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Abstract: A numerical investigation of three-dimensional hybrid nanomaterial micropolar fluid flow
across an exponentially stretched sheet is performed. Recognized similarity transformations are
adopted to convert governing equations from PDEs into the set ODEs. The dimensionless system
is settled by the operating numerical approach bvp4c. The impacts of the nanoparticle volume
fraction, dimensionless viscosity ratio, stretching ratio parameter, and dimensionless constant on
fluid velocity, micropolar angular velocity, fluid temperature, and skin friction coefficient in both
x-direction and y-direction are inspected. Graphical outcomes are shown to predict the features
of the concerned parameters into the current problem. These results are vital in the future in the
branches of technology and industry. The micropolar function R(η) increases for higher values of
the micropolar parameter and nanoparticle concentration. Micropolar function R(η) declines for
higher values of the micropolar parameter and nanoparticle concentration. Temperature function is
enhanced for higher values of solid nanoparticle concentration. Temperature function declines for
higher values of the micropolar parameter. The range of the physical parameters are presented as:
0.005 < φ2 < 0.09, Pr = 6.2, 0 < K < 2, 0 < a < 2.0, φ1 = 0.1, and 0 < c < 1.5.

Keywords: boundary layer flow; micropolar hybrid nanofluid; exponential stretching surface; nu-
merical technique

1. Introduction

The micropolar theory was inspected as a theoretical model, but currently, it is ani-
mated with several applications. Micropolar fluids, in particular, have found a niche in the
field of modeling liquid crystals with magnetic fluids, stiff molecules, muddy liquids, and
biological fluids [1]. The classical Navier–Stokes model is utilized to analyze the micropolar
fluid, and the microrotation vector is extensively used to define microphenomena. In math-
ematics, the micropolar fluid model is studied in two opposite directions: one examines
incompressible flow, and the other investigates compressible flows. Micropolar sap has
been extensively studied for incompressible flow [2], but there are still several issues. The
micropolar fluid for compressible flow has been deliberated in a few years (see [3–6]).

Hybrid nanofluids are a novel type of nanofluid that contains a finite range of metal-
lic nanoparticles and nonmetallic nanoparticles. Using hydrogen reduction technique,
Jeena et al. [7] organized a composite of alumina–copper from CuO and Al2O3 mixture.
Suresh et al. [8] described a symbolic expansion in viscosity which increase in thermal
conductivity was lower than the variation in thickness. Senthilraja et al. [9] observed the
thermal conductivity of nanomaterial and hybrid nanomaterial experimentally with base
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fluid. For the hybrid nanofluids, natural convection causes a change in heat transfer as
see in Refs. [10–12]. Suresh et al. [13] obtained a maximum Nusselt number augmentation
of 13.56% for Cu–Al2O3 hybrid nanofluid. Hemmat et al. [14] used silver and magnesium
with water-based hybrid nanofluid in the presence of the nanoparticle volume fraction,
which lies between 0% and 2%. Moghadassi et al. [15] investigated the effects of Cu–Al2O3
and Al2O3 with base fluid water hybrid nanofluid with 0.1% volume fraction on laminar-
driven convective heat transmission. In a porous medium, the natural convection of the
hybrid nanofluids was examined by Mehryan et al. [16]. Ismael et al. [17] investigated the
viscous dissipation and mixed convection of hybrid nanoparticles in a lid-driven cavity.
Nadeem et al. [18] studied the effects of MHD with carbon nanofluid over curved surfaces.
Nadeem and Abbas [19] highlighted the effects of a modified nanofluid model under time-
dependent properties at porous surfaces. Nadeem et al. [20] discussed hybrid nanofluid
over a curved surface. Awan et al. [21] worked at an unsteady oblique stagnation point for
nanofluid. Awan et al. [22] highlighted the effects of an MHD unsteady oblique stagnation
point for second-grade fluid at an oscillatory stretching surface. The micropolar fluid flow
over a Riga surface was analyzed by Nadeem et al. [23]. Many researchers have conducted
a lot of work on stretching surfaces; interested readers can see [24–28].

