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Abstract: Microorganism-cell-based biohybrid materials have attracted considerable attention over
the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies,
environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel tech-
nology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film
coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating
organic-inorganic matrices for biocomponent immobilization. This review focuses on the synthesis
and application of hybrid sol-gel materials obtained by encapsulation of microorganism cells in an
inorganic matrix based on silicon, aluminum, and transition metals. The type of immobilized cells,
precursors used, types of nanomaterials obtained, and their practical applications were analyzed in
detail. In addition, techniques for increasing the microorganism effective time of functioning and the
possibility of using sol-gel hybrid materials in catalysis are discussed.

Keywords: nanotechnologies; sol-gel; biohybrid; yeast; bacteria; immobilization

1. Introduction

Over the last few years, the field of creating new hybrid materials has attracted great
attention [1–6]. Of particular focus are biohybrid materials based on microbial cells. Within
this general direction, material scientists study microorganism adaptation strategies to
environmental changes. Due to these strategies, microbes can survive even under extremely
tough conditions. Biomaterial encapsulation hinders the rapid removal of microorganisms
and often their inactivation. Inspired by the versatility and strength of such biomaterials,
scientists have developed hybrid materials for application in various areas, from agriculture
and (environmental) biotechnology [7], biomedicine, and electrical engineering [8] to food
production, synthetic chemistry, and bioelectronics [9,10].

Various approaches and methods are used to create hybrid materials, one of which
is the sol-gel process, which allows porous materials to be obtained by converting sol to
gel. The most common method of sol-gel synthesis is based on the controlled hydrolysis
of alkoxides of silicon, aluminum, and transition metal M(OR)x (such as titanium, zirco-
nium, tungsten, zinc, etc. (Figure 1)) and further polycondensation with the formation of
oxoalkoxide derivatives, as described in detail [11].

The stage of condensed form generation during the hydrolysis of precursors deter-
mines the structure and morphology of the final products and is extremely important when
forming sol-gel materials with desired characteristics. The structure of the forming sol-gel
matrices depends on a large number of different factors, such as the presence or absence
of substances with nonhydrolyzable MC bonds in the precursors, their concentration and
ratio, the pH of the medium, acidic or basic catalyst, the presence of organic components,
water-soluble polymers, and microorganism cells in the system [12,13].
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Figure 1. Hydrolysis (a) and condensation (b,c) of metal alkoxides. Reprinted with permission from 
[14]. (d) Formation of silica from tetra alkoxysilanes by hydrolysis and condensation. R alkyl, usu-
ally methyl, ethyl, or isopropyl groups. Reprinted with permission from [15]. 

The microstructure of the material produced by the sol-gel process depends on hy-
drolysis and condensation reactions, which are generally controlled by the pH of the so-
lution. When using acid catalysis, hydrolysis proceeds faster than condensation, which 
usually begins when hydrolysis is completed [16,17]. Under basic catalysis conditions, 
condensation proceeds faster than hydrolysis, which leads to the formation of highly con-
densed species [18,19]. The hydrolysis rate of silicon alkoxides is minimal at pH = 7 and 
increases exponentially both at lower and higher pH values. This contrasts with the con-
densation rate, which is minimal at pH = 2 and peaks at approximately pH = 7 [20]. By 
varying the catalyst, it becomes possible to repeatedly influence the gelation time, poros-
ity, density, and volumetric shrinkage during the drying process. The rate of sol-gel pro-
cesses and the environmental pH directly influence the efficiency of biomaterial immobi-
lization and its catalytic activity after immobilization. The formation of sol-gel matrices 
around microorganisms is also possible with irreversible transformation of the dispersion 
of colloidal SiO2 nanosols as a result of the sol-gel transition during freezing (Figure 2). It 
is important to take this into account when the materials are developed with desired prop-
erties. The use of microorganisms in combination with structures synthesized by the sol-
gel technique makes it possible to use hybrid materials in medicine, ecology, materials 
science, and biotechnology. 

Figure 1. Hydrolysis (a) and condensation (b,c) of metal alkoxides. Reprinted with permission
from [14]. (d) Formation of silica from tetra alkoxysilanes by hydrolysis and condensation. R alkyl,
usually methyl, ethyl, or isopropyl groups. Reprinted with permission from [15].

The microstructure of the material produced by the sol-gel process depends on hydrol-
ysis and condensation reactions, which are generally controlled by the pH of the solution.
When using acid catalysis, hydrolysis proceeds faster than condensation, which usually
begins when hydrolysis is completed [16,17]. Under basic catalysis conditions, condensa-
tion proceeds faster than hydrolysis, which leads to the formation of highly condensed
species [18,19]. The hydrolysis rate of silicon alkoxides is minimal at pH = 7 and increases
exponentially both at lower and higher pH values. This contrasts with the condensation
rate, which is minimal at pH = 2 and peaks at approximately pH = 7 [20]. By varying the
catalyst, it becomes possible to repeatedly influence the gelation time, porosity, density,
and volumetric shrinkage during the drying process. The rate of sol-gel processes and the
environmental pH directly influence the efficiency of biomaterial immobilization and its
catalytic activity after immobilization. The formation of sol-gel matrices around microor-
ganisms is also possible with irreversible transformation of the dispersion of colloidal SiO2
nanosols as a result of the sol-gel transition during freezing (Figure 2). It is important to
take this into account when the materials are developed with desired properties. The use
of microorganisms in combination with structures synthesized by the sol-gel technique
makes it possible to use hybrid materials in medicine, ecology, materials science, and
biotechnology.
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Figure 2. A schematic representation of the colloidal SiO2 nanosol dispersion irreversible transfor-
mation by the sol–gel transition caused by freezing. Reprinted with permission from [21]. 

In the last thirty years, there has been a gradual increase in the complexity of sol-gel 
processes for the immobilization of microorganisms of various taxonomic groups. This 
makes it possible to develop new application areas for sol-gel materials obtained by en-
capsulating microorganisms. In this review, we provide a brief description of the synthe-
sis of such materials; a detailed description of such mechanisms can be found in the ma-
terials of articles [22–24]. 

2. The Classification of Hybrid Materials according to the Type of Immobilized Cells 
2.1. Material Formation Procedure Optimization 

For various fields of chemistry, biotechnology, or medicine, it is most advantageous 
to utilize living cells immobilized in a stable matrix as biocatalysts. This ensures the effec-
tive use of their physiological characteristics for obtaining secondary metabolites or in 
biotransformation. For industrial application and design of sensors based on whole cells, 
it is necessary to create their high density in a sufficiently small volume of matter, which 
can be achieved by encapsulating/incorporating cells into polymer matrices. Polymers 
containing both inorganic elements and organic components play an important role in the 
development of encapsulation techniques. Immobilization in such matrices makes it pos-
sible to achieve the highest efficiency biocatalysts, which is promising for their practical 
application in biotechnology. 

As a result of the encapsulation process, living microorganism cells are surrounded 
by the formed silica shells, and the “cell in shell” structure has formed. Because the cells 
are limited in space, their growth occurs; therefore, the characteristics of the hybrid mate-
rials do not change [25,26]. 

As a result of a two-stage sol-gel process, alcohol toxic to cells is released during hy-
drolysis. Mild synthesis conditions under which alcohol was removed from the system in 
the first stage under vacuum on a rotary evaporator [27] or with a gas flow were devel-
oped to reduce toxicity and increase biocompatibility. The toxic effects of alcohol can also 
be eliminated using aqueous precursors such as sodium silicate and colloidal silicon di-
oxide [28]. 

Reducing the toxic effects of both acids and alcohol on cells can be achieved using 
freeze drying. This process consists of freezing the cell suspension with ceramic powder 
and subsequent lyophilization. The addition of nutrients and cryoprotectants to the sys-
tem while running the process at the optimum cooling rate improves cell viability. For 
example, the survival of Rhodococcus ruber was increased from 0.9% to 6.1% by the addi-
tion of trehalose solution [29] (Figure 3). 

Figure 2. A schematic representation of the colloidal SiO2 nanosol dispersion irreversible transforma-
tion by the sol–gel transition caused by freezing. Reprinted with permission from [21].

In the last thirty years, there has been a gradual increase in the complexity of sol-
gel processes for the immobilization of microorganisms of various taxonomic groups.
This makes it possible to develop new application areas for sol-gel materials obtained
by encapsulating microorganisms. In this review, we provide a brief description of the
synthesis of such materials; a detailed description of such mechanisms can be found in the
materials of articles [22–24].

2. The Classification of Hybrid Materials According to the Type of Immobilized Cells
2.1. Material Formation Procedure Optimization

For various fields of chemistry, biotechnology, or medicine, it is most advantageous
to utilize living cells immobilized in a stable matrix as biocatalysts. This ensures the
effective use of their physiological characteristics for obtaining secondary metabolites or in
biotransformation. For industrial application and design of sensors based on whole cells,
it is necessary to create their high density in a sufficiently small volume of matter, which
can be achieved by encapsulating/incorporating cells into polymer matrices. Polymers
containing both inorganic elements and organic components play an important role in
the development of encapsulation techniques. Immobilization in such matrices makes it
possible to achieve the highest efficiency biocatalysts, which is promising for their practical
application in biotechnology.

As a result of the encapsulation process, living microorganism cells are surrounded by
the formed silica shells, and the “cell in shell” structure has formed. Because the cells are
limited in space, their growth occurs; therefore, the characteristics of the hybrid materials
do not change [25,26].

As a result of a two-stage sol-gel process, alcohol toxic to cells is released during
hydrolysis. Mild synthesis conditions under which alcohol was removed from the system
in the first stage under vacuum on a rotary evaporator [27] or with a gas flow were
developed to reduce toxicity and increase biocompatibility. The toxic effects of alcohol can
also be eliminated using aqueous precursors such as sodium silicate and colloidal silicon
dioxide [28].

Reducing the toxic effects of both acids and alcohol on cells can be achieved using
freeze drying. This process consists of freezing the cell suspension with ceramic powder
and subsequent lyophilization. The addition of nutrients and cryoprotectants to the system
while running the process at the optimum cooling rate improves cell viability. For example,
the survival of Rhodococcus ruber was increased from 0.9% to 6.1% by the addition of
trehalose solution [29] (Figure 3).
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The traditional sol-gel process can be improved by introducing additives such as 
glycerol, glucose, and other sugars, or natural or synthetic polymers into the system to 
increase cell survival. They tend to increase the long-term stability of cells, as shown in 
the case of glycerol [30] and glucose [31]. Simultaneously, the immobilization process re-
mains the same. These additives reduce the transparency of the matrix, which is important 
in the development of optical sensors. 

