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Abstract: Graphene oxide has been used in different fields of nanomedicine as a manager of drug
delivery due to its inherent physical and chemical properties that allow its use in thin films with
biomedical applications. Several studies demonstrated its efficacy in the control of the amount and
the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated
that oxide graphene layers are able to work as drug delivery or just to delay consecutive drug
dosage, allowing the operation of time-controlled systems. This review presents the latest research
developments of biomedical applications using graphene oxide as the main component of a drug
delivery system, with focus on the production and characterization of films, in vitro and in vivo
assays, main applications of graphene oxide biomedical devices, and its biocompatibility properties.

Keywords: graphene oxide; drug delivery; polyelectrolyte multilayer films; layer-by-layer

1. Introduction

Graphene-based materials have an important role in the development of drug deliv-
ery systems (DDS) due to their biocompatibility properties and the easiness with which
they can be functionalized with biomolecules. Moreover, it is simple to integrate them in
multilayer systems with applications in which controlled release of bioactive molecules
is necessary. Graphene is a two-dimensional compound, consisting in a monolayer of
aromatic carbon atoms (sp2-bound)/covalently bound, organized in a hexagonal lattice
structure [1], forming sheets with the thickness of a single atom [2]. It has interesting
mechanical properties, large surface area, and high electrical and thermal conductivities [3],
and it can exist in other forms, such as graphene oxide (GO) and reduced graphene oxide
(rGO) (see Figure 1), which are more hydrophilic, making them easier to solubilize and
disperse in aqueous or polyelectrolyte solutions (such as PBS—phosphate buffered saline)
and improving, therefore, their self-assembling properties [4,5]. The high content of groups
with reactive oxygen in GO enhances its ability to be functionalized with various materi-
als [1]. It is composed of carboxyl, hydroxyl, and ether groups, allowing it to absorb polar
polymers or polar molecules with ease, and, therefore, it is an excellent candidate to form
GO/polymer composites [4]. These active groups are ideal for molecule immobilization
on the GO surface and make it hydrophilic and a powerful candidate to be used as drug
carrier [6]. For instance, carboxyl groups are the main group responsible for GO colloidal
stability [7–9]. Furthermore, GO has good water and biomedium dispersibility as well as
good optical (absorption) and photothermal (conversion) properties [10]. Several function-
alization strategies can be used to enhance GO’s characteristics and promote its stability
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and bioavailability. This functionalization can be achieved, for example, by PEGylation
(PEG—polyethylene glycol) to improve biocompatibility, solubility, and stability in physio-
logical conditions, by double oxidation of the graphene to provide electrostatic stabilization,
by using a copolymer (e.g., Pluronic F127) to provide steric stabilization, by non-covalent
interaction (π-π interactions) with aromatic organic molecules (such as 1-pyrenebutyrate
(PB)) to improve aqueous stability, or by using synthetic peptides such as Poly L-Lysine
(PLL) to improve its biological activity [11–14]. The versatility in the functionalization of
GO allows its application in several devices. An example is the ability of functionalized
GO to cross the blood–brain barrier (BBB), which widens its use in biomedical research, as
it overcomes the inability of unstable chemicals or peptides to reach the brain [15,16]. Men-
donça et al. [17] also demonstrated the ability of rGO to cause a transitory BBB breakdown
and, therefore, cross this BBB into the brain.
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GO is also a versatile material to be part of multilayer systems with applications in
DDS and biosensors. Usually, the layer-by-layer (LbL) is the elected technique to build
these systems. It is based on the alternate adsorption of oppositely charged particles
(polyelectrolytes) and has been studied more each day, as these polyelectrolyte multilayer
films (PEMf) have the ability to allow the fine-tuning of DDS both in time and space, thus
permitting therapeutics to be delivered in situ during a course of several days or even
months. In the last years, graphene has been studied as a component of PEMf and has
shown promising results either as a nanocarrier or in stabilizing and/or delaying the drug
release in this DDS. This article revises the recent experiments on graphene-based DDS,
including the techniques usually used to develop multilayered films. Two types of uses
are described:

1. GO incorporated in multilayered systems in which it takes the role of carrier, helping
to transport the therapeutic agents, making sure that they reach the target before
being released, and helping to protect them from early degradation.

2. GO incorporated in multilayered systems in which it acts as a barrier or capping layer
with the purpose of delaying and/or controlling the drug release across time, in a
precise and stratified manner, with control of the release sequence.

Biocompatibility and recent applications are also addressed.