The current discussion talks about an steady, incompressible, three-dimensional bound-
ary layer flow of micropolar hybrid nanofluid passing through an exponentially stretching
sheet. Recognized similarity transformations are adopted to convert modeled equations
from PDEs into a set of ODEs. The reconstructed equations are then solved by the operating
numerical approach BVP4C. The impacts of the nanoparticle volume fraction, dimen-
sionless viscosity ratio, stretching ratio parameter, and dimensionless constant on fluid
velocity, micropolar angular speed, temperature gradient, and skin friction index in both
x− direction and y− direction have been inspected through tables and graphs.

2. Mathematical Formulation

Here, a steady, incompressible, 3-D boundary layer flow of micropolar hybrid nanoma-
terial over an exponentially expanding sheet is taken into account, as revealed in Figure 1.

Figure 1. Flow pattern of micropolar hybrid nanofluid.

We assumed that the temperature at the wall of the stretching sheet is Tw, whereas Uw
and Vw are velocities at the wall of the stretching sheet along x-axis and y-axis, respectively.
Assumptions of the problem are as follows:

• Three-dimensional flow;
• Micropolar fluid;
• Two-phase model (nanofluid model);
• Exponential stretching sheet;
• Thermal slip.
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The mathematical equations for three-dimensional flow are derived using boundary
layer assumptions as (see [23–25]):

∂w
∂z

+
∂v
∂y

+
∂u
∂x

= 0, (1)

w
∂u
∂z

+ v
∂u
∂y

+ u
∂u
∂x

=

(
κ + µhn f

ρhn f

)
∂2u
∂z2 +

κ

ρhn f

∂N2

∂z
, (2)

w
∂v
∂z

+ v
∂v
∂y

+ u
∂v
∂x

=

(
κ + µhn f

ρhn f

)
∂2v
∂z2 −

κ

ρhn f

∂N1

∂z
, (3)

jρhn f

(
+w

∂N1

∂z
+ v

∂N1

∂y
+ u

∂N1

∂x

)
=

∂

∂z

(
γhn f

∂N1

∂z

)
− κ

(
∂v
∂z

+ 2N1

)
, (4)

jρhn f

(
u

∂N2

∂x
+ v

∂N2

∂y
+ w

∂N2

∂z

)
=

∂

∂z

(
γhn f

∂N2

∂z

)
− κ

(
−∂u

∂z
+ 2N2

)
, (5)

w
∂T
∂z

+ v
∂T
∂y

+ u
∂T
∂x

=
khn f(

ρcp
)

hn f

(
∂2T
∂z2

)
. (6)

Associated boundary conditions for three-dimensional flow are:

w = 0, v = V0e(
x+y

l ), u = U0e(
x+y

l ), N1 = 1
2

∂v
∂z , N2 = − 1

2
∂u
∂z ,

at z→ 0; T = Tw = T∞ + T0ea( x+y
2l ),

(7)

at z→ ∞; u = 0, v = 0, N1 = 0, N2 = 0, T = T∞. (8)

Here, u, v, and w are the velocity components along x, y, and z-axes, respectively. U0 and
V0 are the constants, and l is the reference length. ρhn f and µhn f are the density and variable
viscosity of hybrid nanomaterial, respectively; κ is the vortex viscosity; N1 and N2 are the

microangular speeds; j is the microinertia, which is defined as

(
j =

ν f l

U0e(
x+y

l )

)
; ν f is the

coefficient of kinematic viscosity; and khn f is the hybrid nanofluids’ thermal conductivity,
whereas

(
Cp
)

hn f is the specific heat capacity, and m > 0 is a constant that belongs to the
interval (0, 1). In the current work, we use m = 1/2. The rotational gradient viscosity of a
hybrid nanofluid, indicated by γhn f , is defined as:

γhn f =
(

µhn f +
κ

2

)
j. (9)

Some physical properties such as viscosity, density, heat capacity and thermal conduc-
tivity for the hybrid nanofluid are expressed in the following Table 1.