With the exception of silica-based gels, microorganisms were encapsulated in oxide 
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as Escherichia coli [19,27,32,41], Pseudomonas [43–45], Streptococcus [46], and Bacillus [47] has 
been intensively studied (Figure 6). During the formation of sol-gel materials, the release 
of lower alcohols (ethanol or methanol) often occurs. This is the main cause of mass mor-
tality of bacterial cells, in contrast to yeast, which is less affected by alcohols [27]. Esche-
richia coli bacteria have been efficiently encapsulated in organosilicon matrices [48]. Bac-
teria were isolated from each other in a layer of sol-gel material but still exhibited enzy-
matic activity against some substrates. However, the long-term stability of bacteria was 1 
month, with a survival rate of approximately 10% even with the formation of sol-gel ma-
trices under near physiological conditions at the required temperature, pH and ionic 
strength of the solution. To increase the viability of bacteria, various organic compounds 
are added during matrix formation, such as polyvinyl alcohol, gelatin, and glycerol [49]. 
It was shown that glycerol allowed the maintenance of the metabolic activity of almost 50% 
of bacteria after 1 month. 

Kim et al. immobilized Escherichia coli bacteria in a silica sol-gel matrix and demon-
strated their biological activity retention [50]. The study of the obtained material structure 
was carried out in the presence of various organic components, which increased the long-
term performance of the biomaterial. The immobilization of Escherichia coli bacteria is used 
to explore the stability during storage and long-term continuous processes [51], to study 
the formation of various structures and the functioning of enzyme preparations during 

Figure 3. Preparation of silica layers with embedded microorganisms. Reprinted with permission
from [29].

The traditional sol-gel process can be improved by introducing additives such as
glycerol, glucose, and other sugars, or natural or synthetic polymers into the system to
increase cell survival. They tend to increase the long-term stability of cells, as shown in the
case of glycerol [30] and glucose [31]. Simultaneously, the immobilization process remains
the same. These additives reduce the transparency of the matrix, which is important in the
development of optical sensors.

With the exception of silica-based gels, microorganisms were encapsulated in oxide
matrices of alumina, magnetite, titanium oxide, and zirconium [32–36]. Aqueous titanium
and zirconium gels and their use for the encapsulation of microorganisms have been
described [31,33,37–39]. Sols based on metal alkoxide were stabilized by the self-assembly
of hydrophilic ligands, which ensured the formation of colorless, transparent aqueous
sols. Encapsulated microorganisms were coated with a hydrated oxide and additionally
included in the pores of the gel.

2.2. Immobilization of Bacteria by the Sol-Gel Method

The immobilization of bacteria in a sol-gel matrix leads to stabilization of the catalytic
activity and makes it possible to repeatedly or continuously use the biocatalyst. The
integration of microorganisms into sol-gel structures removes many limitations that arise
during the working with free cell systems [21,40–42].

Over the last two decades, immobilization in a sol-gel matrix of microorganisms such
as Escherichia coli [19,27,32,41], Pseudomonas [43–45], Streptococcus [46], and Bacillus [47] has
been intensively studied (Figure 6). During the formation of sol-gel materials, the release of
lower alcohols (ethanol or methanol) often occurs. This is the main cause of mass mortality
of bacterial cells, in contrast to yeast, which is less affected by alcohols [27]. Escherichia coli
bacteria have been efficiently encapsulated in organosilicon matrices [48]. Bacteria were
isolated from each other in a layer of sol-gel material but still exhibited enzymatic activity
against some substrates. However, the long-term stability of bacteria was 1 month, with a
survival rate of approximately 10% even with the formation of sol-gel matrices under near
physiological conditions at the required temperature, pH and ionic strength of the solution.
To increase the viability of bacteria, various organic compounds are added during matrix
formation, such as polyvinyl alcohol, gelatin, and glycerol [49]. It was shown that glycerol
allowed the maintenance of the metabolic activity of almost 50% of bacteria after 1 month.

Kim et al. immobilized Escherichia coli bacteria in a silica sol-gel matrix and demon-
strated their biological activity retention [50]. The study of the obtained material structure
was carried out in the presence of various organic components, which increased the long-
term performance of the biomaterial. The immobilization of Escherichia coli bacteria is used
to explore the stability during storage and long-term continuous processes [51], to study the
formation of various structures and the functioning of enzyme preparations during their
immobilization [13], to study the effect of the resulting alcohol distillation on increasing cell
viability [27,52], and to assess the effect of stress factors on bacterial immobilization [32]
(Figure 6).
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Immobilization of microorganisms in sol-gel matrices can be considered an alternative
for long-term storage of nodule bacteria of the genus Rhyzobium at room temperature [53].
Sodium silicate was used as a precursor by Diazs’ group. In a continuation of the study [49],
glycerol was used as the organic component. The bacteria immobilized in the sol-gel
matrix retained their viability and catalytic activity for up to 360 days of storage at room
temperature. In addition, the silicon matrix has been shown to have the ability to protect
bacteria from acid attack.

In view of their high abundance, cyanobacteria (Figure 4) are often used as model
objects for studying various processes, including immobilization methods. In addition,
they are important in biotechnology in the production of food additives, food, and phar-
maceutical compounds and pigments, as well as in the production of biofuels and other
products. The study of cyanobacteria encapsulation in a silicate matrix is described in [26].
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Figure 4. Schematic representation of a cyanobacterial cell encapsulated in silica gel (not to scale).
The gel encloses the cell completely within a microporous bulk. The mesopores are large enough to
allow diffusion of minerals and nutrients but small enough to contain the encapsulated cell. With
alkoxide or aqueous precursors, the surface of the gel is likely composed of hydrophilic condensed
silica with some uncondensed hydroxyl functional groups. Reprinted with permission from [26].

Cells were immobilized in a sol-gel framework based on tetraethoxysilane (TEOS)
under acid catalysis. Glycerol was used as an organic additive. As a result, cyanobacteria
were encased in a porous organosilicon capsule, which, on the one hand, protects each cell
from mechanical damage and, on the other hand, does not prevent the rapid diffusion of
low molecular weight substances through the pores of the material [26].

A silica-based adsorbent biogel was created by incorporating the bacteria Pseudomonas
sp. NCIB 9816-4 that degrade a wide range of aromatic contaminants. The adsorbent
matrix was synthesized using the silica precursors methyltrimethoxysilane (MTMS) and
tetramethoxysilane (TMOS) (Figure 5).
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The encapsulated bacteria increase the rate of removal of the aromatic chemical mix-
ture. Immobilized Pseudomonas bacteria have been successfully used to decolorize Rema-
zol black, methylene orange, and benzyl orange, which are azo dyes commonly used in 
industrial processes [44] (Figure 6). The immobilized cells produced more than seven ex-
tracellular enzymes involved in the biodegradation of azo dyes. The reusability of immo-
bilized bacteria has been evaluated through multiple experiments [44,45]. 
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Figure 5. Synthesis process of the silica biogel through hydrolysis of TMOS and MTMS and conden-
sation by mixing the hydrolyzed monomers with colloidal SNPs and Pseudomonas sp. NCIB 9816-4.
Reprinted with permission from [45].

The encapsulated bacteria increase the rate of removal of the aromatic chemical mix-
ture. Immobilized Pseudomonas bacteria have been successfully used to decolorize Remazol
black, methylene orange, and benzyl orange, which are azo dyes commonly used in
industrial processes [44] (Figure 6). The immobilized cells produced more than seven
extracellular enzymes involved in the biodegradation of azo dyes. The reusability of
immobilized bacteria has been evaluated through multiple experiments [44,45].
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Figure 6. Micrographs of bacterial cells immobilized in various sol-gel matrices. (a) Transmission 
electron microscopy (TEM) image of E. coli bacteria entrapped in a ferrihydrite gel [30]; (b) trans-
mission electron microscopy. Thin-cross-section TEM images of E. coli cells entrapped within an SS 
matrix after 24 h [32]; (c) field emission scanning electron microscopy images of bacteria/TiO2 gel 
hybrid spheres using Str. Theromophilus as templates, with the inset of a magnified image. The sur-
face sol-gel deposition was repeated five times [54]; (d) different types of biocer-microstructure 
(scanning electron micrographs) carbon felt coated with a silica–B. sphaericus layer [55]; (e) trans-
mission electron microscopy of the E. coli B 54,125 cell within an aqueous silica gel, SiO2–glycerol 
10%, aged for one day [27]; (f) scanning electron microscopy (SEM) photos of mold silica gel-en-
trapped P. aeruginosa MR01 immediately after gel immobilization [43]; (g) SEM image of silica ma-
trices with immobilized bacteria [44]; (h) SEM micrographs of Sphingomonas sp. cells [56]; (i) biohy-
brid of Sphingomonas sp.- (f) Si NP immobilized on microplate [56]; (j) SEM images of biofilm surface. 
Silica layer present after encapsulation. Representative electron microscopy images of N. europaea 
biofilm 30 min after encapsulation [57]; (k) 30 days after encapsulation [57]; (l) 90 days after encap-
sulation. Scale bars represent 4 mm [57]. Micrographs reprinted with permissions from the given 
references. 
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Figure 6. Micrographs of bacterial cells immobilized in various sol-gel matrices. (a) Transmission
electron microscopy (TEM) image of E. coli bacteria entrapped in a ferrihydrite gel [30]; (b) trans-
mission electron microscopy. Thin-cross-section TEM images of E. coli cells entrapped within an SS
matrix after 24 h [32]; (c) field emission scanning electron microscopy images of bacteria/TiO2 gel
hybrid spheres using Str. Theromophilus as templates, with the inset of a magnified image. The surface
sol-gel deposition was repeated five times [54]; (d) different types of biocer-microstructure (scanning
electron micrographs) carbon felt coated with a silica–B. sphaericus layer [55]; (e) transmission electron
microscopy of the E. coli B 54,125 cell within an aqueous silica gel, SiO2–glycerol 10%, aged for one
day [27]; (f) scanning electron microscopy (SEM) photos of mold silica gel-entrapped P. aeruginosa
MR01 immediately after gel immobilization [43]; (g) SEM image of silica matrices with immobilized
bacteria [44]; (h) SEM micrographs of Sphingomonas sp. cells [56]; (i) biohybrid of Sphingomonas
sp.-(f) Si NP immobilized on microplate [56]; (j) SEM images of biofilm surface. Silica layer present
after encapsulation. Representative electron microscopy images of N. europaea biofilm 30 min after
encapsulation [57]; (k) 30 days after encapsulation [57]; (l) 90 days after encapsulation. Scale bars
represent 4 mm [57]. Micrographs reprinted with permissions from the given references.