2. Graphene Oxide Multilayer Films

LbL is a versatile technique which allows the incorporation of multiple components
culminating in a smart and functional system. It is a simple and cost-effective process that
can be used in large-scale production and is eco-friendly, due to the fact that the solutions
used are aqueous [9]. LbL is the preferred technique to develop DDS with graphene, and
several methods can be used to produce thin films, such as microfluidics [19], perfusion [19],
Langmuir–Blodgett assembly [20], spin coating [5], drop coating [21], spray coating [22], or
dip coating [4], which is the most common one (see Figure 2).
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The major driving forces in LbL multilayered films are electrostatic forces (more
common), hydrogen bonding, charge transfer interaction, and covalent bonding [3,23].
LbL films can incorporate functional polymers [24], enzymes [25], small molecules [26],
polysaccharides [27], carbon nanotubes (CNT) [28], nucleic acids [29,30], or inorganic
nanoparticles (NPs) [31] and can be assembled in a wide range of substrates independently
of their size or shape, allowing for the creation of three-dimensional objects covered
in these films [3,32]. The fact that LbL films can be deposited on different substrates
without altering the properties of the films is very useful, because it allows the testing of
different film characteristics, which may require different substrates [9,33], for example, the
quartz crystal microbalance (QCM), which requires the films to be assembled in a QCM
crystal sensor/lamella [34,35], or the transmission electron microscopy, for which the films
need to be deposited onto copper grids [36,37]. This also allows for their application in
multiple biomedical devices without fear that their properties will change. Fox example,
they can be applied in flexible substrates that can adhere to tissue and deliver different
types of drugs [7] or odd-shaped substrates as coatings for biomedical implants, such as
cardiovascular stents [38] [9,33]. Furthermore, LbL films containing GO can be used, for
example, in tissue engineering [11,39], as carriers for vaccines [40], as antibacterials [41], in
cancer therapy [42], or in biomedical imaging [43–45].

The incorporation of GO in a multilayered film is a chemistry game; it is necessary
to have stable chemical interactions in the interfaces of the layers to avoid interdiffusion
of components and to ensure a correct growth of film. Usually, to avoid aggregation
or agglomerates on the surface of GO layers, bilayers of charged GO are added. GO
has a natural negative charge and can act as a negatively charged component in LbL
without further functionalization, and the positively charged GO can be obtained by amine
functionalization [9,46–49]. As a result, there is obtained a thin and smooth bilayer of GO
that can be incorporated between polyesters or polymeric thin layers. GO can interact with
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other molecules via hydrophobic or electrostatic interactions, hydrogen bonding, or π-π
stacking. GO can be non-covalently functionalized using LbL to improve dispersibility
and avoid aggregation, using, for example, chitosan (Chi)/dextran, Chi/sodium alginate
(SA), or protamine sulfate/SA [6,33]. Small molecules, non-polymeric in nature, are more
difficult to incorporate into LbL assemblies, because they can penetrate the graphene
multilayers, and that can affect the growth of the multilayered system [6].

To start a multilayered film, it is necessary to charge the substrate to enhance the
adsorption of the first layer. The most common assembly process is to start with a negatively
charged substrate that is usually obtained by piranha solution (composed of sulfuric acid
(H2SO4) and hydrogen peroxide (H2O2) in the proportion of 7:3, v/v) and oxygen plasma
treatment [50] and, therefore, a negatively charged layer. However, it is also possible to
invert the order, functionalizing the substrate with positive charges by dipping the substrate
in APTES solution ((3-aminopropyl) triethoxysilane) (3 min). Furthermore, substrates
should be previously cleaned to remove organic contaminants with piranha solution
followed by a rinse with deionized (DI) water [46]. The cleanness and functionalization of
substrate is important to ensure the homogeneity of the following layers. Usually, the films
exhibit a linear growth; however, this can vary on the first few bilayers, due to interaction
with the chosen substrate [9].

The pH of the dipping solutions can greatly affect the resulting film’s thickness and
roughness, as it can affect the charge balance between the oppositely charged components
and the degree of ionization of weak polyelectrolytes. If the pH and pKa of the dipping
solution are near each other, the film’s thickness is increased [46,51]. The use of different or
even cross-linked polymers in LbL films allows for the control of the porosity and rate of
degradation and dissociation of the films [51].

The growth of a multilayered film can be monitored by several techniques, and it is
crucial to perform a stepwise characterization to ensure the homogeneity of each layer, espe-
cially when different types of materials are included, as usually happens in a DDS in which
graphene can be intercalated with polymers, NPs, drugs, or other biomolecules. Table 1
summarizes commonly used techniques to perform this characterization. Furthermore, a
careful monitoring of the drug’s release profile is important. In order to access this, for the
most part what happens is the incubation of the films in physiological conditions (generally
PBS at 37 ◦C), and then the PBS solution is analyzed through various methods which might
include: UV-visible/fluorescence spectroscopy to evaluate the release kinetics [34,36,52–54];
micro-BCA kit to evaluate loading efficiency [55]; measurement of fluorescence spectra
for fluorescent molecules [56]; ELISA for release studies of some proteins [57]; and gel
electrophoresis and circular dichroism (CD) spectroscopy to evaluate whether proteins
released from films maintain their primary and secondary structures [58,59]. Notwithstand-
ing, the erosion of a multilayered DDS can be followed using the same technique that was
applied to follow the growth of the film to obtain a detailed interpretation of the drug
release behavior.

Table 1. Compilation of different techniques used to characterize the assembly of LbL films which
contain GO.

Technique Purpose
UV-Visible/Fluorescence Spectroscopy GO structure [58]

Atomic Force Microscopy (AFM) Surface morphology and roughness
[21,32,34,35,57–60]

Scanning Electron Microscopy (SEM) Surface morphology [21,35,36,54–58]

Transmission Electron Microscopy (TEM) Surface morphology [36,37,61]
GO structure [62]

Dynamic Light Scattering (DLS) method Zeta potential and particle size and
distribution [36,37,55,61]

Quartz Crystal Microbalance (QCM) Layer adsorption [21,34,35,54,63]
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Table 1. Cont.