Table 1. Physical properties of hybrid nanofluid.

Viscosity µhn f =
µ f

(1−φ1)
2.5(1−φ2)

2.5

Density ρhn f =
[{

(1− φ2)(1− φ1) +
ρs1
ρ f

φ1

}
+

ρs2
ρ f

φ2

]
Heat capacity

(
ρcp
)

hn f =

[{
(1− φ2)(1− φ1) +

(ρcp)s1

(ρcp) f

φ1

}
+

(ρcp)s2

(ρcp) f

φ2

]

Thermal conductivity

khn f
kb f

=
ks2+kb f (n−1)−φ2(kb f−ks2 )(n−1)

ks2+(n−1)kb f +φ2(kb f−ks2 )

And, kb f
k f

=
ks1(n−1)+k f

−φ1(n−1)(k f−ks1 )

(n−1)k f +ks1+φ1(k f−ks1 )
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3. Similarity Variables

Suitable similarity transformations for three-dimensional flow are defined as (see [23,24,26]):

ψ(x, y, z) =
√

2ν f lU0e(
x+y

2l ) f (η), φ(x, y, z) = −
√

2ν f lU0e(
x+y

2l )g(η),

η = z
√

U0
2ν f l e(

x+y
2l ), u = U0e(

x+y
l ) f ′(η), v = V0e(

x+y
l )g′(η),

w = −
√

ν f U0
2l e(

x+y
2l ){ f (η) + η f ′(η) + g(η) + ηg′(η)},

N1 =

√
U3

0
2ν f l e3( x+y

2l )R(η), N2 =

√
U3

0
2ν f l e3( x+y

2l )Q(η),

θ = T−T∞
Tw−T∞

⇒ T = T∞ + T0ea( x+y
2l )θ(η).

(10)

Making use of suitable transformations, which are defined in Equation (10), our
original governing Equations (2)–(6) are transformed into a system of nonlinear ODEs
as follows:(

ρ f

ρhn f

µhnf
µf

+
ρ f

ρhn f
K

)
f ′′′ +

(
ρ f

ρhn f
K

)
Q′ − 2

(
f ′
)2 − 2c f ′g′+(1− c) η f ′′ g′+ f f ′′ + g f ′′ = 0, (11)

(
ρ f

ρhn f

µhn f

µ f
+

ρ f

ρhn f
K

)
g′′′ −

(
ρ f

cρhn f
K

)
R′ − 2 f ′g′ − 2c

(
g′
)2

+ (1− c) ηg′g′′+ f g′′ + gg′′ = 0, (12)

(
ρ f

ρhn f

µhn f

µ f
+

ρ f

ρhn f

K
2

)
R′′ −

(
2ρ f

ρhn f
K

)
(cg′′ + 2R)− 3 f ′R− 3cg′R+(1− c) ηg′R′ + f R′ + gR′ = 0, (13)

(
ρ f

ρhn f

µhn f

µ f
+

ρ f

ρhn f

K
2

)
Q′′ +

(
2ρ f

ρhn f
K

)
( f ′′ − 2Q)− 3 f ′Q− 3cg′Q+(1− c) ηg′Q′ + f Q′ + gQ′ = 0, (14)

( (
ρcp
)

f(
ρcp
)

hn f

khn f

k f

)
θ′′ − a Pr

(
f ′ + cg′

)
θ + Pr(1− c)ηg′θ′ + Pr( f + g)θ′ = 0, (15)

Related nondimensional boundary conditions for three-dimensional flow are defined as:

f (0) = 0, g(0) = 0, f ′(0) = 1, g′(0) = 1,

R(0) = 1
2 cg′′ (0), Q(0) = − 1

2 f ′′ (0),

θ(0) = 1, R(∞) = 0, Q(∞) = 0,

f ′(∞) = 0, g′(∞) = 0, θ(∞) = 0

(16)

where all the derivatives are taken concerning η and denoted by (′), (a) is the dimensionless
parameter,

