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Abstract: Two different of Sm-loading fluorapatite (Ca10−2xNaxSmx(PO4)6F2, x = 1 and 2) glass-
ceramics were synthesized by a two-step melt sintering method. The samples were irradiated
with 50 keV He+ ions with a fluence of 2.6 × 1016 ions/cm2 at 593 K. The irradiation induced mi-
crostructural evolution were characterized by grazing incidence X-ray diffraction and cross-sectional
transmission electron microscopy. For the smaller Sm-doping samples, no phase transformation
is observed. Meanwhile, in the lager Sm-doping samples, the irradiation induced the crystals into
smaller nanocrystals. The mechanism of the transformation of the crystalline phase was also analyzed
and discussed.

Keywords: glass-ceramics; ion irradiation; helium bubble; nanocrystal

1. Introduction

The disposal of high-level waste (HLW) is a critical issue in the development of nuclear
energy [1]. The deep geological disposal is regarded as an effective method to deal with
this problem [2]. The complex environment of deep geological disposal means that the
HLW must be immobilized into extremely stable host materials [3]. At present, there are
three common immobilization materials: glass, ceramics and glass-ceramics [4]. Apatite,
pyrochlore, perovskite and other ceramic immobilization materials have been proven
to have outstanding chemical stability and strong radiation resistance [5–8]. However,
the ceramic immobilization materials have a strong selectivity to radionuclides, which
limits their industrial application. Glass-ceramics, which integrate the flexibility of glasses
with the stability of ceramics, have been widely investigated as potential immobilization
materials for the immobilization of HLW [9–13]. In previous studies, the radionuclide has
been successfully immobilized into pyrochlore glass-ceramic, which showed a low leaching
rate [14]. Nd-doped silicate apatite glass-ceramics were synthesized and proved to have
high chemical stability and hardness as well [15]. Glass-ceramics with apatite crystalline
phase have also been investigated and shown to possess good radiation resistance [16,17].

In addition, alpha decay is commonly observed for the heavy radioactive nuclei of
HLW. The produced α-particles might lead to the volume swelling, cracking and even
structural failure due to the evolution of helium irradiation, which ultimately reduces the
performance on the macrolevel of the immobilization materials [18–20]. Therefore, the
effect of helium irradiation on the immobilization materials must be considered. Previous
research mainly examined the influences of He ion irradiation on the ceramic immobiliza-
tion materials. It was found that He ion irradiation does not change the structure of the Nd
and Ce co-doped Gd2Zr2O7 ceramics, which were still relatively dense and uniform, and
no second phase existed [21]. The migration and coalescence of helium bubbles in the fluo-
rapatite induced by high temperature were also have been observed by in situ transmission
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electron microscopy [5]. In addition, the influences of the helium bubble formation in the
apatite with different anion substitutions were also studied experimentally [22]. Although
the above-mentioned studies may help achieve a better understanding of the effects of
helium irradiation on ceramic immobilization materials, the behavior of helium irradiation
in glass-ceramics is rarely reported. In this study, two varying Sm-loading fluorapatite
glass-ceramics samples were synthesized successfully, where the matrix is glass phase, and
the precipitate is an apatite crystal with a size of about 100 nm. In fact, the apatite-type
structure of AI

4AII
6(PO4)6X2 (AI, AII = Ca, Na, rare earths, fission products such as Tc and

I, and/or actinides, and X = OH, F, Cl, I or O) offers unique structural advantages as an
advanced nuclear waste form because a wide variety of actinides and fission products can
be incorporate into the structure through cation and anion substitutions [23]. Actually, the
lanthanide Sm and Na were substituted into the two cation Ca site and used as a proxy
for actinides (U and Pu) within the apatite phase [24], where two different Sm-loaded
samples are prepared to evaluate varying nuclear waste loading effects. Meanwhile, the
rare-earth Sm doping in wide band gap materials play an important role in high-level opti-
cal devices and luminescent applications [25]. Finally, the helium ions irradiation induced
microstructural evolution of the fluorapatite glass-ceramics were studied by 50 keV He+

ion irradiation at 593 K.