Technique Purpose
Profilometry Layer thickness [56,64]

Raman Spectroscopy (RS) Layer deposition [61]
GO structure [58]

SQUID—Field-dependent magnetization
measurement Magnetism measurement [61]

Fourier Transform Infrared Spectroscopy (FTIR) GO structure [58]

Surface Plasmon Resonance (SPR) Film growth [65]

Scanning Tunneling Microscopy (STM) Characterization at molecular scale [66,67]

X-ray Diffraction GO structure [33,58,68,69]
Interlayer space [65]

X-ray Photoelectron Spectroscopy (XPS) Film chemical characteristics [69,70]

3. Graphene Oxide as Carrier in Drug Delivery

Ideally, nanocarriers must have a size between 30 and 200 nm to be retained in blood
vessels. Above this size, they are prone to aggregation in the liver or the spleen, and, below
that, they can suffer blood renal filtration, being filtered from the plasma to the urine [8].
When encapsulating or bonding a drug to its respective carrier, it is also important to
consider the ratio of drug:carrier, as this can affect encapsulation/bonding efficiency [71].

In recent years GO has gained a lot of attention for its potential use in biomedical
applications, with several publications reporting its benefits as a drug in cancer ther-
apy [72–81]. For example, Liu et al. [71] investigated a possible nanocarrier for oral drug
administration in cancer treatment, developing a thin film with graphene as nanocarrier
and pingyangmycin (PYM) as the anti-cancer drug of choice. Orally administered drugs
have reduced side effects when compared with IV administration and are more easily
accepted by the patients; however, they have some drawbacks, such as being easily de-
graded by the gastric acid and pepsin present in the stomach, low bioavailability, rapid
clearance, and poor tissue distribution. The developed film was composed of poly(acrylic
acid)-cysteine (PAA-cys), poly(allylamine hydrochloride) (PAH), and GO as follows: PAA-
cys-PAH-GO-PYM. PAA-cys helps the DDS to adhere to the small intestine mucus layer,
improving the drug bioavailability, and PAA-cys and PAH polyelectrolytes are cross-linked
in the surface of the GO-PYM conjugate and help protect the nanocarrier and drug from
gastric acids, allowing the safe passage of the DDS to the intestine, where it can release the
drug. Drug release was higher at lower pH, further demonstrating the potential of this
DDS in improving targeting to the tumor tissues (acidic environment) and reducing effects
in normal tissue.

Another study reports the use of GO NPs as nanocarriers to enhance the drug bioavail-
ability and water solubility. GO is subjected to the “piercing effect” and, therefore, is
easily internalized by cells, and its sheet-like structure helps to stabilize the capsule layers,
avoiding any drug escape before it reaches its target, making it an ideal choice for this kind
of application. Here, they coated GO NPs with a single layer of carboxymethylcellulose
(CMC) (to increase drug loading capabilities), with curcumin (Cur), a powerful anti-cancer
“drug”, encapsulated into CMC. CMC was then cross-linked with poly N-vinylpyrrolidone
(PVP) to produce stimuli-responsive NPs (redox-responsive disulfide linkage). The high
glutathione concentrations inside the tumor induce breakage on the bridge between CMC
and PVP and, therefore, cause the curcumin to be released. Further NP functionalization
was obtained by conjugation of PEGylated monoclonal folic acid antibody (FA) onto the
NP surface. This is an important step, as FA binds to folate receptors that are highly
expressed in cancer cells, thus helping to direct the NPs to these cells and allowing them
to be internalized by phagocytosis. PEGylation helps to reduce protein adsorption onto
nanocarriers (preventing “protein corona” and, therefore, renal clearance), prolongs NPs
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blood circulation, and enhances binding efficiency of FA to the receptors. It also helps
to prevent the drug from leaking early and protects it against degradation or enzymatic
cleavage. The final composition of the NPs was Cur-FA-CMC/PVP GO NPs. Another
important piece of information to retain is that highly charged NPs suffer less aggregation
due to repulsive electrostatic forces, allowing for more stable dispersion in physiological
conditions [8,61].

Associated with cancer treatment, several stimuli-responsive films which can be used
in photothermal therapy are also being studied [61,82–85]. Photothermal therapy relies on
the capacity of NPs to convert NIR (near-infrared radiation) to vibrational energy, generat-
ing heat and thus killing cancer cells (where the NPs accumulate). The high efficiency of
NIR is mainly because it can reach the NPs without damaging the tissues in between, since
biological tissues do not possess chromophores absorbing in the NIR region. GO is a great
nanomaterial to use in these kinds of films, as it can generate heat sufficient to kill cancer
cells when exposed to NIR, being even more effective than CNT [86]. Therefore, by using
GO, it is possible to obtain a NIR-responsive capsule/film with drug loading capabilities
and in which GO not only serves as a structural component but also as a NIR responsive
material, avoiding the use of gold and silver NPs or addition of NIR-dyes or CNT (which
were used until now to fabricate NIR-responsive capsules). This allows for a much simpler
and cost-effective process [10].