Immobilization of the methanotrophic bacterium Methylomonas sp. GYJ3 by the sol-gel
technique enhances the activity of microorganisms at higher pH and temperature. However,
the cells encaged by the sol-gel matrix based on MTMS had a lower activity compared to
the activity of free cells [58]. At the same time, sol-gel matrices with immobilized Gram-
positive Rhodococcus ruber bacteria demonstrated unchanged mechanical strength and good
activity of immobilized cells when stored for several months at 4 ◦C [21]. The created
ceramic composites can be reused for 12 months without loss of biological activity for
bioremediation processes, as Rhodococcus spp. decompose a large number of pollutants that
are difficult to oxidize, such as petroleum hydrocarbons, chlorinated, nitrogen-containing
and other complex organic substances.

2.3. Immobilization of Yeast Cells by the Sol-Gel Method

The immobilization of yeast cells in a sol-gel matrix attracts much attention, as the
alcohol released during the sol-gel reactions is not as harmful to yeast as to bacteria. In
addition, yeast cells are often used as templates for the formation of porous inorganic
structures [38].

The possibility of obtaining channel-like meso/macroporous TiO2, a potential anode
material for lithium-ion batteries, has been described [31]. For this, a sol-gel process based
on titanium tetraisopropoxide using yeast cells of Saccharomyces cerevisiae was utilized.

The first work on the immobilization of the Saccharomyces cerevisiae whole cells in
sol-gel was published in 1989 [59,60]. Since then, some S. cerevisiae cells have been used
as models for studying yeast viability after encapsulation in a sol-gel matrix based on
tetraethoxysilane, tetramethoxysilane, and diethoxymethylsilane [55,61–63] (Figure 7).
Yeast Saccharomyces cerevisiae cells genetically engineered to produce yellow fluorescent
protein in response to galactose were encapsulated in polyglycerol silicate matrices. The
matrix consisted of glycerol, TEOS, and titanium isopropoxide [34]. A biohybrid of nanosil-
ica and the model organism Saccharomyces cerevisiae was synthesized to remove mercury
from an aqueous solution [64]. The efficiency of biosorption of heavy metals by microbial
biomass is mainly related to the structure of the microorganism’s cell wall. Therefore, the
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structure and properties of the cell surface determine the nature of the interaction between
the microorganism and the metal cation. The walls of yeast cells are negatively charged due
to the presence of functional groups such as amino groups and phosphate and hydroxyl
groups, which are involved in the binding of heavy metals. It is well known that among the
various reactive compounds associated with cell walls, extracellular polymeric substances
such as exopolysaccharides have a great ability to form complexes with heavy metals. The
biohybrid has been shown to exhibit high Hg(II) adsorption capacity, demonstrating a rapid
removal of more than 98 ± 2% of this contaminant in 30 min. The synthesized biohybrid
material can be easily regenerated, and the efficiency of Hg(II) removal can be maintained
when reused. In addition, the encapsulation of Yarrowia lipolytica in silicon matrices based
on TEOS enables the development of a heterogeneous biomaterial that not only has the
ability to remove Cr(III) and Cr(VI) pollutants from water without special pretreatment
and with high efficiency but also to dispose of hydrocarbons in aqueous conditions. This
process is possible due to Yarrowia lipolytica’s ability to produce various enzymes (proteases,
lipases, and esterases), emulsifiers, and surfactants. The resulting biohybrid material has
the advantages of a hydrophobic and porous structure and is able to achieve almost 100%
removal efficiency of chromium and n-hexadecane ions in an aqueous medium [65].

It was found that in a hybrid material formed by silicon dioxide, polyvinyl alcohol, and
4-vinylpyridine with immobilized cells of the yeast Trichosporon cutaneum, a biocompatible
microenvironment is formed, which contributes to the preservation of the viability of
encapsulated cells [66]. Arthroconidia that have formed in the extracellular material play
an important role in maintaining the long-term viability of microorganisms, which may
be related to their ability to withstand environmental stresses. A biosensor based on the
encapsulated yeast Trichosporon cutaneum was used to analyze the biochemical oxygen
consumption in contaminated effluents.
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MTES:TEOS 85:15 vol. % and PVA [25]. Micrographs reprinted with permissions from the given 
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Figure 7. Micrographics of immobilized yeast cells in various sol-gel matrices. (a) SEM images of
PGS-derived silica gels containing S. cerevisiae cells. (b) Typical long-range morphology with some
shallowly encapsulated cells visible. Image (d) was collected several minutes after image (c), showing
the development of depressions during imaging [34]. FE-SEM images of baker’s yeast encapsulated
in sol–gel silica: (e) [63]. (f) Freshly harvested Lodderomyceselongisporus cells immobilized in a second
generation (supported with hollow-silica microspheres) sol-gel system [67]. (g) Cryptococcus curvatus
encapsulation in silica sol-gel. SEM micrographs showing the formation of 3D sol-gel biomatrix
architecture when the ratio between the silane precursors (TEOS and MTES) (vol%) was 85:15. Scale
bar, 5 µm [68]. (h) SEM micrograph showing the formation of a 3D structure hybrid material based
on Ogataea polymorpha VKM Y-2559 cells encapsulated in an organosilica hydrogel MTES:TEOS 85:15
vol. % and PVA [25]. Micrographs reprinted with permissions from the given references.



Nanomaterials 2022, 12, 1086 9 of 34

Therefore, materials synthesis technology by the sol-gel method can be effectively
used for the immobilization of a wide range of microorganisms, including Gram-positive
and Gram-negative bacteria, as well as different types of yeast. At the same time, the
sol-gel approach provides a biocompatible environment that protects cells from external
influences, regardless of the microorganism type.

3. Classification of Hybrid Materials According to the Precursors Used in the
Formation of the Sol-Gel Matrix
3.1. Silicon-Containing Precursors

Most often, alkoxides of the corresponding chemical elements are used as initial precur-
sors for sol-gel reactions. In the case of silicon, tetramethoxysilane Si(OCH3)4 (TMOS) [45,69]
and tetraethoxysilane Si(OCH2CH3)4 (TEOS) (Figure 1d) [27,34,65,67,70–73] are most com-
monly used.

It is often preferable to use substances that have a higher hydrolysis rate. This reaction
rate of TMOS is much higher than that of TEOS. However, methanol is formed as a result
of the reaction with TMOS, but the presence of this alcohol is not always allowed for the
sol-gel process due to its toxicity [74]. Generally, the substitution pattern and therefore
the organic residues of the precursors have a great influence on the kinetics of the sol-gel
process. The utilization of TMOS or TEOS as precursors in a sol-gel synthesis at room
temperature results in a 3D silica lattice. Sol-gel structures are often used in the formation
of hybrid materials containing organic functional groups that are attached to an inorganic
lattice [45]. For these purposes, various precursors are used, which include not only Si-OR
groups that can be effectively hydrolyzed but also Si-C bonds that are stable to hydrolysis
(Figure 1d).

As a result, the final material contains organic groups that have not participated
in the sol-gel reactions. The use of this approach makes it easy to incorporate organic
functional groups into the resulting organo-inorganic lattice. These functional groups can
affect the chemical reactivity and polarity of the silica lattice and impart certain optical
or electronic properties to the material. Branching and lengthening of the chain of the
precursor substituent reduces the rate of hydrolysis [14,45]. However, it is necessary to
use alkyl alkoxy silanes with nonhydrolyzable Si-C bonds as precursors to create more
favorable conditions for the functioning of the biomaterial. The study of structures and the
systematization of data about the obtained materials will make it possible in the future to
predict the structure and properties of such matrices (Figure 8).
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Figure 8. (a) Three-dimensional network of MTMS-derived aerogels with its detailed molecular
structure. (b) Degree of polymerization of silanols exhibiting flexible structure and rigid structure.
Reprinted with permission from [75].

If the precursor used has at least three suitable crosslinking sites, then lattice formation
is possible. The most commonly used organosilicon alkoxysilanes that have this ability are
tetraalkoxysilane Si(OR)4 and trialkoxysilane (RO)3SiR′. Hydrolysis and condensations of
alkoxides of the (RO)2SiR’2 or (RO)SiR’3 type lead to the formation of only chain molecules,
where as mono-alkoxides form only dimers. The use of bis-alkoxysilane in combination
with TEOS or TMOS can modify the resulting lattice with organic groups [13]. Mono-
alkoxysilanes are rarely used in the formation of sol-gel materials; however, they can
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be useful for surface modification due to surface reactions [74]. Molecules that contain
more than one silicon alkoxide group, such as systems containing two or more alkoxy
groups (trialkoxide (R′O)3Si-R”H2-Si(OR′′′)3), are also used in sol-gel processes [76]. Such
precursors allow organic functional groups to be incorporated directly into the lattice of
the material so that they become part of the lattice, where as molecules such as (RO)3SiR”
add the R” functional group to the network.

Introducing both natural and synthetic polymers capable of forming spatial structures
in aqueous media into the reaction mixture is often used in practice while modifying
matrices. Polymers also serve as a seed to start gelation and to give flexibility to the final
structure. In this regard, they can be considered structure directing agents (SDAs), which
have a strong influence on the emerging structure. In the case when they are removed from
the system (burning, etc.) after the completion of the synthetic process, i.e., in the case of
template synthesis, they can also be considered templates.

Degradable synthetic or natural biopolymers, including PVA [25,66,77],
poly(ε-caprolactone) (PCL) [78], gelatin [79], chitosan [80], and polyethylene glycol
(PEG) [25,81], are widely used for biomedical purposes, as well as in biotechnological
processes. PEG combined with sol-gel technology prevents excessive shrinkage of meso-
pores formed after the polymerization step, which can be harmful to cells [19]. Typically,
these types of hybrid materials are prepared by mixing a polymer solution with a silica-
based sol, followed by gel formation. In the case of obtaining a flexible structure of the
sol-gel material, immobilized microorganisms are capable of division [32,34,82].

