
����������
�������

Citation: Liu, Y.; Yu, S.; Shi, Q.;

Ge, X.; Wang, W. Multilayer Coatings

for Tribology: A Mini Review.

Nanomaterials 2022, 12, 1388. https://

doi.org/10.3390/nano12091388

Academic Editor: Csaba Balázsi

Received: 23 March 2022

Accepted: 15 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Multilayer Coatings for Tribology: A Mini Review
Yanfei Liu 1, Shengtao Yu 1, Qiuyu Shi 2, Xiangyu Ge 1,* and Wenzhong Wang 1

1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
liuyanfei@bit.edu.cn (Y.L.); 3120210435@bit.edu.cn (S.Y.); wangwzhong@bit.edu.cn (W.W.)

2 State Grid Smart Grid Research Institute Co., Ltd., Beijing 102202, China; shiqiuyu@geiri.sgcc.com.cn
* Correspondence: gexy@bit.edu.cn

Abstract: Friction and wear usually lead to huge energy loss and failure of machine pairs, which
usually causes great economic losses. Researchers have made great efforts to reduce energy dissi-
pation and enhance durability through advanced lubrication technologies. Single-layer coatings
have been applied in many sectors of engineering, but the performance of single-layer coatings still
has many limitations. One solution to overcome these limitations is to use a multilayer coating that
combines different components with varied physical and chemical properties. In addition, multilayer
coating with alternating layers only containing two components can lead to improved performance
compared to a coating with only two different layers. This paper systematically reviews the design
concept and properties of different types of multilayer coatings, including transition-metal nitride
coatings, diamond-like carbon-based coatings, and other multilayer coatings. The inherent functional
mechanisms of the multilayer structures are also detailed and discussed.
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1. Introduction

Friction and wear occur in moving pairs with direct contact among all mechanical
systems, leading to excessive energy consumption and failure of equipment [1]. Advanced
techniques have been proposed to reduce friction and wear [2,3]. One of the methods is to
deposit coating materials on friction pairs, which has been widely used for a long time due
to its high performance in practical engineering applications. Coatings can be designed
with different materials and structures to provide multiple functions. With the develop-
ment of coating systems, different designing procedures have been proposed to further
enhance the performance of coatings, or to extend the adaptivity of coatings in various
environments [4–6]. One of the strategies is the multilayer designing of coating systems.
Among the coating design concepts, multilayer coatings have attracted a lot of attention
because the properties including hardness, elastic modulus, lubrication performance, and
adhesion to substrate can be targeted and regulated, making it easier to develop coating
systems to meet specific requirements.

In this paper, the design concepts and properties of different types of multilayer
coatings, including transition-metal nitride (TMN) coatings, DLC-based coatings, and other
multilayer coatings, are systematically reviewed. The inherent functional mechanisms of
the multilayer structures are also detailed and discussed.

2. Development of Multilayer TMN Coatings

The failure of tools can lead to great costs induced by the stopping of production
and new adjustment of machines. Around 10% of the losses can be reduced through
optimizing the lifetime of finishing parts [7]. Decreasing the wear of tools, better control of
the forming process, and a reduction in lubricant and cleaning agents are the motivations
to promote the development of coatings. Chemical vapor deposition (CVD) and physical
vapor deposition (PVD) are commonly used techniques for the fabrication of coatings,
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where CVD coatings usually have superior properties compared to PVD coatings due to
the higher deposition temperature. However, CVD coatings have higher cost and more
time consumption, but limited friction-reduction performance [8]. Attributed to the high
performance and relatively low cost, PVD coatings are a promising alternative of CVD
coatings for wider industrial applications.

The transition-metal nitride (TMN) coatings are widely used in engineering applica-
tions due to their superior physical and chemical properties, including high hardness, wear
resistance, thermal stability, and excellent corrosion and oxidation resistances [9–12]. TMN
coatings are used as protective layers for cutting tools, molds, dies, or for abrasion and cor-
rosion resistance in various fields, including aerospace, automotive, etc. The performances
of several TMN coatings, including TiN [13–16], CrN [17–20], ZrN [21–24], MoN [25–27],
NbN [28–30], and TaN [31,32], have been investigated for many years. The continuous
development of advanced coating materials is motivated by the increased demands for
industrial applications. It was showed that multilayer structure design can effectively
improve the mechanical, chemical, as well as tribological properties of coatings [33]. In the
multilayer coating, each layer exhibits a specific property, such as a thermal and diffusion
barrier, adhesion to substrate, load carrying, lubrication, or wear resistance. The investiga-
tion of multilayer PVD coatings started in the 1970s [34,35] and was based on the models
proposed by Koehler [36]. The model indicates that materials with high yield strength
could be fabricated through alternating thin layers with different shear modules due to the
inhibition of dislocation formation and mobility. The Al/AlxOy coatings were deposited,
and the performances of the coatings were investigated. It was found that based on the
layer spacing, a Hall–Petch-type relationship was obeyed for yield stress [34]. Bunshah et al.
also studied both the metal/ceramic [37] and metal/metal [38] coatings deposited with
evaporation techniques. In general, mechanical properties of the coatings can be improved
with decreased layer thickness.