A study led by Xie et al. [33] successfully developed a magnetic DDS based on GO
sheets, with both magnetic and photothermal response. This kind of particle can be used
in targeted therapy and has been greatly studied in cancer applications. For this work,
Xie et al. [33] developed a graphene oxide-based nanocomposite loaded with doxorubicin
(DOX—an antitumor antibiotic). GO has a large DOX loading capacity, making it the ideal
nanocarrier. To magnetize the GO sheets, the authors used the thermal reaction method to
deposit Fe3O4 onto the GO sheets. However, mGO (magnetic GO) is even more prone to
aggregation than GO, and, therefore, it requires further functionalization. For that purpose,
mGO sheets were coated with Chi and SA through the LbL technique. The final composite
composition was mGO-Chi/SA-DOX. A ratio of mGO sheets:Chi:SA of 1:4:4 was needed in
order to achieve a stable dispersion. DOX was loaded via π-π stacking and electrostatic
attraction. They successfully developed a nanocarrier that not only could be directed to the
target cells with magnetism, as it had strong photothermal response, causing the cancer
cells to die upon NIR irradiation, but had a pH-dependent release of DOX, ideal to use
with cancer cells that have a pH lower than normal cells.

Another example is GO-iron oxide (IO) PEGylated nanocomposites (GO-IONP-PEG)
that can be used as a drug carrier triggered by a magnetic field, being used in photothermal
therapy. GO functionalization with PEG greatly increases its stability in physiological
solutions. In these cases, GO-IONP-PEG particles can be loaded, for example, with DOX
by π-π stacking and then be used in cancer treatment. However, this composite can also
be used as a t2-weighted magnetic resonance contrast in tumors, as demonstrated by
Ma et al. [87].

Another potential application for GO-based compounds is as a carrier and/or enhancer
for antibacterial or antimicrobial agents [6,76,88–90].

As an example, we can use the work carried out by Cao et al. [6], in which they
developed a system for sustained release of an antibacterial peptide (G(IIKK)4I-NH2) using
GO as a nanocarrier and assembling it into a thin film that can be used, for example, as
coating for surfaces or devices. G(IIKK)4I-NH2 cannot be efficiently loaded into LbL by
itself due to its low charge number, hence the need for a GO. The films were composed of
G(IIKK)4I-NH2 (positively charged), poly(acrylic acid) (PAA, Polyanion), and poly(β-amino
ester) (PBAE, polycation), and it was possible to confirm that G(IIKK)4I-NH2 retained its
antibacterial properties even when incorporated in the films. The release speed can be
tuned by varying the number of layers of PBAE.

GO’s ability to reach the brain makes it also a good candidate for neurological applica-
tions [15,91,92], as reported, for example, by Xiong et al. [91], who developed a DDS to treat
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Parkinson’s disease (PD) using lactoferrin (Lf)-functionalized GO as a nanocarrier for the
natural drug puerarin (Pue), which presents anti-PD properties (Lf-GO-Pue). Lf was used
for its ability to bind to the vascular endothelial receptor in the BBB and, therefore, promote
the transport of this DDS across this barrier through a receptor-mediated transport. Their
work showed promising results, with the in vivo test showing that, in PD-induced mice,
there were significantly less neuronal damage and compartmental deficits.

Furthermore, it is possible to obtain hollow capsules of rGO that can be used to incor-
porate particles or bioactive molecules. These capsules were obtained by the sequential
adsorption (due to electrostatic interactions) of positively charged (rGO-NH3

+) and nega-
tively charged (rGO-COO−)) onto a sacrificial PS (polystyrene) substrate, which can then
be removed by tetrahydrofuran (THF) solvent exposure (see Figure 3) [3].
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Besides the already mentioned examples, there are several others that report using GO
as a nanocarrier, for example, for proteins, protecting them against proteolysis and helping
retain their activity [93]; as a carrier for pirfenidone (a drug used to treat subarachnoid
hemorrhage) [94]; as a carrier for phytomedicines, augmenting their biocompatibility and
reducing their toxicity [95]; as a carrier for famotidine (an anti-ulcerous medicine), reducing
its side effects through a controlled and sustained release [96]; as a carrier for quercetin
(a bioactive flavonoid with powerful antioxidant characteristics), helping circumvent its
low bioavailability, extensive first passage metabolism, and instability in aqueous intestinal
fluids [97]; as a carrier for transdermal delivery (hydrogel) of ondansetron, a medicine
to help control vertigo that has low bioavailability and short half-life [98]; as a carrier for
growth factors to enhance cell differentiation [99]; and as a carrier for pain management
medicines such as flurbiprofen or buprenorphine, helping reduce its side effects and
promoting a sustained release without constant need for dosing [100,101].

4. Graphene Oxide for Controlled Drug Release

In a DDS, it is of the utmost importance to control the release of the bioactive com-
pounds. Recently, graphene-based materials, such as graphene oxide, have been gaining a
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lot of attention for their ability to act as a barrier or capping layer, delaying and controlling
the release of biomolecules across time [21,57,102–106].

There are several studies using ovalbumin (OVA—the main protein found in egg
white, largely used as a nutrient supplement) as model drug; some authors were able
to use GO either as a nanocarrier or a capping layer to build thin films, preventing the
early release of the biomacromolecule and obtaining, therefore, a long-term delivery that
lasted over 70 days [35]. This mechanism was also applied in films containing OVA as
the model protein/drug and PBAE as a hydrolytically degradable polymer. They were
able to delay the release of OVA from less than an hour to several weeks by using GO as
a capping layer in films with (PBAE/OVA)20(GO+/GO−)n, or as a barrier layer in films
with (PBAE/OVA-AF555)20(GO+/GO−)5(PBAE/OVA-TR)20(GO+/GO−)2(PBAE/OVA-
FL)20 (where AF555—Alexa fluor; FL—fluorescein; and TR—Texas red were used as labels
to differentiate between OVAs). When GO was used as a barrier layer, a sequential and
controlled release of OVA was possible, with the possibility to control the release gaps by
varying the number of GO bilayers. Furthermore, GO’s low permeability helps to reduce
interlayer diffusion. This opens up a world of possibilities for DDS with multiple drugs
which can be release in a sequential and ordered manner [57].