A high molar ratio of water to alkoxysilicate is often used [43,72] to negate the detri-
mental effect of ethanol on encapsulated cells (ethanol is a co-product of hydrolysis and
condensation of alkoxide precursors). Therefore, a large amount of water leads to dilution
of the alcohol solution, which ensures the biocompatibility of the process. Controlled
evaporation of alcohol in vacuum is another way to eliminate its harmful effects [27]. Cells
immobilized in silicagel are not only effective when reused [67] but also retain activity up
to 90% [43], from 45 days [58] to 365 days [21,43].

The obtained sol-gel materials based on silicon with immobilized microorganisms
were characterized using methods such as SEM, TEM, and nuclear magnetic resonance
(NMR) [27]. The formation of a mesoporous material was shown, the position of cells in
the material was found, and their encapsulation was proven [63].

3.2. Titanium-Containing Precursors

Titanium dioxide obtained by the sol-gel technique is rarely used for the immobi-
lization of living microorganism cells due to its pronounced antimicrobial properties [83].
Most often, immobilization of microorganisms in such matrices is carried out to obtain a
hierarchical mesoporous structure after annealing of microorganisms (Figure 9) [31,38].
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However, the modification of titanium dioxide with silicon dioxide [35] allows the
material to be used to remove arsenic from effluents. However, this may lead to a decrease
in the viability of immobilized microorganisms [34].

Titanium dioxide obtained by the sol-gel method is most commonly used to mod-
ify capsules with immobilized cells to increase mechanical stability [84]. The hybrid
alginate/TiO2 microcapsule showed improved mechanical stability compared to the pure
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alginate microcapsule, which makes it an ideal candidate for cell reservoirs. The formed mi-
crocapsules showed high biocompatibility with model human HepG2 cells [84], which are
used as test materials in the creation of tissue engineering constructs. Such a microcapsule
had a mesoporous structure, which is a key parameter allowing the diffusion of nutrients
and metabolites. Subsequently, modification of the developed capsule with silicon dioxide
made it possible to study the in vivo biocompatibility and stability of alginate/TiO2 hybrid
microcapsules and immune isolation of captured HepG2 cells to assess their potential for
cell therapy [85].

3.3. Aluminum-Containing Precursors

Methods for obtaining aluminum oxide hydrogels by the sol-gel technique are de-
scribed. The resulting hydrogels provide long-term viability for encapsulated microorgan-
isms [36,86]. Alumina gels were chosen because the chemical composition of the Al2O3
sol-gel has some similarities with the chemical composition of silica. In addition, it is
well known that Al3+ ions are toxic to a large number of living systems, whereas Al2O3 is
widely used in medicine. The formation of gels is very rapid, faster than using silica, from
2 min [36] to 15 min [86], which can cause significant stress for living cells. Therefore, for
better adaptation and functioning of microorganisms, structure-directing agents such as
glycerol are added [36].

3.4. Cerium-Containing Precursors

Nanomaterials based on cerium oxide (CeO2) are technologically important due to
their valuable properties and are widely used in various fields from engineering to life
sciences. At low temperatures, cerium oxides exhibit antimicrobial activity against some
bacteria, destroying the cell walls of microorganisms [87]. At the same time, CeO2 particles
are less biocompatible with a wide range of microorganisms. Moreover, their inherent
redox activity can help eliminate reactive free radicals that stress living microbial cells.

Silica hydrogels containing CeO2 nanoparticles have pronounced protective properties.
Immobilization of the model photosynthetic microalgae Chlorella vulgaris showed effective
and long-term retention and growth of microorganisms. These properties have been
evaluated under conditions of harmful ultraviolet radiation as well as in the presence of
H2O2 [39]. Previously, CeO2 nanoparticles were shown to have good optical properties
in terms of their ability to photoabsorb UV light with an efficiency of up to 89% [33], and
there is no visible light scattering [39].

Various silicon derivatives, in particular its alkoxides, are most often used as precursors
for sol-gel processes. The use of metal derivatives to obtain hybrid materials based on living
cells of microorganisms is limited by their toxicity and antimicrobial properties. However,
this problem can be partially solved through the use of biocompatible structure-controlling
agents.

4. Classification of Hybrid Materials According to the Type of Nanomaterial Obtained
4.1. Bioceramics

A number of scientific studies describe the immobilization of living cells in ceramic
composites with further possible use for the remediation of organic pollutants and heavy
metal ions. It has been shown that bioceramics based on silicon precursors with immo-
bilized cells of microorganisms can effectively remove phenols [21] and dyes due to a
combination of adsorption and decomposition processes [71,88], as well as the biosorption
of heavy metals [47,89]. The efficiency of biocatalysts obtained by immobilizing Trametes
versicolor cells in ceramic sol-gel matrices using TEOS was evaluated using methylene
blue and malachite green dyes as the model organic micropollutants. The results demon-
strated that this bioceramic material is able to effectively remove dyes by a combination of
adsorption and degradation processes.

Immobilization of the biomaterial in ceramic coatings based on aluminosilicates [21]
or in silicagels based on silicon dioxide [71,90] allows not only preservation of the catalytic
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activity of the biocomponent but also acquisition of a strong and time-stable biocomposite
structure. Immobilization of phenol-decomposing bacteria Rhodococcus ruber into alumi-
nosilicates enables bioceramics with durability of more than half a year to be obtained [21].
The use of a combination of algae and silica when creating bioceramic coatings makes it
possible to obtain a biomaterial with high mechanical stability, an algae content of 30–50%,
and a total porosity of 40–60% [89].

The cells immobilized in bioceramic material can be used in biotechnological indus-
tries [31,68,91]. Yeast cells were immobilized in titanium tetraisopropoxide, resulting in
porous bioceramic structures. Further processing of the precursor made it possible to
obtain a channel-like meso/macroporous anode material that can be used for a lithium-ion
battery [31]. Furthermore, bioceramic materials consisting of Haematococcus pluvialis mi-
croalgae living cells immobilized in silica sol-gel layers can be used for the biotechnological
production of astaxanthin. Böttcher and colleagues demonstrated that the use of Fe2+

compounds in combination with NaCl or hydrogen peroxide as stress factors causes a
strong increase in the formation of astaxanthin during cultivation [68].

4.2. Thin Films

Thin films are created by biomaterial immobilization in modified tetraethoxysilane.
The use of various compounds as modifying additives to impart the necessary properties to
the material is described. Thus, the use of polydiacetylene [92] as a modifier promotes the
rapid growth of bacterial biofilms (Figure 10); cytochrome [93] can serve as an electronic
mediator between bacteria and the electrode surface, where as chitosan and polyethylene
glycol [94] can be used as modifiers to improve the functionality and, as a result, the
catalytic activity of Pseudomonas aeruginosa BN10 cells.
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Figure 10. The red and blue chromatic solgel/polydiacetylene (PDA) thin films, assembled through
a dip-coating technique, enable in situ colorimetric and fluorescent detection of bacterial biofilm
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The sol-gel/PDA assembly can also be employed for high-throughput screening of biofilm inhibitors.
Reprinted with permission from [82].

Additionally, TEOS can be modified with glycerol [95], which acts as a protective
agent for encapsulated cells and can serve as the sole source of carbon for S. cerevisiae
under aerobic conditions, and with sodium alginate [96], which, in combination with
silica, improves the stability of Chlorella vulgaris cells in saline solutions and allows us
to demonstrate the stable reproducibility of the obtained materials. Thin films obtained
by the sol-gel method can be used to form biofilms. Such sol-gel films represent a new
universal platform for the advancement of bacterial biofilms and their in situ analysis.
The Pseudomonas aeruginosa BN10 cell immobilization method was used to assess their
efficiency in terms of biodegradation and the protective effect of microorganisms against
large amounts of hydrocarbons [94]. The results obtained showed that the organic part in
the synthesized hybrids is important for creating the microstructure and certain properties.

Thin films based on silica can be used as materials for biosensors [97,98]. Microalgae
Mesotaenium sp. and cyanobacteria Synechococcus sp. cells were immobilized by the sol-gel
technique using a thin layer of silicon dioxide [97]. Timur’s group [98] created and char-
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acterized a mediator whole-cell biosensor with acetic acid bacteria Gluconobacter oxydans.
Microorganisms were immobilized on a graphite electrode using a hybrid composite based
on TEOS obtained by the sol-gel technique.

A number of scientific studies are dedicated to studying the preservation of the
viability of cells immobilized in thin layers of sol-gel matrices using various methods.
Immobilization of the biomaterial in thin silica films results in an increase in the long-
term stability of biofilms from 3 [99] to 8 [96,97] and 12 weeks [57], depending on the
biocomposite. At the same time, in some cases [100], the apparent cell density increased
almost 3-fold after 3 weeks, and cell viability slightly increased to 70 ± 10%. Etienne et al.
have shown that the presence of chitosan, trehalose, and polyethylene glycol additives
significantly improves the viability of E. coli cells in the electrodeposited matrix for 1 month
after encapsulation. The bioluminescent activity of E. coli MG1655 pUCD607 was preserved
in approximately 50% of the cells present in such composite films [99].

According to research [57,69,99], a thin membrane of silica or its modifications allows
the diffusion of nutrients and cellular products, maintaining cell viability.

Therefore, bioceramics and thin films are the main types of hybrid materials obtained
by the sol-gel method. Bioceramics obtained using silicon precursors and immobilized
cells of microorganisms can be effectively used for the sorption of organic dyes, phenolic
compounds, and heavy metals. Thin films based on silicon precursors can be used as a
matrix for the formation of biofilms and as a material for creating sensors for electrochemical
and optical biosensors.