Holleck et al. fabricated multilayer coatings with different ceramic materials, demon-
strating that the improvements in adhesion, indentation toughness, hardness, and wear-
resistance performance can be achieved with optimized layer thickness [39]. The improved
performance of multilayer coatings is believed to partially attribute to the stress relaxation
and crack deflection, which exists in various contact conditions with cyclic loading and
fatigue. Besides the influence of yield strength, the stacking sequence also has influence
on the coating performance. It was found that the alternation of layers with high/low
shear modulus can provide more benefits for multilayer DLC/metal carbide coatings [40]
or TiN/Ti coatings [41,42].

To further investigate the influence of the stacking sequence of multilayer coatings, it is
effective to consider the coatings under a point or distributed load, causing the deflection of
coatings and the deformation of substrates [33]. Under such a circumstance, the maximum
stress would increase with increased coating thickness if considering the bending stress. If
the coatings are isolated as individuals to exclude the influence of substrate, each layer in
multilayer coatings has much less stress compared to that of the thick layer if each layer
can slide over each other. Hence, the alternating of hard/soft layers can offer a shear zone
to prevent the fracture of hard and brittle layers under deflection induced by applied load.
Moreover, there are also some other influences of the layer thickness. Since the layers also
need to support the normal load, the minimum thickness of the soft layers is limited to
provide adequate support to the hard layers. Additionally, the increased layer thickness
will lead to increased relative sliding distance between each layer. Incorporating many
thin layers is an ideal way to ensure the load-support properties. The layer thickness also
depends on the loading condition and the aimed application of the multilayer coatings. For
example, larger coating thickness is usually needed with the presence of hard and coarse
third bodies. The benefits of the structure consisting of layers with relatively high hardness
and relatively low hardness were also revealed via cyclic impact test [43,44]. The wear of
coatings induced by plastic deformation can be suppressed through the composition of soft
and hard layers, indicating that multilayer coatings have better prospect as a solution for
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various engineering problems. The concept and mechanisms of multilayer coatings with
distinct performances were introduced [45,46]. Even a simple two-layer structure exhibited
better wear- and corrosion-resistance properties [47,48]. The theoretical investigations have
great value for better structural optimization of the multilayer coatings.

With the main elements of the coatings, TMN coatings can be divided into Ti-based
TMN coatings, Cr-based TMN coatings, and TMN coatings with other elements. Ti and Cr
are widely used as adhesion layer between the multilayer coating and metal substrates,
which can be attributed to that the high binding energy makes it easier to form carbides,
nitrides, and oxides on the adhesion layer. However, the performance of multilayer coatings
strongly depends on the structure [49], which should be carefully decided for the designing
of multilayer coatings. Usually, the multilayer coatings tend to achieve low friction, high
wear resistance, good adhesion, and suppressed cracking during friction process. Various
multilayer coatings have been designed, and the inherent functional mechanisms were
also studied.

2.1. Ti-Based Multilayer TMN Coatings

TMN coatings have been widely used due to their high hardness and excellent
corrosion-resistance and wear-resistance behaviors [50,51]. However, the thickness and
the service life of TMN coatings are largely restricted by the residual stress induced by
coating fabrication and the brittleness of the coatings [52,53]. Designing multilayer coatings
combining TMN layers and metallic layers is an effective strategy to enhance the toughness
of the coating and to reduce internal stress [52,54]. Cheng et al. investigated the influence
of thickness of the Ti layer on the crystalline structure and internal stress of the multilayer
TiN/Ti coatings [55]. It was found that the internal stress between Ti layers and TiN
layers, as well as the internal stress of the TiN/Ti coating, can both be decreased by the
increased layer thickness of Ti. In addition, the crystallinity of Ti and TiN phased can be
also increased, and the lattice strain can be decreased with the increased layer thickness
of Ti.