In an electro-responsive film, GO was also used as a barrier layer. OVA was used as
model drug, and rGO was also incorporated in the films as an electroconductive material
(because GO has poor conductivity). (PBAE/rGO−/GO+/OVA/GO+/rGO−)n (n stands
for the number of repeated layers) showed negligible OVA release when there were no
stimuli present and 50 times more OVA release upon electric stimulation, further confirming
GO barrier capabilities [56].

rGO can also be used as a barrier layer in order to prevent spontaneous release
of cDNA, as demonstrated by Jeong et al. [21], who developed a method to activate
DNA nanodevices based on electro-responsive films containing rGO with the following
composition: (PBAE/cDNA/rGO+/cDNA/rGO+/PEDOT:PSS)n/(rGO+/rGO−)n, where
PEDOT:PSS stands for poly(3,4-ethylenedioxythiophene) polystyrene sulfonate.

GO is also able to prevent the release of drugs in multilayered systems. A recent work
related with LbL films composed of brimonidine (Brim), an alpha-2 adrenergic agonist used
normally to lower intraocular pressure, encapsulated in polycyclodextrins (PolyCD+Brim)
intercalated with layers of PBAE and bilayers of charged GO showed that GO can delay
the drug release for several days. The study compares films with and without GO (the film
(PBAE/PolyCD+Brim)6/GO+/GO−/(PBAE/PolyCD+Brim)4GO+/GO−/(PBAE/PolyCD
+Brim)4 and the film (PBAE/PolyCD+Brim)4), and it was observed that the GO has an
important role in the management of drug behavior. The number of GO bilayers is propor-
tional to the delay time, suggesting that this system is a good model to fine-tune a DDS
able to deliver a precise drug concentration at a specific period of time [34].

GO can also be used to coat a siRNA-loaded porous silicon (Si) NP in order to delay
siRNA release, being able not only to slow down the release time but also the enzymatic
degradation of the siRNA and the dissolution of the porous Si NP [107].

5. Graphene Oxide: Biocompatible or Cytotoxic?

Graphene biocompatibility is a controversial theme. Whereas some authors report
graphene as biocompatible or with no or negligible cytotoxicity, others report it as cytotoxic
with the potential to cause damage to living organisms.

Particle size can have an impact on cytotoxicity. Particles with sizes up to 100 nm are
able to enter the cell, being able to enter the nucleus below 40 nm. Furthermore, particles
below 35 nm are able to cross the BBB. When graphene enters the cell, there is a potential to
cause cell damage; this can perhaps be minimized through functionalization [108]. In the
majority of cases, coating GO with biocompatible polymers helps improve its biocompati-
bility and reduce its toxicity [87]. Furthermore, Hu et al. [109] propose that GO cytotoxicity
is due to a physical damage to the cell membrane that occurs upon initial contact, and,
therefore, it doesn’t depend on time [96,110].
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GO functionalization with chitosan allows further biocompatibility, due to chitosan’s
antibacterial, antifungal, mucoadhesive, and hemostatic properties and its positive charge,
which allows for the functionalized GO to bind with biomolecules with negative
charges [7,111].

5.1. In Vitro Assays for Graphene Oxide

The first step is to assess GO toxicity, resorting to in vitro testing in various cell lines.
Cytotoxicity is evaluated by incubating films/particles with desired cells in different

ratios and then accessing cell viability, for example, through cck-8 assay [61,62], MTT
assay [35,70,109], live/dead assay [61], or WST-8 assay [112], among others. Even though
several groups report using MTT assay, this is not the ideal test for assessing cytotoxicity of
GO, because it reacts with the MTT reagents, directly creating a false-positive cell viability
regardless of the cell’s state [112].

Internalization/cellular uptake can be studied by labeling the films or nanocomposites
with fluorescein isothiocyanate (FITC) and then staining the nuclei with 4′,6-diamidino-2-
phenylindole (DAPI) to study the co-localization using confocal laser scanning microscopy
(CLSM) [33,61].

According to Hu et al. [109], protein corona has an impact on GO cytotoxicity. In
order to evaluate that, they coated GO with fetal bovine serum (FBS), performed a cell
viability assay, and compared the A549 cell’s viability either with GO or FBS-coated GO and
concluded that, contrary to GO, which presented a cell viability of around 60%, FBS-coated
GO presented a viability of almost 100%, either at 4 or 37 ◦C.

Several authors demonstrated that GO or rGO-containing films/DDS show no or
negligible toxicity to cells, in some cases even at high concentrations [33,34,58,87,91].
Agarwal et al. [70] demonstrated biocompatibility of rGO with rat pheochromocytoma
cells (PC12), human oligodendroglia (HOG) cells, and human fetal osteoblast (hFOB) cells.
Similarly, Hong et al. [57] detected GO cytotoxicity, but they decided to use one of the most
sensitive primary cell types, hematopoietic stem cells (HSCs), with 20% of the cells remain-
ing after 10 days. However, it is important to mention that, besides the high sensitivity of
the cells to external perturbations, GO concentrations used were much higher than one
would normally expect to use in vivo, and, therefore, this represents a promising outcome.

