses the
global cavity fluid motion and reduces the effect of the local cavity near the moving lid.

The magnetic field reduces convection and the conduction mode dominates. This is
approved by the temperature contour distortions that are smoothed out with the increasing
Ha number; this results in a stratified temperature field and an aligned temperature
gradient between the two isothermal surfaces, as shown in Figure 8b. Naturally, this led
to a decrease in the entropy generation attributed to heat transfer, as seen in Figure 8c,
and entropy generation increased due to the magnetic field effect. Figure 9a shows the
Nusselt number as the magnetic field is activated. The suppression of the convective effect
results in the diminution of the heat transfer process and, hence, an extreme reduction in
the Nusselt number.
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Figure 9. (a) Nusselt number: γ: 0◦; N = 4; Ha = 0, 25, 50, 100; Ri = 1, 10, 50, 100; ϕ = 0.02; (b) Bejan
number: γ: 0◦; N = 4; Ha = 0, 25, 50, 100; Ri = 1, 10, 50, 100; ϕ = 0.02.

Increasing the Hartman number from 25 to 100 has a marginal effect on the further
decrease in the Nusselt number. Figure 9b shows the Bejan number increase with the
increasing Hartman number, which can be attributed to irreversibility associated with
magnetic field effects.

Generally, introducing nanoparticles in the cavity fluid causes it to flow slower, re-
sulting in a more substantial temperature gradient and an increase in the heat transfer
rate. Figure 10a shows the Nusselt number versus Ri for an increasing nanoparticles
volume fraction.
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Figure 10. (a) Nusselt number: γ: 0◦; N = 4; Ha = 0; Ri = 1, 10, 50, 100; ϕ = 0, 0.02, 0.04, 0.08; (b) Bejan
number: γ: 0◦; N = 4; Ha = 0; Ri = 1, 10, 50, 100; ϕ = 0.02, 0.04, 0.08.

Doubling the nanoparticle fraction increases the Nusselt number by approximately
10%. Figure 10b shows that increasing the volume fraction also increases the entropy
generation, which can be attributed to an increase in the apparent viscosity of the fluid, the
agent for fluid friction, and the source of irreversibility.

5. Conclusions

Numerical simulations of mixed convection within a concentric cavity with wavy
boundaries are carried out. The inner cavity is an adiabatic oval, and the outer is a lid-
driven square cavity. The space in the cavity is filled with a nanofluid. The convective heat
transport is set up by the moving lid and heating from below. A uniform magnetic field
is imposed on the working fluid. The dimensionless numbers of interest are Richardson,
Hartman, and Bejan. The undulation of the heated wall and orientation of the inner
cavity is varied. The results are displayed in in-stream function, isothermal, and isentropic
contour plots.

Additionally, the Nusselt number and Bejan number are calculated. It is determined
that a single incrementation of undulation increases the Nusselt number by an average of
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9.5% within the investigated range (1 ≤ N ≤ 4). Furthermore, doubling the nanoparticle
volume fraction increased the Nusselt number by nearly 8%. Meanwhile, incrementing
the major ovoid axes from the horizontal plane by 10◦ raises the Nusselt number by 2.8%
and 0.81% in the mixed convection regime (low Ri) and free convection regime (high Ri),
respectively. The Nusselt number increases with increasing the Richardson number for any
of the factors mentioned above, as the natural convection heat transfer mode dominates
the mixed convection mode. An increase in entropy generation is associated with efficient
thermal transport due to heat transfer irreversibility. Imposing a magnetic field shuts
down the convection mode, rendering conduction heat transfer the sole mechanism of
thermal transport.
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Nomenclature

A amplitude [m]
B0 magnetic induction (Wb/m2)
Be Bejan number
Cp specific heat at constant pressure [J/kg·K]
g gravity [m2/s]
Gr Grashof number
Ha Hartman number
k thermal conductivity of air [W/m·K]
L dimension of the cavity [m]
N undulation
Nu average Nusselt number
p pressure [Pa]
P non-dimensional pressure
Pr Prandtl number
Re Reynolds number
Ri Richardson number
S entropy [J/K]
T temperature [K]
To microchannel wall temperature [K]
Uo moving lid velocity [m/s]
u,v velocity components [m/s]
U,V non-dimensional velocity components
x,y coordinates [m]
X,Y non-dimensional coordinate
Greek Symbols
α thermal diffusivity [m2/s]
β thermal expansion coefficient [1/K]
γ rotation angle [deg]
ϕ nanoparticles volume fraction
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µ dynamic viscosity [kg·m/s]
θ dimensionless temperature
ρ density of fluid [kg/m3]
σ fluid electrical conductivity [S/m]
ψ irreversibly
Subscripts
Gen generation
nb base fluid
nf nanofluid
av average
c cold
h hot
s surface
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