The influence of the layer thickness of Ti on the mechanical and tribological perfor-
mances of the multilayer coatings was further studied [56]. It was found that the increased
layer thickness of Ti from 0 to 150 nm led to a reduced effective hardness; and the wear
rate and plasticity of the multilayer coating were also increased, where the lowest COF
was achieved with the 25 nm layer thickness of Ti. Bemporad et al. [52] also found that de-
creased hardness and wear-resistance performance can be caused by increased Ti/TiN ratio.
Cheng et al. [57] investigated the influence of layer parameters of multilayer Ti/TiN coat-
ings on the wear-resistance behavior, finding that the denser coating can be obtained with
increased layer number, while the defects in the coating can be also reduced with increased
layer number. However, the wear volume of the six-period multilayer coating was higher
(more than 2 times) than that of the monolayer coating. The tribological properties of the
multilayer TiN/Ti coatings were also investigated by Lackner et al. [58]. They found that
the 16-bilayer coating with a bilayer period of 62 nm had the highest hardness, which could
be attributed to the Hall–Petch strengthening mechanism. Furthermore, the multilayer
coating with a high ratio of TiN/Ti had higher hardness, and the wear-resistance perfor-
mance was also improved. Vereschaka et al. [59] investigated the influence of the layer
thickness of the multilayer Ti-TiN-(Ti, Al, Cr)N coatings on the COF under temperatures
from 500 to 1000 ◦C. It was found that the coating with 16 nm nanolayer thickness had the
lowest COF and wear rate. With low layer thicknesses of 10 nm and 16 nm, delamination
between nanolayers can be significantly suppressed (Figure 1). However, brittle fracture in
the surface layers and the longitudinal cracks can be observed for the coating with a layer
thickness of 16 nm. The lower COF of the multilayer coating can be attributed to that
the machined material is separated from the coating surface. Azushima et al. also found
that the grain orientation of TiN had significant influence on the COF of the coating [60].
The (111) preferred grain orientation exhibited lower COF comparing to that with (200)
preferred grain orientation. Ghasemi et al. compared the tribological performance of
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monolayer TiN coating and multilayer Ti/TiN coating, finding that the multilayer coating
exhibited lower COF compared to monolayer TiN coating, which can be attributed to the
low shear strength of the Ti layer making it act as a lubricant of the multilayer coating
during the friction test. The tribochemical reaction is also believed to have influence on the
lubrication behavior, where the TiNxOy and TiAlNxOy tribofilm might be formed on the
coating surfaces [61].

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 19 
 

 

COF of the coating [60]. The (111) preferred grain orientation exhibited lower COF com-
paring to that with (200) preferred grain orientation. Ghasemi et al. compared the tribo-
logical performance of monolayer TiN coating and multilayer Ti/TiN coating, finding that 
the multilayer coating exhibited lower COF compared to monolayer TiN coating, which 
can be attributed to the low shear strength of the Ti layer making it act as a lubricant of 
the multilayer coating during the friction test. The tribochemical reaction is also believed 
to have influence on the lubrication behavior, where the TiNxOy and TiAlNxOy tribofilm 
might be formed on the coating surfaces [61]. 

 
Figure 1. The fracture pattern on the Ti-TiN-(Ti,Al,Cr)N multilayer coatings with nanolayer thick-
ness of (a) 302 nm and (b) 10 nm after the cutting tests with different cutting speeds (vc). (a) With 
nanolayer thickness of 302 nm, the formation of longitudinal cracks and internanolayer delamina-
tions is typical. (b) With nanolayer thickness of 10 nm, rarer internanolayer delaminations can be 
observed. Reprinted with permission from [59]. 

2.2. Cr-Based Multilayer TMN Coatings 
Besides Ti-based coatings, Cr-based coatings have been also widely used in industrial 

applications [62,63]. Comparing to TiN coatings, CrN coatings are softer, less brittle and 
have less stress [64]. TiN coatings present relatively high mechanical properties and ther-
mal stability. However, TiN coatings can be easily oxidized into TiO2 when the tempera-
ture is higher than 500 °C, leading to crack formation in the TiN coatings [65,66]. Differ-
ently, CrN coatings have better oxidation-resistance performance due to the formed dense 
Cr2O3 layer on the coating surface as protection layer [67,68]. Previous research also indi-
cated that CrN coatings exhibited lower COF [69] and wear rate [70] compared to TiN 
coatings. However, when exposed to high temperatures up to 800 °C, the mechanical per-
formance of the CrN coatings would deteriorate due to the loss of N [71,72]. Du et al. 
found that with the multilayer structure design of TiN/CrN coatings, the oxidation of CrN 
can be suppressed because that the TiN layer has higher binding energy than CrN, leading 
to better thermal stability and oxidation-resistance performance of the multilayer coating 
[73]. 