There are reports that state that GO has a dose-dependent cytotoxicity. Using human
dermal fibroblast (HDF) cells, Wang et al. [62], demonstrated that GO in concentrations up
to 20 µg/mL shows no toxicity; however, in concentrations of 50 µg/mL, the damage to
the cells was obvious, with a growing decrease in cell viability and cell adhesion and with
GO being able to enter the cell.

Another study that focused on the dose-dependent cytotoxicity of GO was the one
performed by Liao et al. [112]. They were able to prove this dependency; however, even
with doses up to 100 µg/mL, the cell viability (human skin fibroblast) remained above 80%.
They also accessed GO’s hemolytic activity and verified that it was correlated not only with
dosage but also with the particle’s size, being that smaller GO showed increased hemolytic
activity. That being said, it is important to mention that GO sheets covered with chitosan
sowed no hemolytic activity.

The effect of physical contact of GO with the cell membranes (HDF cells) was also
evaluated in the past by placing the Col/GO (collagen) films on the wall of a culture well.
They tested two hypotheses, one in which the GO was on the outside, Col/GO, and another
one where Col was on the outside, GO/Col, and, therefore, there was no direct contact of
GO with cell membrane. Their results show a decrease in cell viability with the films with
GO on the outside, but it remained above 80% [35].

Taking into consideration the reports presented here, it is clear that further research
regarding GO toxicity is still required, but the majority of the studies seem to suggest GO
has a negligible toxicity, demonstrating that it is safe to use in biomedical applications [113].
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5.2. In Vivo Assays for Graphene Oxide

GO in vivo toxicity is not well described yet, but we can nonetheless find some reports
on this subject. In vivo assays (mice) of Lf-GO-Pue DDS show that after 8 days of treatment
there are no differences either in the blood panel or in histological analysis of major organs
between controls and treated mice [91].

Wang et al. [62] obtained results in mice somewhat similar to what they had already
observed in vitro, i.e., that in concentrations up to 0.25 mg (administered by tail injection)
there was no cytotoxicity, but in doses of 0.4 mg the toxic effects of GO are apparent,
causing chronic toxicity, lung granuloma, and even death of some animals caused by
GO agglomeration in the mouse airways leading to suffocation. The kidney’s inability
to clear GO from the system, perhaps due to its sheet-like structure, may hamper its
biomedical applications.

In another study, mice with 5 consecutive days of high rGO doses administered orally
(300 mg/kg for small nanosheets and 60 mg/kg for large nanosheets) showed no lasting
alterations in locomotory activity, neuromuscular coordination, behavior, anxiety, and
memory or at a physiological level. The mice did show reduced energy and locomotor
activity in the first days of treatment; these effects disappeared after 15 or 60 days. This can
be due to the abnormal accumulation of rGO particles in the organs during the first days
that tend to disappear with time [114].

That being said, there are several authors who report the harmful effects that GO can
have in several models; namely, Fu et al. [115] reports the damaging effects to mice offspring
in the lactation period; Chen et al. [116] and Dasmahapatra et al. [117] reported the toxicity
GO poses to fish, especially when it is “released” into the environment, either during
embryogenesis or adulthood; and Guo et al. [118] reported these effects in W1118 flies.

There are still few studies regarding GO toxicity in vivo, and further studies are
required. It would be especially interesting to have reports about its toxicity in non-human
primates before we can definitely conclude that it is safe. However, the reports existing so
far look promising [119,120].

6. Graphene Oxide in Biomedical Applications

GO has many potential applications in the biomedical fields as, for example, part
of wound-healing membranes or dressing patches [121–123]; as non-viral gene transfer
vectors [124,125]; as part of oxygen delivery systems [126]; as part of mosquito-bite pro-
tective fabrics [127]; as a substrate to graft polymer brushes in order to obtain scaffolds
that can be used in cell proliferation and tissue engineering [128]; as coating for biomed-
ical implants [129–131]; as bioactive components or scaffolds in bone tissue engineer-
ing/regeneration [132–134]; as scaffolds to drive neuronal growth and regeneration [92];
as parts of biomimetic interfaces for monitoring cell behaviors [135]; as a therapeutic
anti-angiogenic agent [136]; as a component in contact lenses to help corneal epithelial
healing [137]; as part of a self-healing hydrogel capable of slow release of lubrification for
artificial joints [138]; as part of free-standing films with applications in tissue engineer-
ing and wound healing [111]; or even as part of biosensors to track non-communicable
diseases [139].

For example, it is possible to functionalize GO using synthetic peptides (Pep), with
osteogenic or neurogenic capabilities, forming a Pep-GO conjugate which is biocompatible
and electro-conductive, and which can be used either as scaffolds or coating for biomedical
devices. These conjugates have the ability to promote, for example, cell adhesion and
proliferation, neurogenesis, or osteogenesis. This type of functionalization (contrary, for
example, to PEG, dextran, or poly(acrylic) acid functionalizations, which are inert and do
not promote healing) can instruct the cells towards healing using biochemical cues. These
functional graphenic materials (FGMs) are obtained by covalently functionalizing GO
with bioactive moieties. For this work, Claisen graphene (CG) was used for its enhanced
conductivity and biocompatibility when compared with normal GO. GC is a reduced
GO with several carboxylic acids in the surface and edges of the sheets. As for peptides,
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polyglutamate (p(glu)) and polylysine (p(lys)) were used for their osteogenic and cellular
adhesion enhancement properties, respectively [140].