(
K = κ

µ f

)
is the micropolar parameter,

(
c = V0

U0

)
is the ratio of the stretching

rate along the y-direction to the x-direction,
(

Pr =
(µcp) f

k f

)
is the Prandtl number, and φ1

and φ2 are two nanoparticles whose values are 0.1 and 0.01, respectively, constant in all
scenarios. Now the coefficients of skin friction in x-direction and y-direction are defined as:

C f x =
τwx

ρhn f U2
w

, C f y =
τwy

ρhn f U2
w

, (17)

where (τwx) and
(
τwy
)

are defined as:

τwx = κ(N2)z=0 +
(

µhn f + κ
)(

∂u
∂z

)
z=0

,

τwy = κ(N1)z=0 +
(

µhn f + κ
)(

∂v
∂z

)
z=0

.
(18)
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Making use of nondimensional variables, the physical parameters have the form

Re
1
2
x C f x =

(
ρ f

ρhn f

µhn f
µ f

+
ρ f

ρhn f
K
2

)
f ′′ (0)

√
2

,

Re
1
2
y C f y =

c
(

ρ f
ρhn f

µhn f
µ f

+
ρ f

ρhn f
3K
2

)
g′′ (0)

√
2

,

(19)

where the Reynolds number is Re = Uw l
ν f

.

4. Numerical Procedure

In this analysis, the steady, incompressible, 3-D boundary layer flow of the microp-
olar hybrid nanomaterial over the exponentially expanding sheet is taken into account.
To solve the developing mathematical model and to solve the differential equations by
using the bvp4c method after converting differential equations into first-order differential
equations, thus the reduced higher-order differential system in the initial value problem.
The procedure of the numerical technique is defined below:

f (η) = y(1); f ′(η) = y(2); f ′′(η) = y(3); f ′′′(η) = yy1;

g(η) = y(4); g′(η) = y(5); g′′(η) = y(6); g′′′(η) = yy2;

R(η) = y(7); R′(η) = y(8); R′′(η) = yy3;Q(η) = y(9); Q′(η) =y(10);

Q′′(η) = yy4;θ(η) = y(11); θ′(η) = y(12); θ′′(η) = yy5;

(20)

yy1 = −
(

ρ f
ρhn f

µhn f
µ f

+
ρ f

ρhn f
K
)−1((

ρ f
ρhn f

K
)

y(10)− 2y(2)y(2)− 2cy(2)y(5),+(1− c) xy(3)y(5) + y(1)y(3) + y(4)y(3)
)

,
(21)

yy2 = −
(

ρ f
ρhn f

µhn f
µ f

+
ρ f

ρhn f
K
)−1(

−
(

ρ f
cρhn f

K
)

y(8)− 2y(2)y(5),−2cy(5)y(5) + (1− c) xy(5)y(6) + y(1)y(6) + y(4)y(6)
)

,
(22)

yy3 = −
(

ρ f
ρhn f

µhn f
µ f

+
ρ f

2ρhn f
K
)−1(

−
( 2ρ f

ρhn f
K
)
(cy(6) + 2y(7))− 3y(2)y(7),−3cy(5)y(7) + (1− c) xy(5)y(8) + y(1)y(8) + y(4)y(8)

)
,

(23)

yy4 = −
(

ρ f
ρhn f

µhn f
µ f

+
ρ f

2ρhn f
K
)−1(

−
( 2ρ f

ρhn f
K
)
(cy(6) + 2y(9))− 3y(2)y(9)− 3cy(5)y(7) + (1− c) xy(5)y(10) + y(1)y(10) + y(4)y(10)

)
,

(24)

yy5 = −
(

(ρcp) f

(ρcp)hn f

khn f
k f

)−1

(−a Pr(y(2) + cy(5))y(11) + Pr(1− c)xy(5)y(12) + Pr(y(1) + y(4))y(12)),

(25)