Figure 1. The fracture pattern on the Ti-TiN-(Ti,Al,Cr)N multilayer coatings with nanolayer thickness
of (a) 302 nm and (b) 10 nm after the cutting tests with different cutting speeds (vc). (a) With nanolayer
thickness of 302 nm, the formation of longitudinal cracks and internanolayer delaminations is typical.
(b) With nanolayer thickness of 10 nm, rarer internanolayer delaminations can be observed. Reprinted
with permission from [59].

2.2. Cr-Based Multilayer TMN Coatings

Besides Ti-based coatings, Cr-based coatings have been also widely used in industrial
applications [62,63]. Comparing to TiN coatings, CrN coatings are softer, less brittle and
have less stress [64]. TiN coatings present relatively high mechanical properties and thermal
stability. However, TiN coatings can be easily oxidized into TiO2 when the temperature
is higher than 500 ◦C, leading to crack formation in the TiN coatings [65,66]. Differently,
CrN coatings have better oxidation-resistance performance due to the formed dense Cr2O3
layer on the coating surface as protection layer [67,68]. Previous research also indicated
that CrN coatings exhibited lower COF [69] and wear rate [70] compared to TiN coatings.
However, when exposed to high temperatures up to 800 ◦C, the mechanical performance
of the CrN coatings would deteriorate due to the loss of N [71,72]. Du et al. found that
with the multilayer structure design of TiN/CrN coatings, the oxidation of CrN can be
suppressed because that the TiN layer has higher binding energy than CrN, leading to
better thermal stability and oxidation-resistance performance of the multilayer coating [73].

In the later studies, it was found that multilayered TiN/CrN coatings have superior
properties compared to both homogenous TiN and CrN coatings [74,75]. It was shown
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that a low layer thickness, especially for the CrN layer in the multilayer coating, should be
achieved to obtain better mechanical and tribological properties of the multilayer coatings.
Zhou et al. investigated the tribological performances of TiN/CrN multilayer coatings [76].
They found that the TiN coating had a higher COF of 0.9, while the TiN/CrN multilayer
coatings had a lower COF of 0.3–0.5. Meanwhile, the TiN/CrN multilayer coatings also
had a lower wear rate comparing to TiN. The reduction in COF and wear rate of TiN/CrN
multilayer coatings can be attributed to the enhanced hardness, the formation of a dense
oxidation layer with CrO3 and Cr2O3, and the exclusion of the third-body particles from
the wear regions. Srinivasan et al. found that the TiN/CrN multilayer coatings deposited
on hard substrate had a lower wear rate comparing to that of TiN and Ti/TiN multilayer
coating at both room temperature and high temperature [77]. Paulitsch et al. investigated
the tribological performances of CrN/TiN multilayer coatings in different atmospheres
(Figure 2) [78]. It was found that the multilayer CrN/TiN/TiN coatings had a steady-
state friction coefficient of 0.05 in ambient air (RH ≈ 25%), whereas they had a much
higher COF between 0.65–0.75 in Ar, N2 and synthetic air with low humidity (RH < 1%).
However, the wear rate in ambient air was higher than that in Ar and N2 atmospheres.
These results suggested that the COF can be increased in a nonoxidizing environment
due to the absent of oxidants as lubricant, while the wear-resistance performance can be
enhanced due to the suppressed oxidation and fewer third-body particles. However, the
COF varied significantly with the arrangement of different layers. With CrN/TiN/CrN
coating, the COF can be reduced to 0.25. However, when the CrN/TiN/CrN was replaced
with CrN/TiN/TiN, the COF significantly reduced to 0.05. The influence of the structure of
the multilayer coating and the tribochemical reaction on the lubrication performance still
need further investigation.
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2.3. TMN Coatings with Other Elements

ZrN coatings have attracted attention in several industrial applications due to out-
standing optical properties, excellent chemical stability, a high melting point [79], and
excellent wear-resistance performance [80]. Researchers found that the wear-reduction
property of ZrN coating can be further improved by the multilayer structure with Zr
layers [81]. The influence of the thickness of the adhesion layer and wear-resistant layer
on the adhesion strength, microhardness, and other performances of the ZrN-(Zr, Al, Si)N
coatings was investigated by Vereschaka et al. [82], indicating that smaller thickness of the
adhesion layer led to more active wear. Postolnyi and Pogrebnjak et al. [83,84] designed
superhard protective multilayer CrN/MoN coatings with enhanced toughness and hard-
ness through the arc-PVD technique for industrial applications (Figure 3). The element
and phase composition, coating structure, mechanical properties, and the residual stress
were detailed investigated. In addition, the influence of the deposition conditions was
also studied. During the fabrication process, most of the parameters were fixed to keep
the similar elemental and phase compositions, while the deposition time was changed to
fabricate coatings with different layer thickness. With smaller layer thickness, the volume of
interfaces and the layer number of interfaces both increased, leading to Hall–Petch strength-
ening of the multilayer coatings. In addition, the propagation of cracks and dislocations
can be blocked in the multilayer coatings.
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of CrN/MoN coatings with different layer thicknesses; (c) EBSD results of a CrN/MoN coating;
(d) mechanical behavior of CrN/MoN coatings with different layer thicknesses. Reprinted with
permission from [83].