Another example of a coating for biomedical devices is the work reported by Gao et al. [7]
which reported a chitosan-functionalized GO (GOChi)/Heparin (Hep) coating for a biodegrad-
able magnesium alloy stent to improve its corrosion resistance and biocompatibility. These
stents can be used as interventional therapy to treat cardiovascular disease and, therefore,
minimize inflammatory reactions and in-stent restenosis, which occurs with metal stents.

Microfluidic immunoassay devices are another possibility, as reported by Miyazaki et al. [141],
who developed a device based on poly(methylmethacrylate) (PMMA) coated/functionalized
with a thin film of poly(ethylene imine) (PEI) and GO ((PEI/GO)5). The antibody of choice
was anti-rat-IgG. This coating enhanced the PMMA’s wettability (which can influence pro-
tein adsorption, blood coagulation, and platelet, cell, and bacterial adhesion), hydrophilicity,
and roughness, which helps the adsorption of the antibodies. Therefore, they were able
to improve the antibody binding efficiency, reducing the time of incubation from 2 h to
15 min, when compared to uncoated PMMA, to obtain a good surface coverage.

Some examples of biosensors are, for example, the work done by Kumarasamy et al. [69]
and Mascagni et al. [65]. The first one developed an ultrasensitive DNA hybridization
sensor using a one-step (simultaneous electro-reduction of both graphene oxide and gold
chloride and co-deposition techniques) electrodeposition-assisted LbL technique to obtain
it. A glassy carbon electrode (GCE) was coated with gold NPs (AuNPs) and rGO. The
AuNP/rGO/AuNP/GCE composite with 3D nanoarchitecture had self-healing properties
and was used to immobilize DNA onto its surface. This can be useful, for example, for
cancer diagnosis. In its turn, Mascagni et al. [65] demonstrated the GO potential to be used in
biosensors, as they successfully developed a film capable of sensing glucose. This potential is
mainly due to the high electrical conductivity of graphene oxide and its ability to maintain
the biocatalytic activity of the enzymes used to sense glucose.

Tissue engineering is also an emerging field in which GO has been widely used.
Shin et al. [11], for example, presented a method based on GO-PLL particles and the
LbL technique particles to construct 3D tissue structures with cardiac cells that presented
spontaneous beating behavior and pumping capabilities mimicking the native heart tissue.
GO showed to improved cell adhesiveness, facilitating cell separation and stacking while
allowing the passage of oxygen and nutrients.

As mentioned before, stimuli-responsive devices have a huge part to play in future
biomedical applications. Deng et al. [61] developed a hybrid microcapsule (h-MC) which
was capable of responding to two external stimuli (magnetic field and NIR laser) when they
were simultaneously applied, augmenting, therefore, the ability to control drug release
(DOX, in this case). The microcapsules are formed by layer-by-layer using iron oxide-
decorated graphene oxide (Fe3O4@GO) and SA, Chi, and hyaluronic acid (HA), which
are deposited onto a sacrificial template (monodisperse spherical HCL-soluble melamine
formaldehyde resin particles). The graphene capsules can then be loaded with DOX through
pH control. Chi and Alg are biocompatible and respond to both pH and temperature
stimuli. HA has a great biodistribution in cancer cells. Polysaccharides in general are
able to interact with cell membranes, promoting their internalization. The authors have
successfully developed a stimuli-responsive h-MC (SA/Chi/Fe3O4@GO/Chi/HA) with
negligible cytotoxicity that can be used as hyperthermia therapy.

Even though the vast majority of reports related to stimuli-responsive devices are in the
oncology area, there are some reports in other fields of medicine, such as Li et al. [15], which
harnessed GO’s strong NIR absorption and hyperthermic effects in order to develop a con-
jugate which can be used to treat Alzheimer’s disease (AD). They used carboxyl-modified
GO (GO-COOH) and functionalized it by covalent interactions with diaminotriethylene
glycol to obtain amino-functionalized GO (AGO). After that, the AGO conjugated with
activated ThS (thioflavin-S) to obtain GO-ThS. ThS can selectively bind to Aβ fibrils, and
GO has the ability to pass the BBB and can effectively generate heat upon NIR irradiation
and, therefore, promote the dissociation of Aβ fibrils (Figure 4). NIR spatial precision and
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capacity to penetrate tissues makes it a great asset in targeted therapy, because it avoids
damage to surrounding tissues. The author proved that both in PC12 cells and in cere-
brospinal fluid (CSF) of mice that GO-Ths, upon NIR irradiation, can effectively dissociate
Aβ plaques/fibrils (which are the pathological hallmarks of AD), making it a great candi-
date for AD photothermal treatment. Moreover, Aβ dissociation can be monitored through
changes in ThS fluorescence upon binding with these fibrils (Figure 5). Silva et al.’s [142]
work is another example. They showed that nanographene oxide (GOn—average sizes of
197.6 ± 11.8 nm) can permeate the skin, with no cytotoxic effects. GOn dispersions are able
to absorb NIR radiation and can, therefore, be used to apply local photothermal therapy or
as DDS to treat skin conditions.
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With the increasing rise in antimicrobial resistance across the globe, there is an urgency
in find alternatives to the use of antibiotics, and, therefore, GO has also been studied in this
context. One example is the work developed by Wu et al. [143], which demonstrated that
GO alone does not show antimicrobial activity and can in fact promote bacterial growth and
attachment; however, GO-based materials such as GO-polyoxyalkyleneamine (POAA) (in
concentrations over 50 µg/mL) and GO-Chi can be used with success as microbial agents,
as they reduced bacterial viability when added to the bacterial colonies. Another example
is Katuwavila et al.’s [144] work that showed that cephalexin (CEF), a broad-spectrum
antibiotic, antibacterial activity could be enhanced and more sustained when CEF was
loaded into PEGylated GO (GO-PEG-CEF).