Related nondimensional boundary conditions for three-dimensional flow are defined as:

y0(1); y0(4); y0(2)− 1; y0(5)− 1; y0(7)− 1
2 cy0(6); y0(9) + 1

2 y0(3);

y0(11)− 1; yin f (2); yin f (5); yin f (7); yin f (9); yin f (11).
(26)

5. Graphical Results and Discussion

Figures 2–6 demonstrated the effects of different parameters, such as the nanoparti-
cle volume fraction (φ2), dimensionless viscosity ratio (K), nondimensional constant (a),
stretching ratio parameter (c) on f ′(η), g′(η), R(η), Q(η), and θ(η). Figure 2a–d presented
the effects of solid nanoparticle concentrations on the velocity functions ( f ′(η) and g′(η))
and micropolar functions (Q(η) and R(η)), respectively. It is noted that the velocity func-
tion increases for both profiles ( f ′(η) and g′(η)) due to higher values of solid nanoparticle
concentrations. The momentum thickness enhances with increasing solid nanoparticles
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concentrations. The micropolar function R(η) increases for higher values of solid nanopar-
ticle concentrations but declines the micropolar function Q(η) because of higher values of
solid nanoparticle concentrations, which are presented in Figure 2c,d. The variation of the
micropolar parameter K and velocity functions ( f ′(η) and g′(η)) and micropolar functions
(Q(η) and R(η)), respectively, are presented in Figure 3a–d. It is noted that the velocity
functions ( f ′(η) and g′(η)) increased due to higher values of the micropolar parameter,
which is revealed in Figure 3a,b. As the vertex velocity was enhanced, the movement of the
fluid was enhanced. The micropolar function R(η) is enhanced due to increasing values of
the micropolar parameter. The micropolar function Q(η) declines for higher values of the
micropolar parameter. The variation of the stretching parameter c and velocity functions
( f ′(η) and g′(η)) and micropolar functions (Q(η) and R(η)), respectively, is presented in
Figure 4a–d. It is noted that the velocity functions ( f ′(η) and g′(η)) declined due to higher
values of the stretching parameter, which is revealed in Figure 4a,b. The micropolar func-
tion R(η) declines due to increasing values of the stretching parameter, which is revealed
in Figure 4c. The micropolar function Q(η) enhances for higher values of the micropolar
parameter, which is revealed in Figure 4d. The impacts of the nanoparticle volume fraction
(φ2) on temperature profile θ(η) are demonstrated in Figure 5a. We noticed that for large
values of (φ2), temperature function θ(η) increases. Figure 5b shows the influence of (K)
on temperature function θ(η). It is examined that augmentation in (K) decreases θ(η).
Figure 6 signifies the influence of the stretching ratio factor (c) on temperature function
θ(η). It is observed that the nature of the stretching ratio parameter (c) is the same as the
nature of temperature function θ(η).

In Table 2, the influences of various physical parameters, such as the nanoparticle
volume concentration (φ2), micropolar parameter (K), nondimensional constant (a), and
stretching ratio parameter (c), on the coefficient of skin friction along x-direction and
y-direction are illustrated. In Table 2, it is analyzed that for large values of the nanoparticle
volume fraction (φ2), the skin friction coefficient in both x- and y-directions declines. The

effects of the dimensionless viscosity ratio (K) on Re
1
2
x C f x and Re

1
2
y C f y are presented in

Table 2. It is realized that increasing (K) decreases the skin friction coefficient in both x-

and y- directions. The impacts of the stretching ratio parameter (c) on Re
1
2
x C f x and Re

1
2
y C f y

are demonstrated in Table 2. It is recognized that for large values of the stretching ratio

parameter (c), the skin friction coefficient in both directions such that Re
1
2
x C f x and Re