2.4. Doping with Different Elements

Doping different metal elements into TMN coatings is also a practical method to
enhance their performances. Among those coatings, TiCrN coatings have attracted much
attention due to the oxidation resistance at high temperature, high hardness, and low
COF [85,86]. Nainaparampil et al. investigated the tribological behaviors of TiCrN coatings,
where the major phases are CrN, TiN, and Cr2N. TiCrN coatings exhibited lower COF
compared to TiN and CrN coatings [87]. It was found that the plastic deformation of
wear debris formed during the friction process is the dominant reason for the low COF.
Ezazi et al. [86] compared the mechanical performances and tribological behaviors of
magnetron-sputtered Cr/CrN, Ti/TiN, and TiCr/TiCrN coatings on aerospace aluminum.
Different coatings exhibited varied behaviors, where the Ti/TiN coating had the highest
wear resistance performance; the Cr/CrN coating had the highest surface hardness; and the
TiCr/TiCrN coating had the smoothest surface and lowest COF among all the test samples.
The functional mechanisms of the coatings were also investigated. The Cr/CrN coating
suffered more severe wear due to the oxidative abrasive wear; the brittle fracture wear of



Nanomaterials 2022, 12, 1388 7 of 18

Ti/TiN coating was attributed to the slight plastic deformation; the mixed phases with CrN
and TiN formed by TiCr/TiCrN coating during the friction process led to an intermediate
wear-reduction performance.

The influence of element concentration and microstructure on the performance of
Cr/CrN/CrTiN coatings was also investigated through various characterization tech-
niques [88]. It was found that the increased Ti content in the coatings led to increased
hardness and elastic modulus, and increased H/E and H3/E2 ratios. However, the in-
creased Ti content in the coatings led to a decreased scratching toughness, which was
attributed to the conformal cracking at higher load. In addition, the wear-resistance per-
formance of the coatings decreased with increased Ti content, which was attributed to the
mismatch between the modulus of coating and substrate. In general, they found that the
multilayer structure can effectively reduce the residual stress compared to the monolayer
coating, leading to higher adhesion stress and better wear-resistance performance.

Özkan et al. [89] investigated the mechanical and tribological behaviors of multilayer
CrTiN/TiCN and CrTiN/CrCN coatings deposited by arc-PVD with different thicknesses.
It was found that CrTiN/CrCN coatings exhibited excellent lubrication and wear-reduction
performances under elevated contact pressures. The graphitization of the amorphous
carbon phase of CrTiN/TiN + CrCN and CrTiN/TiN + TiCN coatings was believed to
be the reason for the different lubrication performance. For CrCN coatings, the better
graphitization and lower oxidation dominate the lubrication and wear-resistant behav-
iors. The results showed that the service life of tools and molds can be extended with
deposited CrTiN/TiN + CrCN coatings even at high contact pressures. In addition, the
performances can be further improved by multilayer CrTiN/TiN + CrCN/TiCN coating
with thin interlayers and thick ceramic layers. Purushotham et al. [90] investigated the
tribological performances of Zr-implanted TiN coatings, finding that the implantation of
Zr led to decreased hardness of the coatings. The increased dose led to an increased layer
thickness of the implanted zone, causing a reduced COF. The results were accordance with
the model with a thin soft film on a harder surface. However, considering that the COF in
this study can be surprisingly dropped from 0.8–0.9 to 0.1 with the implantation of Zr, the
inherent lubrication mechanisms with implanted elements still need further investigation
to illustrate the function of element doping. Previous research mainly focused on the me-
chanical and wear-resistance performances of TMN coatings, but limited research focused
on the influence of structure and composition of coatings on the frictional behaviors. The
frictional behaviors of TMN coatings are also important for engineering applications, which
still need more investigation in the future.