As stated throughout this chapter, there have been several studies regarding GO
applications in biomedical devices [145] in the last few years, proving its great potential in
this field. Its physical and chemical properties allied with the versatility of the layer-by-
layer technique allow for an easy and cost-effective way to develop DDS applied to the
most varied biomedical devices.

7. Conclusions

Graphene oxide is a versatile material that has been emerging in the biomedical field
in the last few years, mainly due to its physical and chemical properties. Furthermore, the
simple self-assembly method of LbL allows for an easy, quick, and cost-effective process
that allows large-scale production. As stated throughout this review, there are numerous
applications which can benefit from GO’s incorporation either as a carrier, due to the
large amounts of drug it can encapsulate and transport (even across the BBB), or as a
structural component maintaining the integrity of the DDS until they reach their target,
preventing leakage of bioactive compounds, or as a barrier or capping layer allowing for
the fine-tuning of this DDS and promoting a sequential and time-controlled release of
biomolecules. However, there are several challenges ahead, and further research in this
field is still necessary. Interdiffusion between layers, even when GO is used, remains a
problem, and further studies are needed in order to really understand how to fine-tune the
sequential release of drugs over long periods of time. The controversial results obtained
in the cytotoxic studies also need further enlightenment, as there are few studies clearly
stating GO toxicity in vivo, especially long-term, and this needs to be addressed for the
proposed applications to be used as day-to-day tools in patient care. Furthermore, even
though GO’s potential for biomedical applications still requires further evaluation, new
and promising applications are being studied every day.
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Abbreviations

AD Alzheimer’s Disease
AF555 Alexa Fluor
AFM Atomic Force Microscopy
AGO Amino-functionalized GO
APTES ((3-aminopropyl) triethoxysilane)
AuNPs Gold Nanoparticles
BBB Blood Brain Barrier
Brim Brimonidine
CD Circular Dichroism
CEF Cephalexin
CG Claisen Graphene
Chi Chitosan
CLSM Confocal Laser Scanning Microscopy
CMC Carboxymethylcellulose
CNT Carbon Nanotubes
CSF Cerebrospinal Fluid
Cur Curcumin
DAPI 4′,6-diamidino-2-phenylindole
DDS Drug Delivery System
DI Deionized
DLS Dynamic Light Scattering
DOX Doxorubicin
FA Folic Acid Antibody
FBS Fetal Bovine Serum
Fe3O4@GO Iron Oxide decorated Graphene Oxide
FGMs Functional Graphenic Materials
FITIC Fluorescein Isothiocyanate
FL Fluorescein
FTIR Fourier-Transform Infrared Spectroscopy
G(IIKK)4I-NH2 Antibacterial peptide
GCE Glassy Carbon Electrode
GO Graphene Oxide
GOChi Chitosan functionalized Graphene Oxide
GO-IONP Graphene Oxide—Iron Oxide nanocomposites
GOn Nano Graphene Oxide
HA Hyaluronic Acid
HDF Human Dermal Fibroblast
Hep Heparin
hFOB Human Fetal Osteoblast
h-MC Hybrid Microcapsule
HOG Human Oligodendroglia
HSCs Hematopoietic Stem Cells
IO Iron Oxide
LbL Layer-by-layer
Lf Lactoferrin
mGO Magnetic Graphene Oxide
NIR Near Infrared Radiation
NP’s Nanoparticles
OVA Ovalbumin
P(glu) Poly glutamate
P(lys) Poly lysine
PAA Poly (acrylic acid)
PAA-Cys Poly(acrylic acid)-cysteine
PAH Poly(allylamine hydrochloride)
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PB 1-Pyrenebutyrate
PBAE Poly(β-amino ester)
PBS Phosphate Buffered Saline
PC12 Pheochromocytoma Cells
PD Parkinson’s Disease
PEDOT:PSS Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
PEG Polyethylene glycol
PEI Poly(ethylene imine)
PEMf Polyelectrolyte Multilayer films
Pep Synthetic peptides
PLL Poly L-Lysine
PMMA Poly(methylmethacrylate)
POAA Polyoxyalkyleneamine
PolyCD Polycyclodextrins
PS Polystyrene
Pue Puerarin
PVP Poly N-vinylpyrrolidone
PYM Pingyangmycin
QCM Quartz Crystal Microbalance
rGO Reduced Graphene Oxide
RS Raman Spectroscopy
SA Sodium Alginate
SEM Scanning Electron Microscopy
Si Silicon
SPR Surface Plasmon Resonance
STM Scanning Tunneling Microscopy
TEM Transmission Electron Microscopy
THF Tetrahydrofuran
ThS Thioflavin S
TR Texas Red
XPS X-ray Photoelectron Spectroscopy
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