2. Experimental Procedure

Two different of Sm-loading fluorapatite (Ca10−2xNaxSmx(PO4)6F2, x = 1 and 2) glass-
ceramics (hereafter called as GC1 and GC2, respectively) were prepared in the SiO2-B2O3-
Na2O-CaO-P2O5-Sm2O3-F system (Table 1). The samples were synthesized by SiO2, H3BO3,
Na2CO3, CaHPO4·2H2O, CaF2 and Sm2O3 (>99.99% purity) through a conventional two-
step melt sintering method. The powders were first heated to remove moisture and other
volatiles. Subsequently, the powders were weighed, ball-milled for 4 h, and then melted in
an alumina crucible at 1350 ◦C for 2 h at the ambient atmosphere. The melt compounds
were quenched by water. As-prepared glasses were ball-milled again for 1 h, cold-pressed
into pellets, then sintered for 2 h at 700 ◦C to precipitate crystals. These pellets were cut
and polished to a mirror finish.

Table 1. The glass-ceramics sample composition in wt.%.

SiO2 H3BO3 Na2CO3 CaO CaHPO4 CaF2 Sm2O3

GC1 31.5095 21.2217 20.2956 9.1283 13.6300 1.3035 2.9113
GC2 30.9149 20.8213 20.7807 7.1186 13.3728 1.2789 5.7127

The well-polished samples were irradiated with 50 keV He+ ions to a total fluence
of 2.6 × 1016 ions/cm2 with ion flux of ~1 × 1013 ions/(cm2·s) at 593 K by using the
NEC-400 kV ion implanter in the College of Energy, Xiamen University. The irradiation
damage and ion ranges were evaluated using the stopping and range of ions in matter
(SRIM) code based on a simple Kinchin–Pease model. The displacement energies Ed are
not easily determined experimentally for ceramic compounds, which is dependent on
the crystallographic orientations, sublattice structures and elements [26–29]. However,
the displacement energies of each composition in apatite structure have been calculated
through simulations [28,29]. Therefore, the displacement energies of 67, 32, 22, 26 eV
for metal, F, O and P are adopted to evaluate the irradiation damage level in this SRIM
simulation [28].

The structures of the irradiated samples were characterized by grazing incidence X-ray
diffraction (GIXRD), cross-sectional transmission electron microscopy (XTEM). GIXRD
measurements were performed using a Rigaku Ultima IV Advanced X-ray diffractometer.
The diffractometer was operated in a α-2θ geometry with Cu Kα irradiation. The α-2θ
scans were performed in a step of 0.02◦ and a dwell time of 2 s. The incident angle of X-rays
was fixed at 0.5◦. Cross-sectional TEM samples of irradiated specimens were prepared
via 5 keV Ar ion milling on a Precision Ion Polishing System (PIPS, GATAN PIPS II 695).
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TEM experiments were performed by a Thermo Fisher Tecnai G2 F30 transmission electron
microscope at an accelerating voltage of 300 kV.

3. Results and Discussion

Figure 1 shows the conventional XRD patterns of GC1 and GC2. Two diffraction
patterns all contain sharp diffraction peaks and a broad hump. The broad hump is produced
by diffuse scattering of the glass phase. The sharp diffraction peaks are the diffractions
of the crystalline phase, which were in good agreement with the standard pattern of
Ca10(PO4)6F2 (PDF#71-0881). No extra diffractions of other phases indicates pure apatite
phase in these pristine crystalline samples. Meanwhile, the primary diffraction peaks of
GC1 and GC2 are shifted towards lower 2θ angle with relative the standard reference
pattern, and the offset increases with the Sm-doping amount, which means the crystalline
lattice expands. Since the average ionic radius of Na+ with a coordination number of 9 and
Sm3+ with a coordination number of 7 is larger than that of Ca2+ in apatite, the crystal
lattice of the doped sample swells [30].
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Figure 1. Conventional XRD patterns of pristine GC1 and GC2 samples.

Figure 2 shows the SRIM simulation results for a 50 keV He+ ion irradiation in GC1
to a fluence of 2.6 × 1016 He+/cm2. The maximum projected depth of 50 keV He+ ion
irradiation is estimated to be about 600 nm, and the Helium ion concentration range is
about 370 nm. Due to the close chemical composition of both glass-ceramic samples, the
calculated results are almost the same for both compounds.
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Figure 2. SRIM simulation results of displacement damage and He+ ion concentration as a function
of depth for 50 keV He+ ion irradiation in GC1 to a fluence of 2.6 × 1016 He+/cm2.