3. Development of Multilayer DLC Coatings

Based on the concept of multilayer designing of coating systems, the multilayer ce-
ramic metal-DLC coatings were fabricated by Voevodin et al. [45] using electron-enhanced
unbalanced magnetron sputtering for sliding wear applications. Low COF and low wear
rates can be achieved by the multilayer coatings with upper Ti20%-DLC and Ti35%-DLC
layers. Sui et al. [91] prepared CrN/DLC/Cr-DLC multilayer coatings with plasma-
enhanced chemical vapor deposition, which can significantly improve the lubrication
and wear-resistance performance comparing to single component coating. The improved
performances of the CrN/DLC/Cr-DLC multilayer coatings can be attributed to the lu-
brication of DLC layers, the supporting of CrN layers, the enhanced crack propagation
inhibition, and the increased elastic recovery governed by the multilayer structure. DLC
coatings were also combined with MoS2 to enhance the lubrication and wear-resistance
performances. Pu et al. [92] prepared a multilayer DLC/MoS2 coating using medium-
frequency magnetron sputtering, which exhibited a low COF of 0.02 and a low wear rate
of ~6.5 × 10−6 mm3 N−1 m−1. The influence of different underlayers on the tribological
behaviors of the DLC-based multilayer coatings prepared by magnetron sputtering was
investigated by Duminica et al. (Figure 4) [93], where a better adhesion could be achieved
with only Cr under layer, exhibiting lower COF compared to other samples.
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Figure 4. (a) Relationships between underlayers and the properties in a DLC-based multilayer coating;
(b) the cross-sectional morphology of multilayer coating; (c) structure of multilayer coatings with
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coatings. Reprinted with permission from [93].

For single-layer DLC coating, high residual stress would lead to brittle fracture and
delamination under high normal load during the friction process. Researchers found that
the tribological behaviors of multilayer DLC coatings can be improved through the DLC
layers with different properties. Li et al. [94] fabricated multilayer DLC coatings with
alternated soft and hard layers through the alternating of bias during magnetron sputtering.
Delamination was observed in monolayer coatings due to high residual stress. The results
showed that the bonding structure (sp3 and sp2) can be changed by substrate bias. The
sp3 fraction in DLC coating can be increased with increased bias ratio on the two adjacent
sublayers from −40 V/−160 V to −80 V/−160 V, leading to increased coating hardness.
With the multilayer designing, the hardness of multilayer DLC coating was similar to the
coatings deposited at low constant bias, but the adhesion strength and toughness were
significantly improved. It can be concluded that alternately biased sputtering deposition is
a promising way to fabricate DLC coating with high hardness, toughness, and adhesion
strength. With the similar designing concept, Harigai et al. [95] fabricated multilayer N-
DLC coatings with each layer thickness of 10 nm using filtered arc deposition, containing
periodic bilayer structures with ta-C:N and soft a-C:N layers. The multilayer coatings
showed better wear-resistance performance than monolayer ta-C:N coating and multilayer
N-DLC coatings with each layer thickness of 50 nm. Lin et al. [96] fabricated multilayer
DLC coatings with alternated soft and hard layers using unbalanced closed-field magnetron
sputtering to enhance wear-resistance performance at high contact stress. It was found that
the multilayer coating with a soft top layer had lower wear volume under high contact
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stress, which can be attributed to the fact that the soft top layer can form a transfer layer to
reduce friction and wear.