5. Classification of Hybrid Materials According to the Application of the Resulting
Nanomaterial
5.1. In Ecology

The content of bioavailable pollutants in aquatic systems is an important criterion
in the evaluation of the toxic effects of compounds accumulated in the environment.
Hydrogel-immobilized microorganisms have a higher tolerance to toxic contaminants due
to their protective capsule. However, they suffer from a low transport rate of substances
that contribute to efficient cell functioning (oxygen and nutrients). This occurs due to
an additional mass transfer barrier [41]. Immobilized microorganisms are used for toxic
pollutant bioremediation. The contaminant can be partially removed by passive adsorption
on the matrix material and partially by catalytic reactions of microorganisms. These
mechanisms can work simultaneously. Currently, various studies have been carried out to
create sensors for determining the concentrations of BOD and heavy metals. The use of
such systems is very important in biomotoring because a part of the sol-gel matrix with
immobilized microorganisms has protective properties [91,95,97,101,102] (Figure 11).
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The authors of several studies [66,103–105] developed sensors for the rapid determi-
nation of BOD. Microorganisms were immobilized using matrices based on silicon dioxide
modified with the mediator ferrocene [103], polyvinyl alcohol [104], and a copolymer of
polyvinyl alcohol with 4-vinylpyridine [66,105]. The range of biodegradable substrates
can be extended by including coimmobilized microorganisms. The following mixtures of
microorganisms were used to expand the substrate specificity profile: E. marius, B. horikoshii,
and H. Marina [103]; three different species of sea water microorganisms [104]; Trichosporon
cutaneum; and Bacillus subtilis [105]. In [66], an organic-inorganic hybrid material, which
consists of silicon dioxide and a copolymer of polyvinyl alcohol and 4-vinylpyridine, was
used to immobilize cells of the Trichosporon cutaneum strain. It was found that a biocom-
patible microenvironment formed in the biomatrix contributes to the long-term viability
of the captured cells. The mechanism of immobilized cell long-term viability was studied
using confocal laser scanning microscopy. It was shown that Arthroconidia formed in ex-
tracellular material are essential for maintaining the long-term viability of microorganisms,
which is probably caused by Arthroconidia’s ability to resist environmental stresses [66].
The resulting biosensors demonstrated high reproducibility and long-term stability. The
results were simultaneously compared with the traditional BOD 5 measuring method and
other sensory methods for measuring BOD. The determination results obtained for natural
sea water correlate with those obtained from conventional BOD 5 analysis. Thus, it was
shown that the developed biosensors are suitable for determining BOD.

Timur et al. developed a mediated whole-cell biosensor based on Gluconobacter oxydans
cells [98]. G.oxydans are Gram-negative bacteria that are actively used in sensory systems to
detect polyols, sugars, and alcohols [106]. Bacterial cells were immobilized on the surface
of graphite electrodes via a sol-gel (tetraethyl orthosilicate)/chitosan hybrid composite
modified with gold nanoparticles (Figure 12). The resulting biosensor for the determination
of ethanol and glucose demonstrated advantages such as a fast amperometric response,
high sensitivity, and good repeatability. In addition, the authors suggest that the obtained
material can be used in biofuel cell applications as a microbial cathode.
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Microorganisms immobilized in silicate matrices and hydrogels are able to utilize
heavy metals such as cadmium [97], mercury [64], chromium [97], zinc [97], and other
pollutants, thereby purifying the environment. As an example, an optical biosensor [97]
using two strains of microalgae Mesotaenium sp. and a strain of cyanobacteria Synechococcus
sp. to detect Cd2+, Cr6+ and Zn2+ in aqueous systems. In addition, a whole-cell biosensor
for the detection of bioavailable heavy metals in soils was created. This sensor contains
a bacterial strain of Bacillus megaterium VR1 immobilized in a silica gel matrix. This
strain is sensitive to several heavy metals [47]. Microalgae-cyanobacteria immobilized in
silicon dioxide can be used for environmental monitoring of water samples from industrial
effluents discharged into inland waters. They can be used to detect the bioavailable fraction
of heavy metals. The mesoporous silica matrix reinforced with nanomullite was effectively
used for biomaterial immobilization to preserve the long-term viability and enzymatic
activity of the biocomponent. In this case, arsenic was efficiently removed by the bacterium
Ralstonia eutropha MTCC 2487 [90], which remained viable in the obtained matrix for up to
120 days. Such biosensors and biofilters have great potential for monitoring heavy metal
toxicity.

The development of long-term storage biofilters is significant for the treatment of
contaminated water. These filters contain microorganisms that can degrade compounds
that are difficult to oxidize, such as fuel oxygenates methyl tert-butyl ether (MTBE) and
ethyl tert-butyl ether (ETBE) [71], n-hexadecane and chromium ions [65], and methyl
parathion [56].

The integration of microorganisms into matrices obtained by the sol-gel method
makes it possible to increase the storage time and functioning of biohybrids. For ex-
ample, an optical sensor was created by functionalization of silica nanoparticles with
polyethyleneimine and immobilization of Sphingomonas sp. This sensor was used to detect
methyl parathion [56]. In this case, the storage stability of the biohybrid was enhanced from
18 to 180 days. In addition, Aquincolatertiaricarbonis L108 cells, capable of biodegrading fuel
oxygenates of methyl tert-butyl ether and ethyl tert-butyl ether immobilized in a sol-gel
coating on porous silica granules, can be stored in a humid atmosphere for 8 months
without a significant decrease in their metabolic activity [71].

Mesoporous silica nanoparticles have an adsorption capacity, albeit limited, for heavy
metal ions due to their characteristics. Thus, biohybrid material was obtained by encapsu-
lating Yarrowia lipolytica in silicon matrices [65]. The resulting material was able to remove
Cr(III) and Cr(VI) pollutants from water with high efficiency and without special pretreat-
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ment, which makes it convenient for practical use. The initial adsorption capacity of Y.
lipolytica for Cr(III) and Cr(VI) is enhanced by the introduction of silicon dioxide. The yeast
Y. lipolytica was tested for n-alkane removal efficiency in water with n-hexadecane as a
typical contaminant. The improved n-hexadecane removal capability is due to the high
surface area of the hybrid materials as well as the hydrophobic surface interaction between
biosilica and n-hexadecane, which enhances the adsorption of the latter by the biosilica-
yeast hybrid material. With the advantages of hydrophobicity and porous structure, this
hybrid material exhibits enhanced handling capabilities for chromium and n-hexadecane
ions, reaching nearly 100% removal efficiency for both contaminants.

Another application of sol-gel materials containing living bacterial cells of Pseudomonas
sp. is their use for decolorizing water containing azo dyes. It was observed that immobilized
bacteria produced more than seven times more extracellular enzymes involved in the
biodegradation of azo dyes. The reusability of the material was evaluated through repeated
decolorization experiments. The decolorization degree was over 75%, 79%, and 83% for
Remazol black, methyl orange, and benzyl orange, respectively. Immobilized bacteria
have the advantages of high viable cell density, high stability, and increased reaction time.
Thus, the biocomposite can be used as an economical and effective agent for effluent dye
cleaning [44]. In addition, Pseudomonas bacterial cells immobilized in sol-gel matrices using
TEOS can be utilized for the production of biosurfactants, as described in [43]. The viability
of immobilized cells was maintained at ≥84% for 365 days after immobilization.

Immobilized microorganisms are able to effectively dispose of organic compounds
such as 4-phenylbutan-2-amine or heptan-2-amine [107] in a continuous flow mode. At
the same time, selective reduction of prochiral ketones and acyloin condensation of ben-
zaldehyde with yields from moderate 20% to great 99% were observed during the joint
immobilization of yeast cells of Lodderomyceselongisporus, Pichia carsonii, Candida norvegica,
and Debaryomyces fabryi in a sol-gel matrix [108].

Sometimes, to remove pollutants in one medium, enzymes are used in combination
with materials obtained by the sol-gel method [109,110]. In previous work [109], magnetic
nanoparticles modified with siloxane layers and having functional groups (amino groups
and thiol groups) immobilized the urease enzyme. The activity of the immobilized enzyme
during urea hydrolysis reached levels characteristic of the native enzyme, and its long-term
stability allows its repeated use in the analysis and detoxification of biofluids.

5.2. In Medicine

Silica-based sol-gel materials have many properties of an ideal material for tissue
regeneration, such as high surface area and porous structure in terms of overall porosity
and pore size, which promote cell-material interactions and cell invasion. Studies of these
materials have shown that the surface area is increased due to the porous structure, which
provides a higher rate of tissue binding.

Bioceramics based on sol-gel materials have great potential for use as coatings on metal
substrates to provide a high degree of biocompatibility and promote rapid recovery with
minimal biological side effects. However, compatibility is only one aspect of biomedical
applications based on sol-gel methods. Undoubtedly, one of the main advantages of using
sol-gel approaches to the production of bioactive coatings is the absence of the necessity
to maintain high temperatures during the synthetic process. Relatively low synthesis
temperatures avoid the complications of applying bioactive coatings, such as mismatched
thermal expansion coefficients found in conventional coatings, which can lead to cracking
and poor interphase interaction. Matrices based on titanium dioxide or TEOS have very low
cytotoxicity with respect to the cell lines used compared to other materials [111] (Figure 13).
Thus, the sol-gel method is simple, stable, cost-effective, and scalable to facilitate future
industrial production and clinical translocation [112].
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With versatile and customizable structures, mesoporous materials based on
silica [70,85], titanium [84], or zinc [113] are capable of loading various molecules, in-
cluding pharmaceuticals, therapeutic peptides, proteins, and genes. Mesoporous silicate
nanomaterials have been used as a drug delivery system for various kinds of medications
with different hydrophobic or hydrophilic properties, molecular weights, and biomedical
effects [114].

These medications include commonly used agents such as ibuprofen, doxorubicin,
camptothecin, cisplatin, and alendronate. Peptide and protein preparations have been
developed as effective therapeutic agents for many medical applications [84], including
cancer therapy [113], vaccination and regenerative medicine [85]. Mesoporous silicates can
protect biomolecules from premature degradation due to their porous structure. However,
proteins are difficult to deliver, in part because of their inherently high molecular weight
and fragile structure that must be maintained to retain activity [11]. Nevertheless, interest
in delivery systems based on silicon dioxide or titanium dioxide [84,85] for the oral delivery
of drugs, biomolecules, or cells is continuously growing. Active substance carriers can
be synthesized in two ways: by encapsulating the biomaterial in presynthesized silica or
by encapsulating and forming silica in one step (Figure 14). Silica production by sol-gel
technology is carried out at a relatively low temperature (<40 ◦C), which makes the process
compatible with the manipulation of thermosensitive drugs, peptides, proteins, and, in
particular, cells. A simple modification of the silica surface allows controlled release of
contents when exposed to changes in pH conditions and/or the presence of enzymes.
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The highly porous structure of sol-gel silica makes it an ideal candidate as a matrix for
a targeted drug delivery system designed to achieve gastric retention. Mesoporous silica
nanoparticles mixed with sodium bicarbonate, as a gas generating agent, and a cellulose-
derived polymer were used to prepare tablets for curcumin and captopril, hydrophobic and
hydrophilic model drugs, respectively. The resulting tablets can be kept in the stomach for
up to 12 h. Highly porous calcium silicate and aluminosilicate have also been successfully
used in the manufacture of a drug delivery system. Thus, they have been used to include
repaglinide, a hypoglycemic agent with poor absorption in the upper intestinal tract, and
methotrexate, an anticancer agent with a short half-life of 2 h [112].