Figure 3 shows the GIXRD patterns of two pristine glass-ceramic samples, as well as
samples irradiated by 50 keV He+ ion irradiation to a fluence of 2.6 × 1016 He+/cm2 at
593 K. As shown in Figure 3, although the irradiation damage of SRIM simulation results
caused by He+ ion irradiation reaches about 0.5 dpa, the GIXRD patterns of two glass-
ceramic before and after He+ ion irradiation does not change obviously. On the one hand,
He+ ion irradiation is difficult to produce a considerable dense displacement cascades, and
most of the defects induced by He+ ion irradiation are isolated point defects. On the other
hand, the most energy of incident He+ ions is lost in ionization process and ultimately
transfer into the lattice heat through the ion path, which enhances the recombination
of defects [31]. In addition, the temperature of the above experiment is 593 K, which
promotes the recombination of defects as well. The reasons above inhibit the formation of
irradiation damage.
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Figure 4 shows the cross-sectional TEM micrographs of GC1 sample before and after
He+ ion irradiation. At the lower magnification image in Figure 4a, the sample is composed
of spherical precipitations and a matrix, as well as the precipitations are homogeneously
distributed in the matrix. The enlarged magnification image in Figure 4b clearly indicates
the precipitation sizes are ranging from 80 to 150 nm. Furthermore, no obvious contrast
of the irradiation layer is observed in Figure 4b, which is due to helium ion irradiation
is difficult to produce denser radiation damages. The high magnification TEM image
of Figure 4d is from the un-irradiation layer. It was found that the corresponding fast
Fourier transform (FFT) pattern of the matrix is amorphous phase, while FFT patterns
of the precipitation shows crystalline phase. Compared with the unirradiated layer, the
irradiation layer in Figure 4c, the FFT from the matrix and apatite still are the amorphous
and crystalline phase, which is in consistence with the GIXRD observation in Figure 3a.
Therefore, no phase transformation was observed for the 50 keV helium irradiation on GC1
samples at 593 K.
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Figure 4. XTEM micrographs of GC1 sample before and after He+ ion irradiation. (a) smaller
magnification of cross-sectional layer, (b) Enlarged magnification of cross-sectional layer, (c) high-
magnification image from the irradiation layer and the fast Fourier transform (FFT) from correspond-
ing regions; and (d) high-magnification image from the unirradiation layer and corresponding FFT
on selected regions.
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Figure 5 shows the XTEM micrographs of GC2 sample before and after He+ ion
irradiation. At lower magnification, compared with the pristine crystalline ceramic phase
with average diameter about 95 nm in Figure 5a, the irradiated crystalline ceramic phase
transforms into a smaller nanophase, as shown in Figure 5b,c. The enlarged image of
Figure 5c shows that the crystalline ceramic phase transforms into a nanophase with a
diameter of about 10 nm after He+ ion irradiation. The Moiré pattern and the corresponding
Selected Area Electron Diffraction (SAED) spots in Figure 5e also confirm the appearance
of nanocrystals.
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The ion radii of Sm3+ and Na+ are larger than Ca2+, which makes more lattice distor-
tion of crystalline ceramic phase with higher doping amount in glass-ceramic. Defects and
helium atoms introduced by He irradiation are more likely to migrate and annihilate in
these lattice distortions. Previous research results show that the doping of the lanthanide
element Ce reduces the critical temperature (Tc) and activation energy (Ea), therefore, en-
hances radiation tolerance of silicate apatite for heavy Kr irradation [32]. Generally, heavy
ion irradiation usually induces the amorphization of the crystalline phase [33,34]. On the
contrary, high temperature will promote the recrystallization of amorphization [35]. In this
experiment, the formation of nanocrystals is the result of the competition between the amor-
phization and recrystallization [36,37]. The formation of nanocrystals introduces a higher
interface density, which acts as good sinks for accumulation of defects [38]. Meanwhile,
the helium atoms at larger lattice distortion positions in GC2 may also induce the transfor-
mation of apatite crystal phase into nanocrystals. Previous studies have also reported that
strong lattice distortion leads to a decrease in the size of helium bubbles [39,40].

4. Conclusions

Two different of Sm-loading fluorapatite (Ca10−2xNaxSmx(PO4)6F2, x = 1 and 2) glass-
ceramics were successfully synthesized by a two-step melt sintering method. The pre-
cipitated apatite crystalline phase is homogeneously distributed in the glass matrix for
both samples. Then, the samples were irradiated with 50 keV He+ ions with a fluence of
2.6 × 1016 ions/cm2 at 593 K. The irradiation response of these glass-ceramics samples
under He ion irradiation were characterized by GIXRD and TEM. In GC1 glass-ceramic
sample with a smaller Sm-doping amount, no phase transformation is observed in the
crystalline ceramic phase. However, in the GC2 sample with a larger Sm-doping amount,
the crystalline ceramic phase transforms into a smaller nanocrystalline apatite phase. The
findings in this study provide some thoughts to radiation resistance of materials with
different radionuclide loading in HLW management.
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