4. Other Multilayer Coatings for Tribology Applications

MoS2 coatings exhibit excellent lubrication performance under high dry or vacuum
conditions due to the easy shear between lattice layers [97,98]. However, when rubbed in
humid air, the dangling bonds at the edge of MoS2 react strongly with O, resulting in higher
COF and shorter service life [99–101]. Aiming to the shortcomings, MoS2-based multilayer
coatings have been designed to further enhance the performance. The tribological behaviors
of multilayer coatings of MoS2 and metallic including Au, Ni, Pb or PbO were studied
in humid air with 50% relative humidity, which exhibited lower and more stable COF
compared to pure MoS2 coating [102]. The function mechanism of metal for the sputter-
deposited metal–MoS2 multilayer coatings is believed to be the optimization of the MoS2
structure. Kong et al. [103] investigated the tribological behaviors of MoS2/Ti–MoS2/Si
multilayer coatings deposited by magnetron sputtering (Figure 5), indicating that better
lubrication performance can be achieved by the multilayer design of coatings. Those
results indicated that the multilayer structures have potential to improve the tribological
behaviors of conventional MoS2 coating, but the inherent mechanisms are still worth further
investigation to guide the designing of MoS2-based coatings for future application.
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Figure 5. (a) Schematic diagram of the MoS2/Ti–MoS2/Si multilayer coating; (b,c) cross-sectional
morphology of a MoS2/Ti–MoS2/Si multilayer coating; (d,e) COFs of different MoS2/Ti–MoS2/Si
multilayer coatings under normal loads of 2 N and 8 N. Reprinted with permission from [103].
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With the development of coating fabrication and characterization techniques, sev-
eral new findings shed the light on the precision structure design of multilayer coatings
from an atomic view [104,105]. Dwivedi et al. [106] developed C/SiNx multilayer coat-
ings with layer thickness of 7–8 nm using an enhanced atomic intermixing (formation of
nanocomposite interfaces) approach (Figure 6), leading to 2–10 times better macroscale
wear durability compared to conventional coatings with larger thickness of 20–100 nm. The
enhanced performance can be attributed to the high sp3 bonding of the carbon overcoat and
increased interfacial strength induced by intermixing, leading to improved adhesion and
robustness of the coatings. Khadem et al. [107] designed discreate periodic nanolayered
coatings, which had a different structure compared to conventional multilayer coatings
(Figure 7). The discrete periodic nanolayered coatings exhibited better wear-reduction
performance compared to conventional multilayer coatings, which can be attributed to
the reduced interfacial defects. The tribological performance was further improved by
surface-texturing treatment. Advanced research tools make it possible to investigate the
fundamental mechanisms of multilayer coatings in tribological application.
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Figure 6. (a) Schematic diagram of the designing of coating samples; (b) cross-sectional images of the
coatings; (c) TRIM simulations of the selected coating samples, showing the extent of atomic mixing.
In this figure, AlTiC represents Al2O3 + TiC composite material; CP represents sputter-deposited
carbon overcoat; CF represents FCVA-deposited carbon overcoat; T represents high-energy carbon
treatment. Reprinted with permission from [106].
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Two-dimensional (2D) materials, including graphene-family materials [108–113], MoS2 [99,100],
and black phosphorus [114–117] have been used as lubricants because of their low interlayer
shear strength. Recently, multilayer coatings with 2D materials have also been designed to
promote tribological properties. Most recently, Fan et al. [118–123] fabricated coatings with
Ti3C2Tx Mxene and achieved excellent self-healing, antiwear, and anticorrosion capacity.
Saravanan et al. [124] fabricated multilayer coatings with graphene oxide and PEI via layer-
by-layer assembly technique (Figure 8). Macroscale superlubricity (COF < 0.01) can be
achieved with the multilayer coating having a thickness of about 300 nm. The superlubricity
mechanism is believed to be the formation of carbon nanoparticles in dry conditions. In the
subsequent study, it was found that the formation of transfer layer is also critical for the
achieving of ultralow friction [125]. Achieving macroscale superlubricity is possible with
multilayer coatings containing 2D materials, but the environment adaptivity still needs to
be improved, and the inherent mechanisms also need to be further investigated.
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Figure 8. Multilayer design of PEI/GO coatings. (a) Photograph of the steel substrate and that deposited
with multilayer PEI/GO coatings; (b) cross-sectional morphology of a PEI/GO coating with 15 bilayer
periods; (c) COFs of the multilayer coatings under different test environments; (d) HRTEM image of the
wear debris containing GO in N2 environment. Reprinted with permission from [124].
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5. Mechanisms for Controlling Friction and Wear Using Multilayer Coatings

Coatings have been widely used in industrial applications as protection for cutting
tools, dies, pistons, etc. However, the performance of monolayer coatings is usually
restricted by their poor adhesion with substrate, and the high residual stress induced by
the fabrication process. In addition, the mismatch of the mechanical properties between
substrates and coatings also suppresses the performance of monolayer coatings. Aiming
to solve these problems, the concept of multilayer coating has been proposed; and lots
of work has been carried out to enhance the coating performance through the multilayer
structure. One of the fundamental concepts of the multilayer design is stress relaxing and
crack deflection (Figure 9a) [39]. Back in the 1970s–80s, researchers attempted to build
multilayer coatings through alternating thin layers with high-shear-modulus and thin
layers with low shear modulus based on the models of Hoehler. In 1990, Holleck et al. [39]
found that the multilayer structure of TiC/TiB2 coatings leads to the deflection of cracks
through the interface zones, causing energy dissipation without coating failure. Layer
thickness also has influence on the stress distribution of the multilayer coatings. In addition,
from an engineering point of view, when a normal force is applied on the coating’s surface,
the multilayer coating with thin, soft layers can reduce the maximum bending stress.
With the multilayer design with soft and hard layers, the plastic yielding of hard layers
can be avoided, especially under the condition with cyclic loading and fatigue. Another
fundamental concept for the designing of multilayer coating is the functional design of
different layers for purposes such as adhesion, load supporting, lubrication, and wear
reduction, etc. (Figure 9b) [45]. The wear-resistance and lubrication performances can be
enhanced through the multilayer design of the coatings. However, macroscale friction
is a complex physical–chemical process. The friction and wear-reduction mechanisms of
multilayer coatings with different structures and compositions are different. Hence, various
mechanisms for controlling friction and wear using multilayer coatings have been proposed
(Table 1), which can guide the future development of the multilayer coating systems.
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Table 1. Friction and wear-reduction mechanisms of multilayer coatings.