The main function of the biocompatible encapsulating material is to provide a barrier
between the body’s immune system and the implant, as well as to provide the structure
with the necessary mechanical stability. The simplest implant design is a small bubble of
functioning tissue.

Isolated mouse islet cells were encapsulated in silica shells. The resulting islet cap-
sules were implanted intraperitoneally into mice with diabetes induced by streptozotocin
injections. At least one mouse maintained full blood glucose control for 10 weeks before
the activity of the implant was lost. This work is preliminary, and no statistical results are
available. This study is important primarily as an innovative application of sol-gel silicate
chemistry in the field of organ transplantation.

One of the most promising and widely presented technologies for obtaining silica-
encapsulated cells is the BioSil method developed by Giovanna Carturan. According to
the BioSil technology, the sol-gel precursors are transported to the place of encapsulation
in the gas phase. The starting reagents are usually a mixture of tetramethoxysilane and
methyltrimethoxysilane. This strategy allows precise control of the thickness, porosity,
pore size, and composition of the resulting siliceous membrane. Hydrolysis of precursors
occurs in the surface water layer covering cells or cell clusters. The gas stream removes
harmful hydrolysis products, leaving a smooth, fairly flexible silicate membrane. It has been
reported that isolated rat pancreatic islets can be safely covered with a silicate membrane
without loss of viability and function. Nevertheless, the authors noted some damage
to cells in the peripheral regions of the islet, as well as a decrease in insulin release by
approximately two times compared with uncoated tissue. Islands encapsulated in silica
were surgically transplanted under the left kidney capsule in incompatible rats. This
operation provided the diabetic recipient with adequate glycemic control for at least 8
weeks until the experiment was terminated. Unencapsulated islets collapsed within the
first week [15].

It can be concluded that the developed silica, titanium, or zinc particles are biologically
inert and biocompatible, making them suitable for biomedical uses, including drug delivery
and release applications.

5.3. For Batteries

The sol-gel process is widely and actively used to obtain nanomaterials based on
titanium oxide. Titanium dioxide is considered to be one of the most promising anode
materials for lithium-and sodium-ion batteries due to its inherent low toxicity, low cost,
and stability [38,116]. Typically, the material needs to be characterized in terms of poros-
ity, discharge capacity, and retention of capacity over a certain number of cycles to be
used effectively in batteries. It has been shown that the structure and morphology of
nanostructured titanium dioxide have a significant effect on its electrochemical characteris-
tics [38,117]. Thus, careful control of the structure and properties of synthesized titanium
dioxide is extremely important for obtaining a new efficient and stable anode material for
lithium- or sodium-ion batteries. The use of yeast cells as a biomaterial in the formation
of sol-gel matrices based on titanium oxide enables us to obtain a hierarchical porous
structure that reproduces the microstructure of yeast cells. Wen et al. used baker’s yeast as
a biomaterial with subsequent annealing at 450 ◦C. The resulting samples had a porous
structure consisting of macropores (1.5–2.5 µm) and pore walls containing mesopores
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(9.78 nm). When tested in sodium-ion battery anodes, porous TiO2 showed a discharge
capacity of approximately 255.98 mAh/g and a capacity retention of approximately 80%
after 100 cycles at 1/3 C. Moreover, the material retained a high discharge capacity of
112.93 and 84.65 mAh/g even at 5 and 10 ◦C, respectively [38]. Chiu’s group has developed
channel-like meso/macroporous TiO2 using titanium tetraisopropoxide as a precursor.
This material retained a high capacity of 120 mAh/g even after 80 cycles when tested as an
anode material for lithium-ion batteries [31] (Figure 15).
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TiO2 samples without the presence of glucose, yeast, or both were formed for perfor-
mance comparison. It is assumed that the high performance of the material is provided
by its hierarchical porous structure. Thus, the use of a yeast matrix is a promising way to
develop anode materials for rechargeable sodium and lithium batteries.

5.4. As Templates

Currently, the method of obtaining “molecular imprints” based on the polymeriza-
tion of functional monomers in the presence of specially introduced target molecule tem-
plates (molecular imprinting) is a well-established method for creating nanomaterials with
controlled porosity [118]. In this technique, a matrix is formed around a suitable tem-
plate molecule. The template is then removed, and microcavities of a certain size remain
(Figure 16).

Such advantages as a rich variety of shapes, low cost and availability, ecological
compatibility, unique configuration, and high repeatability of morphology ensure a high
demand for microorganisms as templates in the molecular imprinting process. However,
the difficulty of removing microorganisms and their small surface area is a limiting factor
for their use in various applications and hinders scaling [119].

Materials obtained by the sol-gel technique combine two important properties: the
ability to form very diverse nanomaterials and variable controlled porosity of the matrix.
In addition, the ease of fabrication, mild reaction conditions, commercial availability of
a wide range of functional monomers, physical rigidity of the resulting matrix, chemical
inertness, and resistance to thermal stress and solvent exposure make the sol-gel method
using templates attractive for creating cavities in nanomaterials [120].
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The combination of sol-gel technology and microorganisms with their subsequent
annealing opens up prospects for the development of new materials with controlled poros-
ity and a large specific area. Highly porous materials based on titanium dioxide with
bacteria as templates are being developed [38,54,121]. The obtained materials are used in
various fields, for example, in the adsorption of gases [54] or in the formation of an anode
material in rechargeable sodium batteries [38,121]. Guo and coworkers have shown that
hydrogen release from hollow TiO2 micro/nanostructures is 3.6 times higher than that of
their solid counterparts [54]. The porous structure of the new anode material provided the
accessibility of the electrode interface for the electrolyte, reducing the path length for ion
diffusion and compensating for volume changes during the cycle [38].

5.5. Application of Sol-Gel Hybrid Materials in Catalysis

Sol-gel catalysis is a mature chemical technology that offers unique advantages, includ-
ing ease of production of materials in various forms (powder, monolith, thin film, coating,
etc.) and ease of use. Alkoxides are soluble in organic solvents and readily hydrolysable,
making them a convenient source of “inorganic” monomers. The latter subsequently
condense into polymer particles. By chemically controlling the mechanisms and kinetics
of these reactions (catalytic and reaction conditions), the textural and surface structural
properties of the gel can be adapted [122].

The use of sol-gel materials as catalysts has three main advantages. First, the sol-
gel matrix (most often silicon dioxide) physically and chemically stabilizes the dopant.
This is important in catalytic applications where long-term catalyst stability is required.
Second, such materials change the selectivity of the catalyst by determining the approach
of the incoming reagents to the active site. Third, they increase the reactivity due to
excessive dispersion of the dopant in the ceramic matrix [20]. This is indicated by the
use of tetrapropylammonium perruthenate and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
encapsulated in a sol-gel shell. The 75% methyl-modified catalyst used in the oxidative
dehydrogenation of benzyl alcohol in supercritical CO2 has one of the highest turnover
rates for ruthenium-based aerobic catalysts [123]. This material can be reused in subsequent
reactions. At the same time, the tetrapropylammonium perruthenate catalyst cannot be
recycled in an organic solvent due to the formation of a precipitate of ruthenium particles.
This problem is prevented by encapsulating the catalyst in organosilicon shells [124].
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Sol-gel encapsulation of the nitroxyl radical markedly improves its chemical stability
compared to (2,2,6,6-tetramethylpiperidin-1-yl)oxyl attached to the outer surface of the
silica. The destruction of the supported catalyst occurs due to intermolecular quenching of
radicals remaining unprotected on the surface of the material. Intermolecular quenching
does not occur inside the sol-gel frameworks, which leads to high chemical and physical
stability and reactivity [123].

The sol-gel process allows the production of high-performance heterogeneous catalysts.
This opens the way for the efficient heterogenization of many homogeneous catalytic
systems, which until now could not be commercialized due to the difficulties associated
with separating the products from the catalyst.

Thus, ecology, medicine, electrical engineering, template synthesis, and catalysis are
the main areas of application of hybrid materials based on living cells of microorganisms
immobilized by the sol-gel method. The range of application of hybrid sol-gel materials is
due to the presence of a number of unique properties, such as a large surface area, high
porosity, biocompatibility, good mechanical strength, and ease of preparation.

6. Use of Organic Matter to Improve Microbial Viability

Currently, there are no specific studies on the interaction between the sol-gel matrix
and living encapsulated cells. A number of research articles describe the harmful effect of
alcohols, which form in hydrolysis reactions and remain in the reaction solution, which is a
problem for the long-term viability of encapsulated cells [125].

To create more stable structures, various additives have been used that allow obtaining
a biocompatible microenvironment to preserve the long-term viability of captured cells.
These additives can be polymers, for example, alginates, carrageenans, agar, guar gum,
cellulose, pectin, and chitosan, including their derivatives and polypeptides [41].

Additives can improve biocompatibility, for example, by improving surface inter-
actions between the gel matrix and the biological component [126]. Polyethylene glycol
acts as a surfactant that reduces the interfacial energy between liquid and gel, which
leads to an increase in porosity due to improved interaction with encapsulated biological
components [127].

Gel formation of polymers such as PVA via multiple freeze-thaw steps is widely
used to solve this problem. This process promotes the formation of hydrogen bonds and
the production of stronger hydrogels. However, polymerization at temperatures below
0 ◦C adversely affects the immobilized cells, leading to the loss of their functionality and
metabolic activity. Therefore, various methods of gelation of PVA have been developed, for
example, the formation of a polymer using boric acid. However, the resulting matrices were
fragile and unstable. Thus, the most appropriate and efficient process at room temperature
without the use of any costly and harmful chemicals is LentiKats technology [128]. A
technique that could be an extension or alternative to the conventional alkoxide sol-gel
process is the freeze-gel technique for biocomponent/cell immobilization. This method can
be used to fabricate biological ceramic composites. This material is an inexpensive, porous
composite without cracks and with almost zero shrinkage due to the use of colloidal SiO2
and a biocomponent in an aqueous medium. This customizable method allows linking the
freezing step that was required for the sol-gel transition to the retention of immobilized
bacteria and their possible division within biospheric cells. Freeze-gelation was used to
analyze immobilized Bacillus sphaericus for cell viability, storage capacity, and metabolic
activity. The resulting biocomposites have the potential to increase mechanical stability
and maintain the viability of immobilized microorganisms for several months [41]. An
optical biosensor for the determination of methyl parathion was obtained by immobilizing
Sphingomonas sp. into polyethyleneimine-functionalized silica. At the same time, the
stability of the biohybrid increased 10 times, from 18 to 180 days during storage. In
addition, the sensitivity and stability of the biosensor itself have increased [56]. Controlled
evaporation of alcohol, which is a co-product of hydrolysis and condensation of alkoxide
precursors, in vacuum allows up to 95% of viable cells to be preserved [52]. In addition, the
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use of organically modified TEOS and glycidoxypropyltrimethoxysilane in the presence of
PEG rather than pure silicagels as the host matrix showed a marked improvement in the
viability of encapsulated cells (18 vs. 6 days, respectively) [52]. However, in a study [129],
the captured microalga Chlamydomonas reinhardtii showed a slower growth rate than free
cells and did not reach the stationary phase when immobilized in silica hydrogels. The
reason for this difference may be the diffusion limitation shown by the biomass gradient.
This means that the cells at the top of the gel were adequately supplied with nutrients,
whereas the cells in the lowest third of the gel were nutrient depleted.