1
2
y C f y

shows a decaying nature. The effects of the nondimensional constant (a) on the skin friction
constant in both x − direction and y− direction are highlighted in Table 2. It is detected

that with an increase in the nondimensional constant (a), there is no effect of (a) on Re
1
2
x C f x

and Re
1
2
y C f y such that Re

1
2
x C f x, and Re

1
2
y C f y remains constant. In Table 3, our present work

with Elbashbeshy et al. [29] and Sandeep et al. [30] is found to be in good agreement.
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Figure 2. Effects of the nanoparticle volume fraction (φ2) on (a) f ′(η), (b) g′(η), (c) R(η), (d) Q(η).
(Pr = 6.2, K = 0.5, a = 0.5, c = 0.5).
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Figure 3. Effects of the dimensionless viscosity ratio (K) on (a) f ′(η), (b) g′(η), (c) R(η), (d) Q(η).
(φ2 = 0.01, Pr = 6.2, a = 0.5, c = 0.5).
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Figure 4. Effects of the stretching ratio parameter (c) on (a) f ′(η), (b) g′(η), (c) R(η), (d) Q(η).
(φ2 = 0.01, Pr = 6.2, K = 0.5, a = 0.5).
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Figure 5. Effects of the (a) nanoparticle volume fraction (φ2) and (b) dimensionless viscosity ratio
(K) on temperature profile θ(η). (Pr = 6.2, a = 0.5, c = 0.5).

Figure 6. Effects of the stretching ratio parameter (c) on temperature profile θ(η). (φ2 = 0.01,
Pr = 6.2, K = 0.5, a = 0.5).
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Table 2. Numerical values of Re
1
2
x C f x and Re

1
2
y C f y for (Al2O3 − Cu )/Water.

φ2 a K c Re
1
2
x Cfx Re

1
2
y Cfy

0.01 0.5 0.5 0.5 −2.4259 −1.5957

0.02 −2.6676 −1.7458

0.03 −2.9206 −1.9017

0.04 −3.1853 −2.0635

0.01 0.1 −2.4259 −1.5957

0.3 −2.4259 −1.5957

0.5 −2.4259 −1.5957

0.7 −2.4259 −1.5957

0.5 0.1 −2.2351 −1.1983

0.3 −2.3285 −1.3996

0.5 −2.4259 −1.5957

0.7 −2.5248 −1.7870

0.5 0.1 −2.2392 −0.2946

0.3 −2.3340 −0.9212

0.5 −2.4259 −1.5957

0.7 −2.5150 −2.3161

Table 3. Comparison of the present work with Elbashbeshy et al. [29] and Sandeep et al. [30] when
the rest of the physical parameters are zero.

Pr Elbashbeshy et al. [29] Sandeep et al. [30] Present Work

0.72 0.7672800 0.76727610 0.76726891

1 0.9547800 0.95478230 0.95487123

2 1.4714600 1.47145810 1.4713654

3 1.8690700 1.86907210 1.8690612

5 2.5001300 2.50013010 2.5000987

10 3.6603700 3.66037230 3.66029876

6. Conclusions

In the current article, a numerical investigation of three-dimensional hybrid nanomate-
rial micropolar fluid flow across an exponentially stretched sheet is conducted. By utilizing
some appropriate transformations, the system of PDEs is transfigured into the design of
ODEs and then solved via the bvp4c technique. The influences of different parameters are
demonstrated through tables and graphs. However, some conclusions can be drawn from
the current study.

• The velocity function is enhanced due to higher values of the solid
nanoparticle concentration.

• The velocity function is enhanced due larger values of the micropolar parameter.
• The micropolar function R(η) increases for higher values of the micropolar parameter

and nanoparticle concentration.
• The micropolar function R(η) declines for higher values of the micropolar parameter

and nanoparticle concentration.
• The temperature function is enhanced for higher values of the solid nanoparticle

concentration.
• Temperature function declines for higher values of the micropolar parameter.
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• A comparison of the present work with those of Elbashbeshy et al. [29] and Sandeep et al. [30]
when the rest of the physical parameters to be considered are zero are shown in Table 3.
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