Types of
Multilayer Coatings Preparing Methods Lubrication Properties Friction-Reduction

Mechanisms
Wear-Reduction

Mechanisms

TiN/Ti [56] Large area filtered cathodic
arc deposition

COF reduced from 0.82 (TiN)
to 0.6 (with Ti layers thickness

of 25 nm)

Lower shear strength
of soft Ti layers —

Ti/TiN [61] High-vacuum
magnetron sputtering

COF reduced from 0.54 (TiN)
to 0.48

Formation of TiAlNxOy and
TiNxOy tribolayers —

TiN/CrN [76] Reactive magnetron
cathodic sputtering

COF reduced from 0.9 (TiN)
and 0.6–0.7 (CrN) to 0.3–0.5

Enhanced hardness and formation of the dense Cr2O3, and CrO3
oxide layer

CrNHIPIMS/TiNDCMS [78] *

High-power impulse
magnetron sputtering

(HIPIMS) and DC
unbalanced magnetron

sputtering (DCMS)

COF reduced to 0.05

Formation of
humidity-triggered layers

during dry-sliding tests under
humid conditions

—
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Table 1. Cont.

Types of
Multilayer Coatings Preparing Methods Lubrication Properties Friction-Reduction

Mechanisms
Wear-Reduction

Mechanisms

(Ti–Cr)N [87] Cathodic arc deposition COF reduced from 0.7 (TiN)
and 0.75 (CrN) to 0.4

Formation of mixed-phase films with plastic deformed
wear debris

CrTiN/TiCN and
CrTiN/CrCN [89] Cathodic arc PVD COF reduced from 0.8–1.0

(bare substrates) to 0.2
Graphitization of the

amorphous carbon phase

Improved adhesion between
individual layers;
increased coating

hardness; graphitization

CrN/DLC/Cr-DLC [91] PECVD COF reduced to 0.087 Lubrication of DLC; supporting of CrN layers; enhancement of
crack-propagation inhibition; increased elastic recovery capability

Multilayer DLC with hard
and soft layers [96]

Unbalanced closed-field
magnetron sputtering

Lower COF during
running-in process with soft

top layer

Formation of transfer layer with soft top layer to provide low
friction and wear

MoS2/Ti–MoS2/Si [103] Unbalanced
magnetron sputtering COF reduced to 0.0432

Improved compactness and orientation of MoS2; improved
oxidation and moisture resistance of MoS2; higher hardness;

hindered dislocations motion and crack propagation

C/SiNx overcoats [106]
Magnetron sputtering in situ

with carbon deposition;
high-energy carbon treatment

COF reduced from 0.4 (bare
substrates) to lower than 0.2

Extremely high adhesion governed by atomic intermixing,
sufficient carbon thickness; high sp3 bonding

Polyethylenimine/
graphene oxide [124] * Layer-by-layer deposition COF reduced from 0.60

(substrate) to lower than 0.01

Reduction in the contact area
due to the formation of carbon
nanoparticles in dry conditions

—

* The influence of environment humidity on the lubrication behaviors was investigated.

6. Conclusions and Perspectives

This paper reviewed the multilayer structure designing of different types of coatings.
With the development of multilayer coatings, the influence of various parameters, including
the layer thickness, element composition, etc., and the influence of supporting layers on
the behaviors of top layer have been systematically investigated. However, in the view of
the authors, there are still many unsolved problems for further investigation. Many studies
reported that the coatings with multilayer structures have much lower COF compared
to monolayer coatings or multilayer coatings with different structures. However, the
underlying mechanisms still need further investigation with a view to guide future high-
performance multilayer coatings. In addition, advanced multiphysics simulation works are
also needed for the optimization of material and structure design of multilayer coatings.
Recent years, multilayer coatings containing 2D materials have also been designed [124],
which achieved macroscale superlubricity under dry atmosphere. Multilayer coatings with
2D materials sometimes exhibit excellent tribological behaviors. However, related studies
are restricted to limited types of 2D materials. The influence of coating structure, chemical
composition of 2D materials or the matrix on the tribological behaviors still needs further
investigation for the development of novel lubrication systems.
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