Alginate capsules are used to protect microorganisms from harmful environmental
factors. This contributes to the increase in the stability of the biomaterial and in the
efficiency of functioning of cells. One of the most commonly used encapsulation methods
is the immobilization of biocatalysts in silica-coated alginate beads. The encapsulation of
Dunaliella tertiolecta in alginate/SiO2 hybrid matrices produces an optically transparent and
strong material with significant porosity without loss of microorganism catalytic activity
(Figure 17) [130].
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Figure 17. Schematic illustration of the biotemplating synthesis of biomorphic hollow structures via
the surface sol-gel process. Reprinted with permission from [130].

Rehbeins’ group obtained alginate beads coated with silica shells of varying chemical
compositions. The authors studied the resistance of these beads against mechanical stress
(Figure 18). It was found that the structural integrity of coated beads is highly dependent
not only on the composition of the coating material but also on the method of preparation
of the alginate core [131].

Therefore, the use of organic substances to increase the viability of microorganisms
immobilized by the sol-gel method is an interesting approach that has been sufficiently
developed in the literature. The freezing-gelation approach can be used most effectively
to solve the problem of inactivation of living microorganisms. Thus, the obtained hybrid
materials will retain the viability of microorganisms for up to several months.

Further summary will be provided in Table 1 and discussed below.
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Figure 18. SEM images of silica-coated alginate beads before and after mechanical stress test. Alginate
solution was prepared in water (A,B), Tris/HCl buffer (C–F), or sodium phosphate buffer (G–I),
and beads were cured in 0.5 M calcium chloride. Coating was performed with pure TMOS for all
beads shown. (A,D,G): Beads before the stability test. (B,E,H): Cracked beads after the stability test.
(C): Close-up of breaking edge. Surface details of a bead prepared from Tris−HCl-alginate (F) and
sodium phosphate-alginate (I). Reprinted with permission from [131].

Table 1. Composition, properties, and applications of biohybrid materials obtained by the sol-gel
method.

Precursors Organic Component Biomaterial Properties and Applications Reference

SiO2

chitosan derivative
(CHT) containing

completely natural
quaternary amine

fragments

human mesenchymal
stem cells (hASC)

To get new generations of hybrid
materials with silica shell

functionalization by modifying the cell
surface. These materials can be applied

in various fields such as tissue
engineering, biosensors, drug delivery,

and targeted cell therapy.

[132]
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Table 1. Cont.

Precursors Organic Component Biomaterial Properties and Applications Reference

TEOS,
MTES,

phenyltriethoxysilane,
TMOS,

aminopropyltri-
ethoxysilane,

colloidal silica,
sodium silicate

polyethylene glycol,
glycerin,
chitosan,
trehalose,

N-(3-
triethoxysilylpropyl)

gluconamide (GLTES)

Escherichia coli

To use bacteria for the atrazine
utilization and biosorption of Cd2+ ions.

Efficiency is due to the presence of a
hydrophobic additive in the required
ratio. Search for such a ratio for the
most efficient utilization of atrazine.

To study the processes of encapsulated
bacteria division and the preservation of

their biological activity.
To study the structure of the obtained

material in the presence of various
organic components to increase the

long-term operation of the biomaterial,
as well as for research the activity of
microorganisms immobilized in the

sol-gel matrix during the aging of the
immobilizing material.

[13,19,27,
32,48–
52,99]

TEOS,
GLYEO (3-

glycidyloxypropyl)-
triethoxysilane

Pseudomonas fluorescens,
Rhodococcus ruber,

Haematococcus pluvialis,
Nannochloropsis

limnetica, Botryococcus
braunii, Chlorella

vulgaris

To obtain thin films. The catalytic
activity of microorganisms was studied

by the intensity of glucose oxidation.
[29]

TEOS,
titanium

isopropoxide,
triethoxysilane

(TREOS), diethoxy-
dimethylsilane
(DEDMS), di-

ethoxymethylsilane
(DEMS)

glycerol Saccharomyces cerevisiae

To study the long-term stability of
immobilized material.

To assess the rate of gene expression.
For the development of biosensors.

To study the morphology of the
resulting structures and the thickness of

the resulting films.

[34,50,51,
63,64]

Aluminosilicate Rhodococcus ruber

To study the biological activity,
mechanical strength, and structure of
biologically active ceramic composites
derived from Rhodococcus ruber bacteria

and capable of degrading phenol.
The immobilized cells showed no

decrease in activity when stored for
several months at 4 ◦C. They can be
stored for up to 12 months without

losing their biological activity.

[21]

Silicon oxide Mesotaenium sp.
Synechococcus sp.

To produce optical biosensor for
detection of heavy metal ions Cd2+, Cr6+

and Zn2 + in aqueous media.
[97]

Colloidal SiO2
SiNa/LUDOX 1/1 Genus Bacillus

To maintain the viability of immobilized
microorganisms for several months.

To improve mechanical stability.
For the determination of heavy metal

ions.

[41,47]
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Table 1. Cont.

Precursors Organic Component Biomaterial Properties and Applications Reference

TEOS,
MTMS,
TMOS,

sodium silicate

glycerol Pseudomonas sp.

The cells retain high viability for 365
days after immobilization when stored

in phosphate buffer at 4 ◦C.
Immobilized cells are able to efficiently

produce biosurfactants and can
participate in the biodegradation of azo

dyes.

[43–45,93]

Colloidal silicon
dioxide Streptococcus lactise

To increase the catalytic activity of
immobilized cells and the protective

function of the matrix.
[46]

Sodium silicate nodule bacteria of the
genus Rhyzobium

Immobilization of microorganisms in a
sol-gel matrix can be considered as an

alternative for long-term storage of
nodule bacteria.

[53]

TEOS glycerol cyanobacteria

To obtain a porous organosilicon
capsule. This capsule protects each cell

of cyanobacteria from mechanical
damage but does not prevent the rapid

diffusion of low molecular weight
substances through the pores of the

capsule.

[26]

Sodium silicate
MTMS Metylomonas sp. GYJ3

The activity of encapsulated
microorganisms was maintained at 4 ◦C

for 45 days.
[58]

TMOS Paracoccus denitrificans
To determine the content of

phospholipids of fatty acids using an
optical sensor.

[27]

TEOS Yarrowia lipolytica

The resulting biohybrid material has the
ability to remove Cr (III) and Cr (VI)
pollutants with high efficiency and
without special pre-treatment from

water.

[65]

Polyvinyl alcohol and
4-vinylpyridine Trichosporon cutaneum

To maintain the viability of
encapsulated cells. Arthroconidia are
formed in extracellular material and

play an important role in maintaining
the long-term viability of

microorganisms. This may be due to the
fact that arthroconidia have the ability
to withstand environmental stresses. A
biosensor based on encapsulated yeast
has been used to analyze biochemical

oxygen demand in contaminated
wastewater.

[66]

TEOS Paracoccus denitrificans
Monitoring the state of cells (live/dead)
immobilized in silica gel by determining

phospholipid fatty acids.
[69]

TEOS E. coli,
Staphylococcus aureus

SiO2 nanoparticles are biologically inert
and have an antimicrobial effect against
E. coli and Staphylococcus aureus bacteria.
Nanoparticles are non-toxic, which was

shown in a study on a human lung
epithelial cell line (A549)

[63]
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Table 1. Cont.

Precursors Organic Component Biomaterial Properties and Applications Reference

TEOS, aluminum
silicate

glycerin,
trehalose

Aquincolatertiaricarbonis
L108

Development of biofilters that are able
to decompose difficult-to-oxidize
methyl tret-butyl ether and ethyl

tret-butyl ether. Immobilized
biomaterial can be stored up to 8

months.

[71]

TEOS

Lodderomyceselongisporus,
Candida norvegica,

Debaryomyces fabryi,
Pichia carsonii

Development biocatalysts of the next
generation. They provide longer

catalytic activity of immobilized cells.
[67]

TEOS Humicola lutea, Bacillus
sp. [72]

TEOS,
tetra(n-

propylamino)silane

Chlamydomonas
reinhardtii ent

Comparison of cell viability
immobilized with silane precursors and

immobilized with sodium silicate.
[82]

Tetraethyl
orthosilicate Trametes versicolor

The characterization of the free silica
and Trametes versicolor cells in ceramic

matrices was carried out by using
scanning electron microscope,

transmission electron microscope,
Fourier transform infrared

spectrophotometer, nitrogen
adsorption–desorption measurement,

and catalytic activity assay.

[77]

TEOS Algae Biosorption of heavy metals [78]

TEOS Ralstonia eutropha
MTCC 2487

Immobilized bacteria utilize arsenic As
(V) [90]

TEOS,
GLYEO (3-

glycidyloxypropyl),
TEOS

Microalgae cells
Haematococcus pluvialis

Microalgae immobilized in sol-gel layers
can be used for the biotechnological

production of astaxanthin. It has been
shown that the formation of astaxanthin
during cultivation can be increased by
the combined use of Fe2+ compounds
with NaCl or hydrogen peroxide as

stress factors.

[68]

Sodium silicate Synechocystis sp. PCC
6803

To study gene expression of
encapsulated microorganisms. [91]

diamino-functional
silane

N-(2-aminoethyl)-3-
aminopropyltrimeth

oxysilan, TEOS

Sodium alginate Chlorella vulgaris

To improve the stability of Chlorella
vulgaris cells in saline solutions, as well
as to achieve stable reproducibility of

the obtained materials.

[96]

TEOS chitosan Gluconobacter oxydans

A mediator whole-cell biosensor with
acetic acid bacteria was created and

characterized. Bacteria were
immobilized on a graphite electrode

using a hybrid composite obtained by
the sol-gel method.

[98]
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Table 1. Cont.

Precursors Organic Component Biomaterial Properties and Applications Reference

TEOS,
MTES PEG Pichia angusta,

Cryptococcus curvatus

To create a biosensor for the utilization
of lower alcohols and determine their

concentration.
[101]

3-aminopropyl
trimethoxysilane

TMOS,
DiMe-DMOS,

TEOS,
silicon oxide

poly(vinylalcohol),
4-vinylpyridine
(PVA-g-P(4-VP))

PVA,
4-vinylpyrrolidone

E. marius,
B. horikoshii,
H. Marina

B. licheniformis,
D. marisand,
M. marinus,

Trichosporon cutaneum,
Bacillus subtilis

To create a BOD biosensor. [66,103–
105]

Silica nanoparticles polyethyleneimine
(PEI) Sphingomonas sp.

To improve the previously created
optical microplate biosensor for methyl

parathion based on Sphingomonas sp.
[56]

TEOS

Escherichia coli,
Chromobacterium

violaceum,
Lodderomyces
elongisporus

To create biocatalysts capable of joint
utilization of organic substances. [107]

TEOS

Lodderomyceselongisporus,
Pichia carsonii,

Candida norvegica,
Debaryomyces fabryi

To create biocatalysts for organic
synthesis. [108]

TEOS Citrus aurantium
Lextract

Citrus flavonoids were immobilized in a
sol-gel matrix. Sol-gel synthesis and

structure formation were investigated
using X-ray diffraction patterns (XRD),
Fourier transform infrared spectroscopy

(FTIR), scanning and transmission
electron microscopes (TEM). The

resulting nanohybrid materials had an
agglomerated amorphous structure
with a particle size of 171–199 nm.

[111]

TEOS Tannins from Acacia
mearnsii

The best results were obtained using the
silicate sol-gel method. Only hybrid
materials prepared using the silicate

route have demonstrated good
antimicrobial activity. The bactericidal

activity of the materials was close to that
of pure tannins. Thus, the sol-gel

process prevents the loss of tannin
through oxidation and hydrolysis. The

tannin can be released in an aquatic
environment in a controlled manner.

[114]

TEOS Chlamydomonas
reinhardtii

To increase cell viability.
To develop a low ethanol synthesis

method.
[129]

Titanium
tetraisopropoxide,

TiSO4

Yeast cells

Cells were used to form a material with
a given structure (they were then
burned out). The material can be

applied as the anode of a lithium-ion
battery.

[31,38]
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Table 1. Cont.

Precursors Organic Component Biomaterial Properties and Applications Reference

Titanium (IV) oxide
(immobilized on
silicon oxide or

activated carbon
support)

Material-catalyst for utilization of
organic pollutants. [35]

Ti(OEt)4 triethanolamine
A. chlorophenolicus,

P. anomala,
Lb. plantarum

[37]

Bis(ammonium
lactato) titanium

dihydroxide
(IV)

Poly
(diallyldimethylammo
nium)chloride, alginate

To create a mesoporous and
biocompatible material as a repository
of animal cells for use in cell therapy.

[85]

Butoxide tetraethyl
titanium Yeast

Catalytic tests have shown that the new
N-TiO2/MnO2 hollow nanosphere has a

higher photodegradation activity
against formaldehyde gas under visible
irradiation than commercial TiO2. This
is explained by the higher surface area

(160 m2g−1) of the hollow structure.
The catalytic efficiency of the developed
material was more than 90%, which is
about 10 times higher than that of the

traditional TiO2-P25 catalyst.

[112]

Aluminum chloride
(thermohydrolysis

in alkaline
medium)

glycerol Escherichia coli

To use alumina, the rate of formation of
the material is higher, and the survival

of microorganisms is lower compared to
the material obtained on the basis of

silicon oxide precursors.

[36]

Aluminosilicate Rhodococcus ruber

To study the biological activity,
mechanical strength, and structure of
biologically active ceramic composites

obtained on the basis of Rhodococcus
ruber bacteria capable of degrading

phenol. The immobilized cells showed
no decrease in activity when stored for

several months at 4 ◦C. They can be
stored for up to 12 months without loss

of their biological activity.

[21]

Incubated wet yeast To create a BOD-biosensor [86]

Ce(NO3)3 Morinda citrifolia

IR spectroscopy has proven the
production of cerium oxide

nanoparticles, which are formed due to
the extract of Morinda citrifolia. The TEM
method demonstrated the formation of

spherical nanoparticles.

[33]

CeO2 nanoparticles
(embedded in

transparent silica
hydrogel, TEOS)

Chlorella vulgaris

The resulting materials have protective
properties due to the applied precursors.

The immobilized cells were protected
from UV, H2O2.

[39]

7. Conclusions

We have provided a detailed comparative analysis, which helps finding a suitable
material, estimate the properties, and assess the best combination of precursors, organic
components, and biomaterials (Table 1). The simplicity of the synthetic procedure on the
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one hand and the variety of morphologies and applications of the obtained nanomaterials
on the other hand make the considered systems highly advantageous (Table 1). The
following main points can be briefly summarized.

Both bacteria and yeast cells are used in the formation of hybrid biomaterials. However,
the latter are used more often, as the alcohol released during the sol-gel process is not as
harmful to yeast as it is to bacteria. At the same time, the utilization of Escherichia coli,
Pseudomonas, Streptococcus, and Bacillus bacteria makes it possible not only to immobilize
the biomaterial but also to study its properties and structure.

Most often, organosilicon substances act as precursors when creating a matrix for
biomaterial immobilization. Titanium-containing precursors are used less frequently. How-
ever, in the last few years, research on the use of precursors containing aluminum and
cerium has been intensively developed.

Nanomaterials such as bioceramics or thin films can be obtained by the sol-gel method
when creating hybrid biomaterials. It depends on the type of precursors and microorgan-
isms used and the scope of the resulting nanomaterial.

Biohybrids obtained by the sol-gel technique are often used in ecology, medicine, in the
creation of batteries, and as templates. The resulting biohybrids can be used in ecology be-
cause the synthesized material protects immobilized microorganisms from harmful factors.
At the same time, the porous sol-gel matrix does not prevent the penetration of nutrients
into the cell and the leaching of waste products. In addition, many microorganisms have
a wide range of enzyme systems and are able to oxidize a broad spectrum of substances,
which is important in assessing the integral characteristics. The porous structure and large
surface area of sol-gel materials based on silicon dioxide or titanium ensure their efficient
use in medicine. In this case, microorganisms can act as templates, and the resulting
mesoporous materials can be used to load pharmaceuticals, for example.

We believe that this field will undergo rapid growth in the coming years, and the
application areas will widely expand to include more chemical fields, for example, catalysis,
synthesis, and medicine. Many new results and uses can be anticipated soon.
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128. Krasňan, V.; Stloukal, R.; Rosenberg, M.; Rebroš, M. Immobilization of Cells and Enzymes to LentiKats®. Appl. Microbiol.
Biotechnol. 2016, 100, 2535–2553. [CrossRef]

129. Homburg, S.V.; Venkanna, D.; Kraushaar, K.; Kruse, O.; Kroke, E.; Patel, A. V Entrapment and Growth of Chlamydomonas
Reinhardtii in Biocompatible Silica Hydrogels. Colloids Surf. B Biointerfaces 2019, 173, 233–241. [CrossRef]

130. Desmet, J.; Meunier, C.F.; Danloy, E.P.; Duprez, M.-E.; Hantson, A.-L.; Thomas, D.; Cambier, P.; Rooke, J.C.; Su, B.-L. Green and
Sustainable Production of High Value Compounds via a Microalgae Encapsulation Technology That Relies on CO2 as a Principle
Reactant. J. Mater. Chem. A 2014, 2, 20560–20569. [CrossRef]

131. Rehbein, P.; Raguz, N.; Schwalbe, H. Evaluating Mechanical Properties of Silica-Coated Alginate Beads for Immobilized
Biocatalysis. Biochem. Eng. J. 2019, 141, 225–231. [CrossRef]

132. Reid, A.; Buchanan, F.; Julius, M.; Walsh, P.J. A Review on Diatom Biosilicification and Their Adaptive Ability to Uptake Other
Metals into Their Frustules for Potential Application in Bone Repair. J. Mater. Chem. B 2021, 9, 6728–6737. [CrossRef]

http://doi.org/10.1021/acsomega.7b01837
http://doi.org/10.1016/j.colsurfb.2016.11.041
http://doi.org/10.1038/s41598-018-19166-8
http://www.ncbi.nlm.nih.gov/pubmed/29343729
http://doi.org/10.1016/j.jpowsour.2016.02.082
http://doi.org/10.1039/c3ra44031a
http://doi.org/10.1021/la050240y
http://doi.org/10.1021/acsami.8b22138
http://doi.org/10.3390/ijms11041236
http://doi.org/10.1016/j.jiec.2021.03.028
http://doi.org/10.1002/smll.201401201
http://doi.org/10.1039/C3NR06127B
http://doi.org/10.1039/B611171H
http://doi.org/10.1007/s10971-019-04967-8
http://doi.org/10.2174/1568026614666141229112734
http://www.ncbi.nlm.nih.gov/pubmed/25547970
http://doi.org/10.1063/1.5082407
http://doi.org/10.1007/s00253-016-7283-4
http://doi.org/10.1016/j.colsurfb.2018.09.075
http://doi.org/10.1039/C4TA04659E
http://doi.org/10.1016/j.bej.2018.10.028
http://doi.org/10.1039/D1TB00322D

	Introduction 
	The Classification of Hybrid Materials According to the Type of Immobilized Cells 
	Material Formation Procedure Optimization 
	Immobilization of Bacteria by the Sol-Gel Method 
	Immobilization of Yeast Cells by the Sol-Gel Method 

	Classification of Hybrid Materials According to the Precursors Used in the Formation of the Sol-Gel Matrix 
	Silicon-Containing Precursors 
	Titanium-Containing Precursors 
	Aluminum-Containing Precursors 
	Cerium-Containing Precursors 

	Classification of Hybrid Materials According to the Type of Nanomaterial Obtained 
	Bioceramics 
	Thin Films 

	Classification of Hybrid Materials According to the Application of the Resulting Nanomaterial 
	In Ecology 
	In Medicine 
	For Batteries 
	As Templates 
	Application of Sol-Gel Hybrid Materials in Catalysis 

	Use of Organic Matter to Improve Microbial Viability 
	Conclusions 
	References

